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Radio Frequency Identification (RFID) technology has been widely used in many applica-
tions such as logistics, warehouse management and animal identification. However, the 
dilemma of short time requirement and massive tags makes traditional one-by-one identi-
fication methods impractical. Meanwhile, existing off-the-shelf methods cannot count and 
classify RFID tags at the same time. In this paper, RFID classification statistics problem is 
defined as classifying the tags into distinct groups and counting the quantity of tags in each 
group by the reader. The issue of time efficiency is significant in classification statistics, es-
pecially when the number of tags is large. To address this problem, we propose a novel 
Twins Accelerating Gears (TAG) approach. One gear shortens the classification process in 
frequency domain through subcarrier allocation, when another gear accelerates the statis-
tics process in time domain through geometric distribution based quantity estimation. TAG 
can handle classification and quantity estimation during one process while existing meth-
ods need to handle it separately. We give elaborate proof of the running time and quantity 
estimation value of the process in theory. Typically, the total time of TAG is O (log N) and 
TAG outperforms existing identification solutions about 99.8% time reduction on 1000 tags 
classified statistics.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Radio Frequency Identification (RFID) technology has been widely used in cardinality counting [1–4], identity recognition 
[5–7], transportation and logistics [8–10] and RFID tracking [11,12] recently. For example, RFID tags can be attached to 
books in the library [13] and can be tracked in case these books are misplaced or missing.

Typically, RFID reader and RFID tags are two constituent parts of a RFID system [14]. RFID reader is a wireless device 
to collect information from tags and RFID tag is a small identifiable device attached to objects. The manufacturer can set 
a unique ID number for each tag either using given types (such as SSCC, SGTIN, GSRN, and GID) or using custom types. 
According to the EPC standard [15], this number can be divided into several segments to identify objects location, category, 
serial number and so on. The value of a segment is called classification ID (CID). Hence, the reader can classify tags into 
different groups according to the CID.

Classification statistics is a common task in real RFID applications. For example, in Walmart, staffs need to keep enough 
commodities at the right place. It will make works more convenient and efficient if you offer a fast counting and classifying 
technique. Staffs can periodically use RFID readers examining the number of remaining commodities within the range 
of RFID signals instead of checking commodities one by one. Meanwhile, if commodities were accidentally misplaced by 
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customers, staffs can easily arrange them into the right categories, where traditional estimation methods become intolerably 
slow in this situation. To the best of our knowledge, related research is still vacant in the literature. Thus, we define the RFID 
classification statistics problem as to classify the tags into groups and to obtain the cardinality of tags in every group. In 
classification statistics problem, time efficiency is the most significant and challenging issue, especially the tags are always 
large [16,17]. Hence, in this paper, we formulate and study the fast classification statistics problem in RFID systems and 
propose a Twin Accelerating Gears (TAG) approach.

From system aspect, TAG runs as follows: (i) the reader broadcasts a query message including the information of sub-
carrier allocation and time synchronization, then listens to the answers from tags. (ii) Each tag picks the time slot with the 
probability following the geometric distribution, and answers one-bit Yes only once at assigned subcarrier. (iii) The reader 
collects all answers from tags. Under the signal processing of the composite answers, the classification statistics result can 
be estimated according to geometric distribution.

Hence, TAG reduces the total processing time by following advantages. (i) In time domain, tags select the time slot 
following the geometric distribution, N tags can finish answering in a short time O (log N). Meanwhile, tags answer only 
one-bit ‘Yes’ instead of their long ID number. (ii) In frequency domain, different subcarriers are allocated to map the classi-
fication IDs. Hence, tags in different groups can be counted simultaneously at different subcarriers, i.e., the one-bit answers 
from tags need not transmit one-by-one.

We give the total running time and quantity estimation value in theory. Compared with ALOHA [18,19] and tree ap-
proaches [16,20], performance evaluations show TAG saves more than 99.8% time and reduces the error ratio about 30%, 
when 1000 tags are uniformly distributed in 4 groups.

The rest of this paper is organized as follows. In Section 2, the related work is presented. In Section 3, the problem 
is formulated. The design principles of classification accelerating gear and statistics accelerating gear are introduced in 
Section 4 and Section 5 respectively. In Section 6, TAG realization is proposed. In Section 7, simulation is performed for 
evaluating the solutions. In Section 8, we conclude this work.

2. Related work

Many identification algorithms are combined with different technology or scenarios, e.g., PIP [21] and acoustic tag iden-
tification [22]. The identification algorithms usually can be divided into two categories: ALOHA-based scheme [18,19] and 
Tree-based scheme [16,23]. In ALOHA-based scheme, the reader broadcasts a request message to tags nearby. Each tag ran-
domly picks a time slot to transmit its ID number after receiving the message. For anti-collision, the reader has to keep 
sending requests until every tag is identified at least once. Multi-reader RFID systems [24–26] is more complicated on 
how to effectively handle Reader–Tag collisions and Reader–Reader collisions between adjacent readers. Tree-based scheme 
adopts a binary-tree structure to collect IDs of an unknown set. Adaptive Binary Splitting protocol (ABS) [20] is the typical 
tree-based protocol ABS method. By employing this scheme, the reader splits the set of tags into two subsets and labels 
them by binary numbers in each round. The reader repeats such process until each subset has only one tag. Although identi-
fication methods can meet the requirement of classification statistics, the longtime consumption is inevitable and intolerable 
so far in some scenarios.

