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ABSTRACT

Wireless surveillance systems are rapidly gaining popu-
larity due to their easier deployability and improved per-
formance. However, cameras inside are generating a large
amount of data, which brings challenges to the transmission
through resource-constrained wireless networks. Observing
that most collected consecutive frames are redundant with
few objects of interest (OoIs), the filtering of these frames
can dramatically relieve the transmission pressure. Addition-
ally, real-world environment may bring shielding or blind ar-
eas in videos, which notoriously affects the accuracy of frame
analysis. The collaboration between cameras facing at differ-
ent angles can compensate for such accuracy loss.

In this work, we present Litedge, a light-weight edge com-
puting strategy to improve the QoS (i.e., the latency and
accuracy) of wireless surveillance systems. Two main mod-
ules are designed on edge cameras: (i) the light-weight video
compression module for frame filtering, mainly realized by
model compression and convolutional acceleration; and (ii)
the collaborative validation module for error compensation
between the master-slave camera pair. We also implement an
enhanced surveillance system prototype from real-time mon-
itoring and pre-processing on edge cameras to the backend
data analysis on a server. Experiments based on real-world
collected videos show the efficiency of Litedge. It achieves
82% transmission latency reduction with a maximal 0.119s
additional processing delay, compared with the full video
transmission. Remarkably, 91.28% of redundant frames are
successfully filtered out, greatly reducing the transmission
burden. Litedge outperforms state-of-the-art light-weight AI
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models and video compression methods by balancing the
QoS balance ratio between accuracy and latency.
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1 INTRODUCTION

Video surveillance systems nowadays are pervasively de-
ployed in various daily scenarios: traffic monitoring, parking
management, public security in campus, office buildings, or
residential communities. As shown in Fig. 1, different from
the wired camera infrastructure, which incurs heavy burdens
on deployment and maintenance, smart surveillance system-
s composed by wireless cameras and cloud computing are
gaining great popularity with their higher security levels and
easier installations. A 2018 survey revealed that 430 wireless
cameras deployed in Warren County Public Schools of Wash-
ington, D.C., has 24 hours’ close watch on nine schools with
5000 students and 800 employees [1]. This monitoring system
continuously protects their security in the campus. However,
according to this survey, these 430 cameras produce 864 giga-
bytes video every day. With the growing size of monitoring
areas and the number of cameras, the increasing quantity
of video streams imposes great challenges on transmission
through resource-constrained wireless networks. The quality
of service (QoS) for wireless surveillance systems, including
the latency and accuracy, will be affected accordingly.

Fortunately, mobile edge computing [2] provides a promis-
ing direction to deal with these challenges. It brings the
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(a) Inflexible deployment of
wired surveillance deployment.

(b) Easy deployment of wireless
surveillance cameras.

Figure 1: Inflexible wired surveillance system VS.
easily deployed wireless system.

network functions, contents and resources closer to end de-
vices (e.g., edge cameras in surveillance systems) [3], which
makes it possible for local-processing of collected videos be-
fore transmission. [4] and [5] suffer from either coarse filter-
ing or non-negligible detection latency, resulting in poor QoS
balance in terms of accuracy and latency. In addition to tradi-
tional video coding [6] or capturing rate deduction [7], a light-
weight and accurate content-aware local-processing method
on edge cameras is desirable. On the other hand, complicat-
ed physical environment brings shielding or monitoring blind
areas, which may inevitably cause information loss in video
analysis. The collaborative validation among multiple cam-
eras can proactively compensate the error caused in the for-
mer frame filtering analysis. Despite researches on distribut-
ed validations [5, 8, 9] based on Multi-Camera Coordination
and Control (MC3) scheme [10], they are lacking in error
compensation mechanism.

Our approach is motivated by two observations: First, ac-
cording to 168 hours (one week) video analysis on one cam-
era in a residential community, except the rush hours (7:00-
8:00 and 17:00-19:00), there were fewer OoIs (i.e., human,
cars, and animals1) detected in videos shown in Fig. 2(a). It
implies large redundancy in monitoring videos. Second, the
massive buildings, plants, and facilities in residential commu-
nities may bring the shielding even blind monitoring areas,
where only partial OoIs can be detected or totally covered. T-
wo persons in the frame (labeled by the red box in Fig. 2(b))
are partially recognized, since they are covered by trees.

In this paper, we propose Litedge, a QoS-enhanced edge
computing strategy for wireless surveillance systems. This
strategy is mainly composed of two modules: light-weight
video compression on edge cameras and collaborative valida-
tion among them. In the first module, we optimize a light-
weight Single Shot MultiBox Detector (SSD) model to filter
out redundant frames by OoI detection. Three optimizations
are proposed to be adapted to wireless cameras with lower
computational capabilities: (i) background pruning among
consecutive frames from raw videos; (ii) model compression
and convolutional acceleration; and (iii) output class deduc-
tion and merging. The second module is complementary to

1We select these three OoI categories based on observations from cap-
tured videos in residential communities, which are frequently appeared
(contained in over 50% frames). And anomalous behaviors of these
OoIs indicate potential safety risks in daily life.
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(a) The average number of OoIs in differ-
ent time durations within a day.

(b) The tree shielding on
two monitored persons.

Figure 2: Illustrations for two observations of moni-
toring redundancy and environment sheilding.

the accuracy loss in the first module. Once detecting unrec-
ognized objects, which are partly shielded by the physical
environment, the master camera requests on its neighboring
slave camera for validation. Based on the fixed positions and
distributions of cameras, we design a simplified projection
depending on pin-hole imaging theory accompanied with AI
matching to localize and validate the requested objects. Af-
ter processing through these two modules, Litedge can suc-
cessfully select fewer but representative frames in videos to
reduce transmission redundancy, and thus improving QoS in
wireless surveillance systems.

We implement a complete surveillance system prototype
from edge cameras to the central server. Experiments based
on this prototype and real-collected videos show the feasi-
bility of Litedge on QoS enhancement. We mainly evaluate
two QoS factors: latency and accuracy. As for the latency,
Litedge achieves 82% transmission latency reduction with
maximal 0.119s additional processing delay (0.049s for AI
module and 0.07s for validation module), compared with the
original surveillance system. And for the accuracy, it suc-
cessfully filters out 91.28% redundant frames with a 5.69%
compensation ratio by collaborative validation. Overall, it-
s light-weight AI module acquires the highest QoS balance
ratio (1746.9), compared with three state-of-the-art bench-
marks: DeepMon [11] (27.98), DeepEye [12] (18.1), and Mo-
bileNet [13] (65.55). Further compared with the original video
transmission, compression-only strategy, and the closely re-
lated method [5], Litedge also achieves the best QoS balance.

This paper makes the following contributions:

(1) Light-weight video compression:We optimize a light-
weight SSD model to adapt to the limited computational
capability of edge cameras in wireless surveillance sys-
tems. Its processing on videos has faster speed and re-
quires fewer computational resources.

(2) Collaborative validation on cameras: We design a
collaborative scheme between edge cameras for validat-
ing partially covered objects. It behaves as a compensa-
tion of the accuracy loss in the former compression stage,
which is caused by physical environment shielding.

(3) Surveillance system implementation:We implemen-
t a complete surveillance prototype from video capturing,
local-processing and validating on edge cameras, trans-
mitting, and remote controlling in the server. Experi-
ments based on real-life collected videos demonstrate the
efficiency of our prototype.
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Note that two modules designed in this paper can be eas-
ily extended to other application scenarios. The first light-
weight AI optimization can be adapted to most sparse deep
learning models occupied by rich convolutional layers, and
further deployed on commodity IoT devices with constrained
computational resources and capabilities. Moreover, the sec-
ond collaborative validation can be utilized to other collabo-
rative communication environment, such as robotic or man-
ufactoria, to fulfill accuracy requirements.

2 RELATED WORK

In wireless surveillance systems, the interconnections be-
tween cameras and cloud via the wireless network create a
typical edge computing architecture [14]. Recent advances
have been made utilizing the local computation on edge de-
vices and collaborative computation among cameras.

2.1 Local-processing on Edge Devices

Traditional solutions on video compression are video cod-
ing techniques standardized by MPEG [6] or simply reduce
the sampling rate [7]. Although these solutions can keep low
distortion rate, they are not adaptive and flexible enough
for desirable redundancy deduction. Recently, content-aware
video compression method attracts considerable attentions.
Wu et al. [4] applied a foreground and background separation
algorithm, where only regions of interest are extracted and
processed. But this rough division leads to unsatisfied com-
pression result. Zhang et al. [5] applied a vision algorithm
on cameras for face detection. As this algorithm is not opti-
mized according to the computational capability of cameras,
it incurs non-negligible processing overhead.

AI techniques are widely used in video analysis. Limit-
ed by the computational capability of edge cameras, light-
weight AI models are required for efficient computation. The
cache-based convolutional optimization and tensor decom-
position in DeepMon [11] can decrease the computational
complexity of models. DeepEye [12] leverages the memory
caching and SVD-based model compression to support multi-
model running. MobileNet [13] presents a depth-wise separa-
ble convolution, combined by a single-filter derived convolu-
tion and 1*1 pointwise convolution. However, their targeting
devices are supported by quite powerful CPU and GPU pro-
cessors (e.g., 2GHz), which is not applicable to commodity
surveillance cameras. In this paper, our object is to optimize
the deep learning model from both model construction and
calculation aspects, to build a more efficient model structure.

2.2 Multi-camera Validation

Inevitable information missing (e.g., undetected or unclear
objects) remains unsolved when using only one camera anal-
ysis. A scheme called MC3 [10] addresses this issue. Collins
et al. [15] firstly proposed a collaborative master-slave frame-
work, where the master camera is used to track the trajecto-
ries of objects, and the slave camera performs specific recog-
nition. This framework is utilized in different scenarios, in-
cluding traffic anomalies [8], face detection [9], etc. Zhang

et al. [5] leveraged object re-identification between cameras
in a cluster based on a utilization matrix analysis. Nonethe-
less, they did not consider the error compensation after the
projection, leading to 89 pixels’ error between the projec-
tion and the target. In Litedge, we seamlessly connect the
AI detection module with the validation module, where the
AI detection results can help to match the projection with
detected OoIs, and thus improving the validation accuracy.