In order to improve time efficiency of the counting process, many researchers studied cardinality estimation methods. The 
first tag estimation algorithm is Unified Simple Estimator (USE) [27]. USE estimates the number of tags without collecting 
their ID numbers but their answers in a given length of successive time slots. Meanwhile, Lottery Frame (LoF) [2] estimates 
the tag numbers by utilizing the collision information. LoF arranges the collision slots in an ordered pattern, thus providing 
the scalability while saving the processing time and communication overhead. Physical layer based cardinality estimator 
(PLACE) [28], a slot state detection algorithm, extracts more information and infer integer states from the same slots in RFID 
communications. Recent RFID estimation methods [1,3,29] keep improving the accuracy, time efficiency, energy consumption 
in cardinality counting process and achieve good performance. These methods mainly focus on quick quantity estimation, 
but they pay no attention on classification.

Two existing works [30,31] are close to this paper. [30] studies the problem of joint cardinality estimation: Given any 
two tag sets in a large RFID system, the authors can estimate their union cardinality, intersection cardinality, and difference 
cardinalities. [31] proposes an approach called simultaneous estimation for multi-category RFID systems (SEM). SEM exploits 
the Manchester-coding mechanism to decode the combined signals, thereby simultaneously obtaining the reply status of tags 
from each category. However, the execution time of SEM is in second level via introducing coding method, while our TAG is 
in microsecond level. Hence, we compare the proposed TAG algorithm with other existing algorithms, as shown in Table 1. 
ALOHA and ABS can finish classification statistics process, but cannot meet the requirement of “fast”. USE and LoF sharply 
reduce the time of quantity estimation to O (log N), however, these methods cannot classify the tags. Our TAG can achieve 
the RFID classification statistics with short time cost. We prove that the total time of TAG is O (log N) in the Section 5.

3. Problem formulation

3.1. System model

The RFID system consists of one reader and N tags. The reader prior knows the semantic of the ID numbers and the 
N tags are in the communication range of the reader, so the reader can collect the information from tags by wireless 
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Table 1
Comparison of approaches.

Approach Classification Statistics Total time

ALOHA Yes Yes O (N2)

ABS Yes Yes O (NlogN)

USE No Yes O (logN)

LoF No Yes O (logN)

TAG Yes Yes O (logN)

communication. Each tag contains a unique ID number of K -bit (usually K = 96 or 64 [15], but not limited). In these K
bits, W bits (W ≤ K ) are selected to build up the segment of interest, whose value is treated as the classification criterion 
of the tags.

The set of all M CIDs is denoted by C = {C1, C2, · · · , CM}, where each value Cm is a classification ID and m =
1, 2, 3, · · · , M . Since the segment of interest has W bits, it can present totally M different values which means

M = 2W . (1)

Different tags with the same CID are classified into the same group. We denote the number of tags in the group with the 
same CID Cm as N{Cm} . Note that N{Cm} is an integer and 

∑M
m=1 N{Cm} = N .

For example, 12 tags are attached to 1 basketball, 5 footballs and 6 badmintons. Assuming 2 bits in the 96-bit ID number 
are selected to construct this category segment. Hence, there are 4 different values 00, 01, 10, and 11 mapping to basketball, 
volleyball, football, and badminton respectively. Obviously, tags with the same value 11 are classified into the badminton 
group. In this example, N = 12, K = 96, W = 2, M = 4, the set of CIDs is C = {00, 01, 10, 11}, N{00} = 1, N{01} = 0, N{10} = 5
and N{11} = 6.

3.2. Problem statement

Definition 1. (Problem: Classification Statistics) Given (i) N tags: N is a non-negative integer; (ii) a reader: it knows which 
W bits in ID number constructing the segment of interest. Then, the classification statistics problem is defined (i) to divide 
N tags into M groups according to CIDs; (ii) to obtain the quantity of every classified group N{C1}, N{C2}, · · · , N{CM } .

We use two metrics, the average time cost Tave and the error ratio ε, to measure the performance of a solution for RFID 
classification statistics. A solution with low Tave and low ε is expected.

Definition 2. (Metric: Average Time Cost) Given N tags, and the total time cost T total for N tags classification statistics, the 
average time cost Tave is defined as the time cost per tag:

Tave = T total

N
. (2)

In (2), T total can either be measured directly or be calculated from the reader side as:

T total = (nr · tr + nw · tw) · tμ, (3)

where tr and tw are the time slots for reading the tags one turn and the time slots for waiting the idle between twice read-
ings respectively; nr and nw are the number of turns to read and the number of times to wait respectively in a classification 
statistics process; and tμ is the time unit of every time slot.