3 PROBLEM STATEMENT AND

FRAMEWORK OF LITEDGE

The application scenarios of surveillance cameras include
residential communities, offices, campus and so on. In this
paper, we take the residential community as an example s-
cenario, where the challenges faced by wireless surveillance
system are more representative. As shown in the left figure
of Fig. 3, surveillance cameras are deployed at importan-
t corners with fixed positions, focal lengths and monitoring
directions. Neighboring cameras have overlapped monitoring
areas but with different angles, and they can communicate
with the embedded WiFi module in a short range (around
15 meters for commodity cameras) and the limited band-
width. Each camera has two different monitoring modes: ac-
tive mode and sleep mode. In the active mode, cameras cap-
ture videos in a high ratio (e.g., 60 fps), but for the sleep
mode is in a low ratio (e.g., 15 fps) [16]. Each camera has
its independent processing system with an embedded core
processor without GPU, which has the lower computational
capability on processing video streams, and difficult to han-
dle heavy computational tasks (e.g., running a deep learning
model with above 10 layers). All these cameras have constan-
t power supply, where power savings are out of our research
scope.

The goal of our research is to increase the QoS of this
wireless surveillance system, where two main factors in QoS
are considered:

(1) Low latency: The low latency in this paper indicates
both low processing latency on the edge and low trans-
mission latency of videos from the edge to a cloud server.
The processing latency is measured on a single frame,
which is the elapsed time from AI triggering to feedback
receiving. And the transmission latency is the total time
of uploading the processed videos to a server.

(2) High accuracy: Two types of accuracies are measured:
detection accuracy for the light-weight AI model running
on the camera; and redundancy filtering accuracy whose
ground truth is calculated by the original AI model run-
ning on collected videos at the server side.

Correspondingly, we design Litedge, a light-weight edge
computing strategy for wireless surveillance systems shown
in Fig. 3, which is composed of two main modules labeled
by dotted boxes: light-weight video compression module and
collaborative validation module. Considering that fewer OoIs
typically show up other than rush hours in residential com-
munities, each camera works in the sleep mode by default,
and activates its AI module once the motion detected for
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Surveillance cameras distribution diagram
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Figure 3: The framework of Litedge. [Left: Camera distribution in one community (Yellow area implies the
monitoring coverage of the camera, and blue line implies their WiFi communications); Right: Litedge illustra-
tion from edge computing to transmission for one master-slave pair (marked in the red circle).]

electricity saving. Light-weight video compression aims
to filter out redundant frames by OoI detection. According
to our experimental measurements, three types of objects
in frames are defined as: recognized objects with over 50%
detection confidence; unrecognized objects with 0-50% de-
tection confidence; and none of interest with 0% detection
confidence. Correspondingly, the types of frames are: select-
ed frames containing any recognized objects; unrecognized

frames with only unrecognized objects inside; and redundant

frames without any recognized or unrecognized objects ap-
peared. Any recognized object founded leads to the direct
upload of the corresponding frame. Whenever unrecognized
objects detected in frames, the collaborative validation
module will be triggered between master-slave camera pair.

As shown in the right figure of Fig. 3, a person under
the tree is partially shielded, and thus recognized as an un-
recognized object for the master camera. According to the
position and direction of this person, the master camera will
select a close neighbor with suitable angle as its slave camera.
Although there is only one slave camera in one-time valida-
tion, any neighboring camera in the cluster within one-hop
communication range has a chance to be selected. Neces-
sary information associated with this object (e.g., location
and corresponding timestamp) will be shared from master
to slave. Note that each slave node also has functionalities
of master cameras, its AI detection results will be extracted
for the matching stage to decrease the projection error. After
matching, the decision about whether to upload the frame
will be sent back to the master camera.

The object detection on cameras will keep running until
no OoIs detected in consecutive frames, then cameras will
be set back to the sleep mode. Finally, selected frames will
be compressed by MPEG-4 standard and uploaded to the
server, and shown in the screen of the remote control room.

4 DETAILED DESIGN OF LITEDGE

The detailed design of two main modules in Litedge: light-
weight video compression module and collaborative valida-
tion module will be discussed in the following subsections.

4.1 Light-weight Video Compression

As one of the state-of-the-art OoI detection models, the
SSD model [17] outperforms with higher accuracy and de-
tection speed. However, it contains 11 convolutional layers
and 8732 prior boxes for each output class, which will cause
heavy computational burdens for cameras. To efficiently de-
tect redundant frames on surveillance cameras, we optimize
the SSD model to a light-weight structure on three aspects:

(1) Feed data pruning: The background pixels in frames
of surveillance videos always keep still because of the
fixed monitoring angles and ranges, which introduces re-
dundancy for deep learning computation [11]. As our fo-
cus is on the dynamic foreground objects, we intend to
prune the background before serving the frame to the
model.

(2) Model optimization: To optimize the model struc-
ture, we first compress the SSD model by channel prun-
ing [18] and then accelerate the convolutional computa-
tion which is proved to be computational heavier than
other layers [11, 13, 19]. These optimizations are expect-
ed to preserve the detection accuracy within the accept-
able error range.

(3) Output class deduction: Observing that three class-
es detected (i.e., human, transportation, and animal) in
residential communities dominates most (92% in our ex-
periments) meaningful frames in surveillance videos, we
deduct the number of output classes, where fewer check-
s are needed before giving detection results, and thus
decreasing the AI processing time.
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Figure 4: An example of frame pruning (the red box
shows different blocks; the black area in the 3rd pic-
ture is the pruned pixels in the 1st picture).

4.1.1 Feed Data Pruning. The idea of frame pruning is to
erase the same pixels between two consecutive frames. To
start the comparison, we first divide each M ×M frame Fi

into a grid with m×m size of blocks, which can be denoted
as bi1, bi2, ..., bia. Here, a is the number of divided blocks and

a = M2

m2 . The similarity si(i+1) is a result matrix calculated
by the matrix deduction in paired blocks of two consecutive
frames Fi and Fi+1. For instance, the similarity of the first
block pair is si(i+1)[1] = |bi[1]− bi+1[1]|. Same blocks where
si(i+1)[a] = 0 will be pruned. As shown in Fig. 4, the first
image and the second one are two consecutive frames, where
only two persons in the center are moving while other back-
ground images are static. After comparing with the second
frame, the static pixels in the first frame are pruned, which
are marked as black in the third image. It is obvious that
the pruned picture is far smaller than the original picture,
which can successfully reduce the computational burdens in
the following processing.

There are plenty of methods to find similar regions be-
tween two images, like SIFT [20], color-based algorithm [11],
or Gaussian mixture model with color and deep channels [21].
But the tradeoff between limited computational speed and
highly-required low latency cannot be realized when they
are applied on surveillance cameras. The direct deduction
between two frames is the simplest way for frame pruning.
Even it is not the most accurate method, as a pre-processing
method, its accuracy loss is tolerable. Important concerns
like entering in and leaving from the monitoring areas and
other abnormal situations such as vehicle collision, animal
attacking, people fighting are always dynamic, and thus will
be remained without pruning.

4.1.2 Model Optimization. The limited computational capa-
bilities on commodity surveillance cameras cannot efficient-
ly support the running of computationally expensive deep
learning models (e.g., the original SSD model with 11 con-
volutional layers). The deep learning model applied in this
module should be light-weight to adapt to edge cameras. To
this end, we design two optimized operations: model com-
pression and convolutional acceleration.

Model compression. Depending on the sparsity of deep
learning model, it can be compressed unstructured [22, 23]
with higher precision but relying on specific libraries and
platforms supports. So in Litedge, we utilize channel prun-
ing [18], a structural compression directly on the SSD model.

Channel pruning is suitable to compact single brunch mod-
el like the SSD model. During the layer-by-layer sequential
pruning, the accumulated error should be minimized on each
output feature maps. Two main steps are applied to the tar-
get model. First, the most representative channels will be
selected, while redundant channels are filtered. Second, the
selected channels will be reconstructed as the new feature
map. For calculation convenience, we denote that a feature
map in the SSD model has c channels; the size of convo-
lutional filter W is n × c × kh × kw; and the size of input
volumes X is N × c × kh × kw, deriving an N × n output
matrix Y . N is the number of samples, and n is the number
of output channels, together with kh × kw size of the kernel.
The pruning process can be formulated as:

argmin
β,W

1

2N

∥

∥

∥

∥

∥

Y
′

−

c
∑

i=1

βiXiW
T
i

∥

∥

∥

∥

∥

2

F

subject to ‖β‖0 ≤ c
′

.

(1)

Inside of the Frobenius Norm ‖·‖
F
, βi, Xi, Wi represent

the status of channel i (i.e., selected or not selected), new
input which prunes channel i from X, and new filters which

prunes channel i from W , respectively. Y
′

is specially de-
signed for the whole model pruning, indicating all outputs
from each layer. The constraint condition of this formula im-
plies that the retained channels should be fewer than or equal
to desired channels, which can be adjusted by the speed-up
ratio in training. As mentioned before, the optimization of
this formula requires two steps. The channel selection step
can be calculated when W is fixed, while the feature map

reconstruction step will be further processed when β is fixed.
Note that the original implementation provided by He et
al. [24] was specially designed for the GPU-only Caffe envi-
ronment. We change its settings and test it on a CPU-only
environment to simulate the surveillance camera settings,
and acquire satisfactory results shown in Section 6.