Definition 3. (Metric: Error Ratio) Given the number of tags N , and the real quantity of tags in each classified group N{Cm} , 
m = 1, 2, ..., M , the error ratio ε is computed as:

ε =
M∑

m=1

∣∣∣N{Cm} − Ñ{Cm}
∣∣∣

N
, (4)

where Ñ{Cm} is the statistics number of tags in the classified group with CID Cm . This error ratio measures the classification 
error and statistics error by a unified metric in one equation.

4. Accelerating gear I: classification subcarrier allocation

The classification statistics is speeded up by Twin Accelerating Gears. The first gear considers only classifying the tags. It 
accelerates the classification process by subcarrier allocation.
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Fig. 1. (a) One basketball tag’s answer signal. (b) One football tag’s answer signal. (c) One badminton tag’s answer signal.

Fig. 2. The composite signal of 12 answers received by the reader with period 4 time slots and the decomposed sub-signal in frequency domain.

4.1. Classification design overview

Assume a channel has F available subcarriers for RFID communication, denoted by a set S = {S1, S2, ...S F }. Given a set 
C = {C1, C2, ...CM} having M potential CIDs. We only consider the situation when F ≥ M here, the situation F < M will be 
discussed in Section 4.3.

Firstly, select M subcarriers from S since F ≥ M and create a bijective function fb(Cm) : C → S between M CIDs and M
subcarriers. This mapping relationship is called subcarrier allocation which maps every CID to exactly one subcarrier.

Secondly, the system runs as follows to classify tags by subcarrier allocation:

Step 1. RFID reader broadcasts a message including the subcarrier allocation information;
Step 2. After receiving the broadcast message, every tag immediately answers one-bit Yes once in the assigned subcarrier, 

which matches its own CID;
Step 3. The reader receives the composite signal of the answers from all tags. Performing this signal by Fast Fourier Trans-

form (FFT), the frequency domain representation of the signal is obtained, which also provides the classification 
result.

Thirdly, we provide an example to explain this process. We use the same setting of the ball example aforementioned in 
Section 3.1. In addition, a baseband channel with 10 MHz bandwidth is given. Set F = 5, so the center frequency of these 
5 subcarriers S1, S2, S3, S4 and S5 are 1, 3, 5, 7, and 9 MHz. According to Step 1, the reader broadcasts the massage with 
the information about assigning the CID “00”, “01”, “10”, and “11” to subcarrier S1, S2, S3 and S4, S5 is null due to F > M . 
Assume S1, S2, S3 and S4 have been allocated to basketball, volleyball, football and badminton tags respectively. In Step 2, 
the basketball tag is assigned S1, so it answers a one-bit “Yes”. This “Yes” is modulated as a 1 MHz sine wave, whose period 
is 1 μs and amplitude is −127 ∼ 127 unit; Each football and badminton tag is similar. The relationship is shown as (5):

S1 = 1 MHz ⇔ C I D“00” ⇔ basketball
S2 = 3 MHz ⇔ C I D“01” ⇔ volleyball
S3 = 5 MHz ⇔ C I D“10” ⇔ f ootball
S4 = 7 MHz ⇔ C I D“11” ⇔ badminton

(5)

Due to the different distances from the reader to tags, the answers arrive at the reader asynchronously. In Fig. 1, (a), 
(b) and (c) show the “Yes” signals of only one basketball, one football, and one badminton tag received by the reader; RFID 
reader gets the composite signal of 12 answers as shown in Fig. 2. We set the time slot in this example as 2 μs since 
the signal is completed received in 2 μs. It is impossible to decode a composite signal directly in time domain. However, 
according to Step 3, after doing the FFT on this signal in the 2 μs, only the subcarrier S1, S3 and S4 have the obvious 
frequency components shown in Fig. 2. Hence, the classification result is got by the reader: these tags can be classified into 
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3 groups according to different ball categories, which are basketball group with CID “00”, football group with CID “10” and 
badminton group with CID “11”.