Convolutional Acceleration. It is proved that the con-
volutional layer is the most time-consuming layer in deep
learning computation [11]. In the original SSD model, 11
convolutional layers incurs considerable processing latency.
Taking M ×M and m×m as the size of inputs and kernel-
s respectively, each kernel takes O(M2m2) computational
complexity to calculate dot products for a single forward
and backward propagation. It is necessary to accelerate the
convolutional calculation of the SSD model in a simple and
fast manner.

It is common to use Fast Fourier transform (FFT) [25] for
convolutional optimization, taking the idea that Hadamard
product in the frequency domain is simpler than matrix
cartesian product in the space domain. Nonetheless, we con-
sider that its complexity O(M2log2M) is still high consid-
ering the low latency requirement in wireless surveillance
systems. For the further reduction on calculation complexi-
ty, we leverage overlap-and-add (OaA) technique [26] in our
optimization, achieving the complexity of O(M2log2m). For
instance, a 128×128 picture with a 2×2 kernel has a complex-
ity of O(1282 × 4) for standard convolution, O(1282 × 7) for



IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Liu, et al.

1 2 3 0

1 2 1 0

2

3 2 1 0

2 3 1

8 4 0

7 8 5 1

Input Array:4*4 Result:5*5

1 1

1 1

Kernel:2*2

1 2

3 2

3 0

1 0

1 2

1. Split

2. Separated convolution

3. Overlap

4. Add

84

1

5 3 0

4 8 6 2

31

0

3

2 4 5 4

044

033

011

3 7 4

1 3 2

2 4 2

2 2

1 0

3 1

1 3 2

4 8 4

3 5 2

4 5 1

1 1 0

3 4 1

8 4 084

5 3 0

3 5 3 1

31

0

7 8 5 1

1

1 3 3 1 0

3

2 4 5 4

Padding:1

Stride:1

Intermediate results

Figure 5: An example of OaA algorithm. [Composed
of 4 steps: split, separated convolution, overlap, and
add. The results of OaA is the same as the traditional
convolution result shown in the first row.]

FFT, and O(1282 × 1) for OaA,. That is, the OaA achieves
a 1/7 less computational complexity than FFT and a 1/128
less than the standard method. As shown in our evaluation
results in Section 6, this method accelerates the running of
the SSDmodel on cameras, with less latency than other three
light-weight models (i.e., DeepMon, DeepEye, MobileNet) in
detection.

A simple example of 2D gray image processing by OaA
in Litedge is shown in Fig. 5. It can be easily extended to

color images. As we have broken each frame into M2

m2 blocks
in frame pruning stage, we set the kernel size same as the
block size m × m. Take a 4 × 4 image as an example. We
divide the image into 4 blocks with 2 × 2 size, which is the
same with the kernel size in convolution. As shown in Fig. 5,
they are represented by four different colors. The left up-
per image is the input array and its kernel, while the right
upper image is their convolutional result calculated by the
standard convolutional process. The processing flow of OaA
algorithm is illustrated under the first line, including split-
ting, separated convoluting, overlapping and adding stages.
In the splitting stage, four blocks are split from the origi-
nal input array to four sub-arrays. Each sub-array will be
separately convoluted by the same kernel, padding rate and
stride with the standard convolution, and getting four con-
volutional results. These four results will be further added
together pair by pair with the overlap rate of m − 1 (1 in
this example), leading to two intermediate results. These t-
wo intermediate results will again be added by rows with the
same overlap rate m − 1 to output the final result of OaA.
This final result is the same as the standard one given in

the first row. Note that the separated convolutional stage is
computed in the frequency domain for large scale pictures.
The separation in OaA can reduce the convolutional scale,
while the overlap and add operations are simpler than dot
product while keeping the consistency of final results.

The possible extra cost for OaA is block breaking. As
input images have already been divided in the former frame
pruning operations, only the size of the kernel is needed to
be set the same as block size with negligible cost.

4.1.3 Output Class Deduction. In the SSD model, 8732 pri-
or box results are calculated for each detected class. Taking
the MS COCO dataset [27] as an example, 90 classes in this
dataset require a large number of calculations. From our ob-
servations, some objects have no need to be detected even it
is dynamic, including plants (e.g., trees, grass, flowers) and
buildings. While for other objects like doors, mailboxes, and
exercise facilities, etc., we consider that their movements are
involved in human activities. So as long as we detect human-
s in frames, these facilities will also be included in selected
frames, with no need for special detection. At last, we se-
lect seven categories in MS COCO dataset to be selected,
including human, dog, cat, car, bicycle, bike, and bus (espe-
cially for campus scenario), which are frequently appeared
in captured videos and have potential risks in our daily life.
Furthermore, these several selected categories have similar
features: dog and cat are all animals with four feet and smal-
l shapes; car, bicycle, bike, and bus are all transportation
with wheels. So we combine these similar categories to three
kinds in total. That is, human, transportation, and animals
should be detected in frames. The corresponding image sets
and annotation XML file are summarized according to our
3 specified categories.

4.2 Collaborative Validation

The complicated physical environment may bring poten-
tial error in the former object detection, due to the following
two typical cases:

(1) Shielding: Buildings, plants or facilities are natural bar-
riers for monitoring, especially for modern communities
with dense population. Because of the fixed angles of
cameras, the video captured in a single camera cannot
clearly show every object, suffering from such shielding.

(2) Blind area: The sparse surveillance distribution may
not cover the whole area, leaving some places undetected.
Limited by the fixed positions and monitoring ranges of
cameras, it is possible that partial object captured in
frames, decreasing the accuracy of object detection in
frame analysis.

To guarantee the accuracy requirement in wireless surveil-
lance systems, we design a collaborative validation scheme a-
mong cameras to compensate these undetectable cases. Each
camera node has its application-specific tasks like object de-
tection and functionalities like validation. Such validation
depends on the share of their knowledge on target objects
within neighboring nodes and finally gives the feedback for
frame selection. For the accuracy requirement in QoS, the
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Figure 6: Collaborative validation calculation.

object detection results on frames will be stored for further
error compensation in validation. Concretely, the design of
this collaborative validation module is described below.

When there are unrecognized objects detected, the master
camera will send a validation request to its slave peer. The
request message includes the physical location of requested
objects and corresponding timestamps. Once the slave cam-
era receives a request, it will project the relative locations of
these objects in its view and locate them in corresponding
recorded frames. Depending on the pin-hole imaging theory,
we design a linear image projection algorithm. First, several
objects whose detection confidence is lower than the thresh-
old T (T = 50% in our experiments) have been marked as un-
recognized objects u by the former AI module. As illustrated
in Fig. 6, its estimated type tu, centroid location (xpu, ypu),
size (maximum occupied pixels lengthways) spu in the frame,
and the corresponding timestamp t will be fed to this collab-
orative validation module as inputs. And the angle αa is
measured between the object and its axle line. We assume
that the relative position, deployed height and the focal of
each camera are pre-known.

According to the pin-hole projection formula [28], we cal-
culate the distance da from the unrecognized object to the
master camera a by:

da =
hu × f

spu + ha

, (2)

where hu is the practical height of the unrecognized object
u, f is the focal of camera (same for each camera), and ha is
the deployed height of the master camera a. According to the
common sense, we set the average heights for three detected
classes as: 170 cm for human, 20 cm for animals, 150 cm for
vehicles. Based on the estimated type tu, the value of hu can
be set correspondingly.

For the angle calculation, we simplify the problem that
the angle between the centroid of an unrecognized object and
the axle line in the frame is the same as the angle between
object and the normal direction of camera in physical space.
In Fig. 6(a), the angle αa can be easily calculated by the
location of centroid (xpu, ypu) in frame f . To imply the east
or west of the angle, it will be represented by the positive
or negative value for differentiating. Illustrated in Fig. 6(b),
we select the camera b rather than c. Based on the relative
angle θab, the relative distance dab between the camera a and

(a) Unrecognized object founded
in red box.

<Tmatch

>Tmatch

(b) Red box will be redirected to
blue box, rather than yellow one.

Figure 7: Localization compensation strategy.

b, the calculated distance da and the angle αa, the distance
db for the slave camera b can be calculated as:

db =

√

(da sin(θab − αa))
2 + (dab − da cos(θab − αa))

2 (3)

And the angle αb for slave camera b can be calculated as:

αb = arccos
dab − da cos(θab − αa)

db
(4)

Inversely, such physical distances and angles can be trans-
ferred to the size spb and the angle αb in the frame fbt of
camera b at time t according to (2). A spb × spb box will
be drawn as the localization of unrecognized objects in the
camera b.

However, as the projection from the 3-D physical world
to 2-D pictures inevitably lose one-dimension parameters,
this simplified algorithm will bring potential accuracy loss.
Correspondingly, we design a matching mechanism for error
compensation. The slave node will extract its OoI detection
regions on the frame fbt and further compared with the lo-
calized region. If there is a shortest distance between two
centroids of regions which is no more than threshold Tmatch,
we consider these two regions as the same region, where we
will match the calculated location with this detected loca-
tion. The threshold Tmatch is experimentally set as the av-
erage value in multiple measurements. Illustrated in Fig. 7,
the covered human labeled in red box of the left picture is
localized as the same red box in the second picture by cal-
culation. The two OoI detection regions are labeled in blue
and yellow boxes. After calculating the distances between
the localized box and detection boxes, it is obvious that the
red box is closer to the blue box, and the distance is short-
er than the threshold Tmatch. So we will match the red box
with the blue box.

After the matching stage, three kinds of results will be
given in the validation module, which are sent as feedbacks
to the master camera:

(1) No match: The slave camera sends the feedback “drop”
to the master camera, implying that this request is in-
valid. The master camera will not select this frame for
transmission.

(2) Matched, and OoI found: Only the slave camera u-
ploads the frame. It also sends the feedback “finish” to
the master camera.
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(3) Matched, but also unrecognized: The slave camera
uploads the frame and sends the feedback “upload”. The
master camera also uploads the corresponding frame,
leaving them to the server for further checking.