4.2. Classification time consumption comparison

We quantize the average time cost of our fast classification method and traditional methods by theoretical derivation:
Ideal identification method: According to (3), we calculate the total time cost of ideal identification method. Since the 

reader should read N tags one-by-one, nr = N; each tag is K -bit, tr = K ; Assume the ideal case needs no time for waiting 
or anti-collision, tw = 0; Then

T total = (N × K + 0) × tμ = N Ktμ. (6)

Substituting (6) to (2), we get

Tave = Ktμ. (7)

Ideal tree-based method: The reader also needs read N tags, nr = N; tree-based method adds log2 N bit prefix to every 
tag for forming a binary tree, so tr = K + log2 N; In ideal case, we also assume there is no waiting time, tw=0. So

T total = (N × (K + log2 N) + 0) × tμ = N (K + log2 N) tμ. (8)

And then,

Tave = (K + log2 N) tμ. (9)

Our Method: Since all answers can be read at the same turn, nr = 1; In addition, the channel is divided into F subcarriers, 
the transmission rate becomes 1/F , then every bit need F time slots to be transmitted. Each Yes answer is one bit, so tr = F ; 
There is no wait time in our method, tw = 0. We get

T total = (1 × F + 0) × tμ = Ftμ. (10)

Moreover,

Tave = Ftμ
N

. (11)

For comparing the cost time between our method and ideal identification method, we measure the ratio of (11) and (7)

ratio(Tave) = F

N K
× 100%. (12)

If F and K are given constants, (12) is O (1/N). Thus, our solution dramatically reduces the classification time. In the ball 
example aforementioned, N = 12, F = 5 and K = 96. Hence, the ratio result is 0.43%. Even in the case of such a small scale, 
our method needs only 0.43% classification time compared with the optimal identification method. Note that (7) < (9). 
Thereby, in ideal case, both our method and identification are better than tree-based method on classification time.

4.3. Impact: the number of subcarriers

Since the number of subcarriers F depends on the physical feature of wireless channel and the limitation of RFID devices, 
F is usually a finite number. However, the number of potential CIDs M only relies on the length definition of classification 
IDs. It is possible that F < M . In order to break the bottleneck of finite number of F , we repeat the classification process 
nr = �M/F	 turns. In every turn, F different CIDs are allocated, except the rest CIDs in last turn.

Intuitively, the number of subcarriers influences the performance of our method much. When F < M , there is no enough 
subcarriers allocated to CIDs and when F ≥ M , there are redundant signals. The two situations may improve or reduce the 
running time. However, we prove that the running time of our method is independent of the number of subcarriers in ideal 
case in Theorem 1.

Theorem 1. Given M, N and tμ are fixed numbers and F is a variable. Using subcarrier allocation to classify N tags, the average 
running time is determined by the number of CIDs M.

Proof. The proof of the situation F ≥ M is simple. According to (11),

Tave = Ftμ
N

≥ Mtμ
N

. (13)

Hence, we get the minimum value when F = M .
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When F < M , we can get identical relation M = s · F + l, where s = 
M/F� and l = M − s · F . Note that we only need 
allocate l subcarriers in the last turn. Hence, according to (11), we can get

Tave = 
M/F� · Ftμ
N

+ l · tμ
N

= (s · F + l)tμ
N

= Mtμ
N

. (14)

According to (13) and (14), the minimum average running time is determined by the number of CIDs M . �
Note that Theorem 1 assuming that M is known before experiments. Theorem 1 tells us the classification results can 

keep accuracy but the total time consumption will not change for the lack of subcarriers. However, in practice, the interval 
time between each turn may not be exact “0”. If condition permits, we better set F = M or appropriate value to reduce the 
repeat times. Hence, the adjustable F is set the same value of M in our method.

5. Accelerating gear II: geometric distribution based quantity estimation

Only classification is not enough in some applications, the second gear is introduced in this section. It accelerates the 
statistics by quantity estimation based on geometric distribution.

5.1. Statistics design overview

Firstly, we introduce some concepts in our solution. (i) 1/2 geometric distribution (GD): In this fast statistics method, 
the answer period is divided into T time slots. Each tag answers by selecting one time slot following the 1/2 GD. i.e., 
1/2 probability to select the 1st time slot, 1/4 probability to select 2nd time slot,... , (1/2)T to select the T -th time slot. 
(ii) Time synchronization: The reader broadcasts the time synchronization flag, so that all tags know the beginning of 
any T -th time slot. iii) Signal decomposition: At any time slot, the part of the composite signal can be decomposed into 
M sub-signals through Band Pass Filter (BPF) for M non-null subcarriers. Decoding this part of sub-signal, there are three 
possible results: collision due to multi-answer; only one answer; or no answer. (iv) Bitmap: the bitmap B is a M × T matrix. 
The M rows distinguish the M non-null subcarriers in frequency domain, i.e. CIDs, and the T columns present the T time 
slots in time domain. The value in an element presents the answer states in a certain subcarrier in a certain time slot. The 
value can be “1” or “0” indicating the status of collision and one answer or no answer.

Secondly, in order to reduce the classification statistics time cost, the twin gears work together at the same time. Conse-
quently, the three Steps are extended as follows:

STEP 1. The RFID reader broadcasts a message including the subcarrier allocation and time synchronization information;
STEP 2. After receiving the broadcast message, all tags are synchronized. Every tag selects a time slot following the 1/2 

geometric distribution and answers one bit Yes once in the assigned subcarrier, which matches its own CID;
STEP 3. The reader receives the composite signal of the answers from all tags. At any time slot, the signal is decomposed into 

sub-signals of every non-null subcarrier through BPFs. The bitmap is created based on the decomposition results. 
The statistics result can be got by quantity estimation of the bitmap.