5 IMPLEMENTATION

As shown in Fig. 8, we implement a prototype for the
surveillance system on two sides: the edge camera side and
the server side. In the camera side, we use Raspberry Pi 3b
for experiments (labeled in the blue box), embedded with
ARM Cortex-A53 and no GPU. Supported by 802.11n WiFi
module and external camera module v2, it performs as the
surveillance camera with video capturing and wireless com-
munication functions. To simulate cameras deployed in d-
ifferent angles and capturing ratios, we select the camera
module on Raspberry Pi and a commodity external camera
with USB connection (labeled in yellow boxes). The evalu-
ation results on camera processing can be displayed on the
right monitor connected with Raspberry Pi (labeled as edge
side). In the server side (left red box), the video analysis is
running on a desktop computer, with 64-bit Ubuntu 14.04
LTS version, 8 core 3.6GHz Intel Core i7 CPU and Kabylake
GT2 770 GPU.

We utilize the motioneyeos API provided in [29] for the
motion detection function in each camera. It can increase the
capturing frame rate for cameras once any motion is detect-
ed. The frame rate in the sleep mode and the active mode
are 15Hz and 32Hz, respectively. And we set the capturing
resolution as the typical 640*480 dpi.

The optimized SSD model is trained locally with the fil-
tered MS COCO dataset [27], including 28462 samples for
people, 10190 samples for transportation, and 3759 samples
for animals in total. The 10% of total samples will be di-
vided as testing samples while the 90% samples combine
the training set. It is running on Raspberry Pi for real-time
video analysis. On the server side, the original SSD model is
trained using large MS COCO dataset as a baseline in per-
formance evaluations. According to the continuity of frames,
consecutive frames in a short duration may have similar ob-
ject detection results. So the SSD model processes frames
sequentially by taking the next input after finishing the pro-
cess of the current frame. Measured from the experiments,
the sampling rate for the SSD model is 12.5Hz. For anoth-
er parameter setting, according to our experimental results
shown in Fig. 9(a), 8*8 size of blocks yield better detection
accuracy and lower latency, therefore, we set it as the size of
divided blocks.

For the collaborative validation module, the master and
slave cameras will first share their location information, in-
cluding the relative distances and angles. We implement this
module by writing approximately 200 lines of Python codes
on master and slave nodes, including neighboring selection,
information sharing, projection calculation, and matching.
The camera that firstly gives the feedback to the master cam-
era will be selected as the slave camera, which is considered
as the nearest node within the communication range. When

Server side

Edge side

Two Raspberry PisTwo Cameras at 

different angles

Figure 8: Prototype illustration.
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Figure 9: Evaluations on block division and the pro-
cessing latencies on edge cameras.

the validation is triggered, the calculated angles, the physi-
cal locations of unrecognized objects, and the corresponding
timestamps will be packed and shared to the slave camera
in multiple times until getting “received” feedback.

6 EVALUATION

In this section, the QoS performance of Litedge will be
evaluated on real-life collected videos. Section 6.1 evaluates
its latency performances, in terms of both processing and
transmission latencies. Section 6.2 further evaluates its accu-
racy performances, including detection accuracy, collabora-
tive validation compensation, and the final filtering accuracy.
The overall QoS evaluation is introduced in Section 6.3. First,
Litedge is compared with three state-of-the-art light-weight
AI methods to evaluate its model optimization performance.
Next, Litedge is compared with the original video transmis-
sion, the compression-only strategy, and the closely related
method with both video compression and camera collabora-
tion proposed by Zhang et al. [5]. Its overall QoS tradeoff
between accuracy and latency is also measured in this com-
parison.

6.1 Latency Evaluation

In this experiment, we collect two video traces from two
different angles monitoring the same area in a certain com-
munity. These two video traces are synchronously captured
for a duration of half hour. With two different capturing ra-
tios on sleep and active modes, we acquire around 30,000
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Table 1: Different compression performance for cap-
tured videos.

Method Original MPEG-4 Litedge

Video size 325M 133M 96.82M

Transmission Latency 676s 296.64s 121.62s

Reduction Ratio - 56.1% 82%

frames after cropping the beginning and the ending of this
video to keep its quality. We aim to answer the following
three questions in latency evaluations:

(1) How much processing latency is reduced by the opti-
mized SSD model?

(2) How much processing latency is incurred by collabora-
tive validation?

(3) How much transmission latency is reduced by Litedge?

To answer the first question, we feed these 30,000 frames
to both the optimized and original SSD models for compar-
ison. To measure the processing delay incurred by collab-
orative validation, unrecognized frames acquired from the
optimized SSD model will be input into the collaborative
validation module. To evaluate the overall latency reduction
level, original 480p video, 360p video compressed by MPEG-
4 algorithm, and 480p video compressed by Litedge (frame
filtering with MPEG-4 compression) will all be transmitted
to the server, with the 100K/s uploading speed.