Thirdly, we continue to use the ball example for this process explanation. Due to 1/2 GD, assume that the basketball tag 
selects the 2nd time slot to answer in S1; 3 football tags select the 1st time slot, 1 football tag selects the 2nd time slot, 
and 1 football tag selects the 3rd time slot to answer in S3; 3 badminton tags select the 1st time slot, 2 badminton tags 
selects the 2nd time slot, and the final one selects the 3rd time slot to answer in S4. The composite signal with all answers 
is received by the reader as shown in Fig. 3(a). This signal is decomposed by four BPFs. The center frequencies of these four 
BPFs are 1, 3, 5, and 7 MHz and their bandwidths are all 2 MHz. The decomposed sub-signals are shown in Fig. 3, (b), (c) 
and (d). We use the sub-signal in S4 as an example to analyze the answer states. In Fig. 3(d), the sub-signals in 1st and 
2nd time slots cannot be decoded due to irregular wave. It is considered the signals overlapping by collisions. So we set the 
states of these two time slots as “1”; in the 3rd time slots, the regular successive 7 sine waves can be found, which means 
the only one “Yes” answer. We set “1” for this state; there is no wave in the 4-th time slot, so the state is 0. According to 
the analysis of these sub-signals, the bitmap B M×T can be built up:

B M×T =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
1 1 1 0
1 1 1 0

⎤
⎥⎥⎦ .

Using the quantity estimation method (see Section 5.2) to analyze every row of B M×T , we can estimate 1 answer 
in S1, 10 answers in S3, and 10 answers in S4. i.e., there are 1 basketball, 10 football and 10 badminton tags. Hence, 
the classification statistics result is achieved although the result here is not accurate.
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Fig. 3. (a) The composite signal received by the reader with period 4 time slots. (b) The decomposited sub-signal in subcarrier S2. (c) The decomposited 
sub-signal in subcarrier S3. (d) The decomposited sub-signal in subcarrier S4.

5.2. Quantity estimation

In a bitmap, we only consider the rows having non-zero data. Each of these rows presents an existing classification. 
According to Definition 1, the goal of RFID classification statistics can be represented to obtain the quantity of tags in each 
existing classification. Hence, we design the quantity estimation method to apply on each of these rows.

For further analysis, we briefly introduce the notations here. The total number of “1” before the first “0” is denoted 
by Nm in a row corresponding to the CID: Cm . Then the total number of “1” after the first “0” in a row is denoted by N0

m . 
pn,k and qn,k represent,

pn,k = Pr(Nm = k), qn,k = Pr(Nm ≥ k)

where Pr(A) means the probability of an event A, n is the total number of tags.
Based on the analysis in [32], we get the following Lemma 2 and Lemma 3. Lemma 2 gives the exact equation of qn,k

while Lemma 3 derives the exception and standard deviation of Nm .

Lemma 2. The probability distribution of Nm is characterized by:

qn,k =
2k∑

j=0

(−1)v( j)(1 − j

2k
)n, (15)

where v(n) denotes the number of ones in the binary representation of n. e.g., v(13) = v((1101)2) = 3.

Lemma 3. Given Nm and N0
m, the expected value of Nm satisfies:

E [Nm] = log2
(
ϕ · N{Cm}

) + P (μ) + o(1). (16)

And the standard deviation σX of Nm satisfies:

σ 2
X = σ 2

c + Q (μ) + o(1), (17)

where the constant ϕ = 0.77351··· and σc = 1.12127··· . P (μ) and Q (μ) are two periodic functions of μ with mean value 0, period 1
and amplitude bounded by 10−5 respectively, μ = log2(N{Cm}).

Lemma 2 and Lemma 3 were proved in [32]. Omitting the term P (μ) + O (1), N{Cm} can be estimated by Nm and N0
m , 

which are easily to be got from the bitmap.

Definition 4. (Method: Quantity Estimation) Given Nm and N0
m , Ñ{Cm} is an estimator of N{Cm} , we have

Ñ{Cm} =
{⌊

1
ϕ × 2Nm

⌋
+ N0

m Nm ≥ 1

N0
m Nm = 0

. (18)

We provide some examples in Table 2 to show the quantity estimation results according to (18).
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Table 2
Quantity estimation examples.

Row data in the bitmap Nm Nm0 Ñ{Cm}
0100 0 1 1

1110 3 0 10
1111 1111 1011 9 2 663
1111 1111 1110 111 11 3 2650

Theorem 4. A bitmap with 3
2 log2 N time slots is sufficient for the quantity estimation method using 1/2 geometric distribution an-

swers, where N is the total number of all tags.

Proof. Considering the case when k = 3
2 log2(N) + δ, with δ ≥ 0. Hence, the value 1 before the first 0 must appear at least 

once. Hence,

Pr(Nm ≥ k) = 1 − Pr(Nm < k) ≤ 1 − (1 − 1

2k
)N < 1 − exp(− N

2k
). (19)

In the range of values of k considered, 2k = 2δ · N
3
2 . Hence, the last expression is the order of O ( 2−δ√

N
).

Denote the tail expectation begins at k as Etail,k . Firstly, E [Nm] has been proved existed in [32]. Then, we get the 
equation:

E [Nm] =
∞∑

k=1

k · pN,k =
∞∑

k=1

(k − 1) · pN,k +
∞∑

k=1

pN,k

=
∞∑

k=1

k · pN,k+1 + qN,1 = · · · =
∞∑

k=1

qN,k

. (20)

Equation (20) implies the convergence of the sequence {qN,k}∞0 , which ensures the correctness of the equation (21):

Etail,k0 =
∞∑

k=k0

k · pN,k =
∞∑

k=k0

k · (qN,k − qN,k+1)

=
∞∑

k=k0

k · qN,k −
∞∑

k=k0

(k + 1) · qN,k+1 +
∞∑

k=k0

qN,k+1

=
∞∑

k=k0

k · qN,k −
∞∑

k=k0+1

k · qN,k +
∞∑

k=k0+1

qN,k

= k0 · qN,k0 +
∞∑

k=k0+1

qN,k

. (21)

Hence, (21) gives us an exact equation of tail exception. Considering the start point k0 = � 3
2 log2(N)	 = 3

2 log2(N) + δ0. Then,

Etail,k0 = O (

3
2 · log2 N · 2−δ0

√
N

) + O (

∞∑
k=k0+1

2−δ

√
N

) = O (
log2 N√

N
). (22)

The value of Etail,k0 drops faster since the probability qN,k is smaller than we prove. Equation (22) implies that we can 
ignore time slot after k0. Therefore, 

⌈
3
2 log2 N

⌉
time slots are sufficient for estimation. �

Theorem 4 shows that we can ignore the value bigger than 
⌈

3
2 log2 N

⌉
even it appears in one experiment. Hence, 

using 1/2 GD, the proposed method can estimate the quantity in a short time. In practice, we can shorten 
⌈

3
2 log2 N

⌉
into ⌈

log2 N
⌉ + C0, where C0 is a constant. For the reason that, according to Chebyshev’s Inequality, no more than 1/C2

0 of the 
distribution’s values can be more than C0 standard deviations away from the mean. For example, if C0 = 10, the probability 
approximately 1.3% which can be ignored in one time. With the growth of the total number of tags, we can take three-sigma 
rule, i.e., 68-95-99.7 rule.

We have calculated Tave of only classification process in (14). Considering the classification and statistics process together, 
we re-calculate Tave of the completed TAG. Compared with (14), nr has no change, nr = �M/F	. However, from Theorem 4, 
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we know that 
⌈

3
2 log2 N

⌉
time slots are demanded for quantity estimation, so tr =

(⌈
3
2 log2 N

⌉)
· F . Given N and tμ , we 

extend (14) and get

Tave = Mtμ ×
⎛
⎝

⌈
3
2 log2 N

⌉
N

⎞
⎠ . (23)

Tradeoff between time and accuracy: Although an error with approximately 1.12 can be acceptable for some applica-
tions, it is too high for some other applications. However, it is obvious that the proposed quantity estimation method is 
asymptotically unbiased. (The similar estimator has been proven to be unbiased in [32].) It means, if we make multiple 
independent estimations and compute the average result, the standard deviation will be significantly reduced.

If time allows, TAG can be repeated R rounds to reduce the error, i.e., after each round, the reader re-broadcasts an 8-Byte 
message for restarting TAG. In the r-th round, Nm and N0

m are denoted by Nm,r and N0
m,r respectively, where 1 ≤ r ≤ R . e.g., 

Nm = (1/R) 
∑R

r=1 Nm,r , N0
m = (1/R) 

∑R
r=1 N0

m,r . Thus, we rewrite (18) and get the quantity after R round estimation as

Ñ{Cm} =
{⌊

1
ϕ × 2Nm + N0

m

⌋
∀Nm,r ≥ 1

N0
m,r ∃Nm,r = 0

. (24)

And the standard deviation after R round estimation is

σ = σc√
R

. (25)

Let α be the error probability. We define that TAG is considered to achieve the accuracy requirement when 
Pr

(
−β1N{Cm} ≤ Ñ{Cm} − N{Cm} ≤ β2N{Cm}

)
≥ 1 − α.

Theorem 5. Given α, β1 and β2 , the defined accuracy requirement can be achieved if repeat R rounds TAG,

R ≥ max

([ −σcλ

log2(1 − β1)

]2

,

[
σcλ

log2(1 + β2)

]2
)

, (26)

where λ is obtained by solving 1 − α = er f
(
λ/

√
2
)

, er f (·) is the Gaussian error function. Note that 0 < β1 < 1, β2 > 0.