Fig. 9(b) shows the CDF of processing latency for the opti-
mized SSD model on each frame, compared with the original
model running on cameras. We observe that the average la-
tency is 0.049s for the optimized model, while it is 0.06s for
the original model, leading to around 18.3% deduction. Our
optimized operations in Section 4.1 accelerates the computa-
tion of the original SSD model and also fits the model into
light-weight devices with limited computational capability.

The average latency for the collaborative validation mod-
ule is 0.07s, leading to 0.119s additional processing delay in
total. Moreover, 27.2% frames are deducted compared with
the whole-frame transmission. Table. 1 shows different trans-
mission latency for the original video, the MPEG-4 processed
video, and the Litedge processed video. Clearly shown in the
fourth row of this table, Litedge achieves the highest trans-
mission latency reduction ratio (82%) among these perfor-
mances.

6.2 Accuracy Evaluation

To measure the filtering accuracy for the optimized model,
we first run the optimized model on cameras, with running
the original model on PC as the ground truth. As the re-
sults are quite stable after over 500 attempts, we only show
accuracy results for the former 500 frames in Fig. 10.

We further define the compensation level to evaluate the
performance of collaborative validation module. We denote
the redundant frames founded by light-weight AI as fAI ;
the newly detected redundant frames in validation module
as fval; and the number of real redundant frames defined
by original model running on PC as freal. Then, the final
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Figure 10: Evaluations on detection accuracies and
the QoS performance of the light-weight AI module.

accuracy for Litedge AccLitedge can be represented by this
compensation ratio Rcom:

AccLitedge =
fAI

freal
+Rcom =

fAI + fval

freal
(5)

As shown in Fig. 10(a), the optimized model running on
our prototype has quite similar performance with the origi-
nal model running on PC. Note that in the first 200 frames,
there is no OoI shown in the video, leading to 0% detec-
tion accuracy for the original model. However, the less train-
ing set derives the relatively lower performance of the op-
timized model, which will mistakenly acquire around 40%
detection accuracy. As we define the confidence for the re-
dundant frame is over 50%, such error will not affect the
final frame selection results. After eliminating the first 200
results, the redundant frame detection accuracy in the opti-
mized model is 85.6%, with the ground truth (93%) on the
original SSD model. Interestingly observed in this result, the
detection accuracy on the optimized model sometimes even
higher than the original model. We think it is because of the
deduction of output classes, which increases the concentra-
tion on OoIs in the optimized model. The compensation ratio
is further calculated as Rcom = 5.64%. It indicates 91.28%
redundant frames are successfully filtered out, where only 17
redundant frames are mistakenly selected.

6.3 Overall QoS Performance Evaluation

The balance between latency and accuracy can show the
overall QoS performance of Litedge. First, we evaluate the
balance by comparing the light-weight AI module with three
popular light-weight AI structures: DeepMon, DeepEye, and
MobileNet. As shown in Fig. 10(b), Litedge achieves a better
balance between detection accuracy and latency. Consider-
ing that more accuracy and less latency are better, we simply
divide the accuracy with latency to represent the balance ra-

tio, which is 27.98 for DeepMon, 18.1 for DeepEye, 65.55 for
MobileNet, and 1746.9 for Litedge. It implies the feasibili-
ty of our light-weight AI design, which can fulfill the QoS
requirements in wireless surveillance systems.

Moreover, we evaluate the balance by comparing the over-
all QoS performance of Litedge with the original video trans-
mission, the compression-only strategy, and the closely relat-
ed method [5]. Their comparisons are summarized in Table. 2.
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Table 2: The summarization and comparisons on the overall QoS performance.

Method
Original Transmission

(Ground Truth)
Compression Only

(Control experiment)
Litedge

(Our design)
Zhang et al. [5]

(Related method)

Performances Accuracy Latency Accuracy Latency Accuracy Latency Accuracy Latency

Results 93% 676s 85.6% 247.62s 91.28% 262.62s 90% 329.88s

Balance ratio 0.138 0.346 0.348 0.273

The balance ratio in the fourth row again demonstrates the
feasibility of Litedge on QoS enhancement in wireless surveil-
lance systems.

7 CONCLUSION

To enhance the QoS performance of wireless surveillance
systems, we presented Litedge, a light-weight edge comput-
ing strategy to accurately filter out redundant frames in
transmission. To better fit this strategy into edge cameras
limited by its computational capability, we optimize the deep
learning model used for object detection with model com-
pression and convolutional acceleration. A collaborative scheme
is further designed between edge cameras to avoid possible
analysis loss. Experiments show its better QoS provisioning,
including low latency, resonable accuracy, and a better bal-
ance between them.

To further increase Litedge’s utility, we highlight several
interesting future directions of our work. Operations such
as eliminating the low illumination and bad weather effects
can be introduced to increase the processing accuracy. Video
compression algorithms can be designed to decrease its dis-
tortion rate. Moreover, we plan to extend monitoring scenar-
ios and camera types of Litedge in our future work.
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