Proof. For convenience, we denote the exception of Nm as μ0.

Pr
(
−β1N{Cm} ≤ Ñ{Cm} − N{Cm} ≤ β2N{Cm}

)
≥ 1 − α

⇐⇒Pr

(
1 − β1

ϕ
· 2μ0 ≤ 1

ϕ
· 2Nm ≤ 1 + β2

ϕ
· 2μ0

)
≥ 1 − α

⇐⇒Pr

(
log2 (1 − β1)

σc/
√

R
≤ Nm − μ0

σc/
√

R
≤ log2 (1 + β2)

σc/
√

R

)
≥ 1 − α

. (27)

According to Lindeberg central limit theorem, the distribution of the standardized sums of Nm,r converges towards the 
standard normal distribution N(0, 1). When 1 − α = er f

(
λ/

√
2
)

, we get

log2 (1 − β1)

σc/
√

R
≤ −λ,

log2 (1 + β2)

σc/
√

R
≥ λ. (28)

Solve inequality (28), we get the conclusion. �
Notice the fact that 0 < log2 (1 + β) < − log2 (1 − β). Hence, if β1 = β2 = β , then (26) can be rewritten as:

R ≥
(

σcλ

log2(1 + β)

)2

. (29)

Inequality (26) implies that it is more difficult to control the upper bound than the lower bound. The nature of inequal-
ity (26) is that normally E(2x) �= 2E(x) since 2x belongs to convex functions. Hence, in practice, we take the error ratio 
between 

[− 1
3 , 1

2

]
, i.e., β1 = 1

3 and β2 = 1
2 . Assuming that 1 − α = 0.90, then λ = 1.645. Then we get R ≥ 9.950. Hence, we

repeat our process 10 times.
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5.3. Adaptive estimation time

Most cardinality estimation methods [27,33] in RFID systems use fixed length of time slots T in bitmap. These methods 
require prior knowledge of the approximate number of tags N ′ , where O (N ′) = O (N), for deciding a length of time slots 
T = f T (N ′). Otherwise, without the prior knowledge of N ′ , these methods lead to either time waste when T >> f T (N ′) or 
low accuracy when T << f T (N ′).

The proposed TAG can adapt the length of T without any prior knowledge of N ′ . According to 1/2 GD of the answers, in 
Theorem 4, we have proved when T > 3

2 log2 N , the value in those time slots will be always “0”. Taking advantage of this 
feature, we design the Automatic Stop Flag (ASF) method to control the adaptive T .

ASF method set a stop flag by appearance of successive j – “0”. In TAG, ASF runs respectively for every row in the 
bitmap. When all rows have the ASFs, the TAG process finishes automatically. e.g., if we adopt successive 3-0 as the ASF, 
when all rows have occurred “000”, we consider that all N tags have answered. The TAG process is stopped automatically. 
Thus, the adaptive estimation time is achieved.

6. Twin accelerating gears realization

Base on the above analysis and theoretical derivation, we develop the TAG algorithm. TAG algorithm is divided into three 
parts: at tag side, at reader side for answer collection, at reader side for classification statistics respectively.

TAG algorithm running on tag side is simple as shown in Algorithm 1. After decoding the message from the reader, a tag 
can get the subcarrier allocation information fb(·) and the synchronization information T0. Substituting its own classification 
ID Cm into fb(·), the tag get the assigned subcarrier S f , and then, it selects a time slot τ by 1/2 geometric distribution. 
Finally, the tag transmits its answer at subcarrier S f and time τ + T0. Algorithm 2 provides the pseudo code of TAG 
algorithm at reader side for bitmap construction. Above all, the reader broadcasts a message including the given fb(·)
and T0. Then, from T0, it begins to build up a bitmap B M×T by answer collection. The value of element B (m, τ ) is set “1” if 
answer collision and one answer in subcarrier S f and time τ + T0; or “0” if no answer. In B M×T , the number of column T 
depends on the ASFs. In every time slot, each row is checked whether it has an ASF. When ASFs appear in all rows (the 
number of ASFs is M), the answer collection process is finished and B M×T is got. For simplicity, Algorithm 2 only presents 
the one turn situation. It is enough when the cases of F ≥ M . When F < M , this algorithm should be repeated �M/F	 turns.

In Algorithm 3, the classification statistics part of TAG algorithm at reader side is illustrated. First, this algorithm counts 
the number of “1” in every row. Then, the result of quantity estimation is got according to (18) and is stored in a col-
umn ÑM×1. The value of every element Ñ(m, 1) in ÑM×1 is the estimated quantity of tags in the classification Cm .

If repeating R rounds of Algorithm 1, 2, and 3 and estimating the quantity as (24), we can obtain a more accurate result 
but the process time is prolonged R times.

Algorithm 1 Tag side.
Input: Message from the RFID reader. fb(·) : C → S: subcarrier allocation information, which is a bijective function; T0: time synchronization information; 

f gd(1/2): a function to select a time slot following 1/2 geometric distribution;
Output: One-bit answer;
1: Procedure
2: while TRUE do
3: wait_message();
4: if wait_message() == 1 then
5: decode_message( fb(·), T0); � get fb(·) and T0 from the message
6: S f ← fb(Cm); � set the subcarrier according to own CID
7: τ ← f gd(1/2) + T0; � transmit one-bit answer in S f in τ
8: end if
9: end while

10: end Procedure

7. Performance evaluation

7.1. Experimental methodology and setting

We use Matlab to implement the simulation. The default parameters are set as follows: the total number of tags N =
1000; the number of classifications M = 4; the number of subcarriers F = 5; the length of ID number K = 96; the number 
of repeated round R = 1; Flag ASF = “00000”.

The performance depends on the distribution of the tags in the classifications. We select two extreme situations: uniform 
and Max-1-0 distribution to test the efficiency of TAG.

1. Uniform Distribution (UD): The quantity of tags in every classified group is nearly the same. Hence, each group has 
(
N/M� + 1) or (
N/M�) tags.
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Algorithm 2 Reader side for bitmap construction.
Input: fb(·); T0; ASF: a flag of “0” serial with given length, NASF is the number of ASF;

Output: B M×T : the bitmap of all answers in non-null subcarriers.
1: Procedure
2: while TRUE do
3: broadcast_message( fb(·), T0);
4: τ ← 1;
5: while NASF < M do � receive answers until all rows having ASFs
6: NASF ← 0;
7: for m = 1 to M do
8: B(m, τ ) ← decode_answer(S f , (τ + T0)); � Build up B M×T

9: if check_A S F (B(m, )) == 1 then � check whether a row has ASF
10: NASF ← NASF + 1;
11: end if
12: end for
13: τ ← τ + 1;
14: end while
15: end while
16: end Procedure

Algorithm 3 Reader side for classification statistics.
Input: B M×T ;

Output: ÑM×1: a column vector storing estimation results;
1: Procedure
2: while TRUE do
3: for m = 1 to M do
4: N1 ← count_1(B(m, )); � count “1” before the first “0” in a row
5: N0 ← count_0(B(m, )); � count “1” after the first “0” in a row
6: if N1 == 0 then
7: Ñ(m, 1) ← N0;
8: else
9: Ñ(m, 1) ← (1/φ)2N1 + N0;

10: end if
11: end for
12: end while
13: end Procedure

2. Max-1-0 Distribution (M10D): One group has the maximal number of tags, another group has only 1 tag, and the other 
groups have no tag. e.g., one book is put wrong shelf in the library; one product is moved to another area in the 
supermarket M10D exists in these examples.

TAG is compared with ALOHA, ABS, USE, LoF and TAG10. Note that the TAG10 represents TAG with R = 10 rounds. In 
addition, USE and LoF cannot classify tags actually. For approximating, we assume that they can estimate the quantity of 
tags group-by-group. When any group is finished, the reader broadcasts an 8 Bytes message including the synchronization 
information and the next group CIDs.

7.2. Performance analysis

Varying Number of Tags: The maximum number of tags for large-scale RFID estimation in the literature [2,16,17] are 
mostly from 102 ∼ 104. Moreover, tags number at 104 level is sufficient in many scenarios such as supermarket inventory 
management. Hence, we first evaluate TAG and other approaches by varying the number of tags N from 1 to 10000. Note 
that Fig. 4 and Fig. 5 share the same legend with subfigure 4(a).

The log-scale graph Fig. 4 (a) presents the performance of total time cost (Definition 2) against N varying in UD, and 
Fig. 4 (b) plots it in M10D. We find that (i) TAG achieves the least time among all in both distributions. When N = 1000, 
TAG costs 187 us. Compared with 530 ms of ALOHA or 144 ms of ABS, TAG spends ≤ 0.02% time of existing approaches to 
finish classification statistics; (ii) TAG, USE and LoF are in the same order, and they use much less time than ALOHA, ABS. 
Such results confirm the comparison in Table 2; (iii) Although in a same order, for a given N , USE and LoF need more time 
than TAG. Furthermore, TAG10 demands more time than USE and LoF. e.g., when N = 10000, TAG10 costs 2 ms, USE costs 
289 us, LoF costs 292 us, and TAG costs only 195 us. This result implies that the parallel processing is faster than the serial 
one; (iv) TAG10 costs more time in M10D than UD. The reason is that the total time of TAG10 is decided by max(Nm).

The performance of error ratio (Definition 3) against N in UD and M10D are shown in Fig. 4 (c) and (d) respectively. It is 
found that (i) ALOHA and ABS are always 0% owing to no error counting; (ii) ε of TAG10 is about 25% better than USE and 
LoF, especially much better in the small scale. Hence, TAG can use for statistics in all scale. In addition, if we repeat TAG 
more times leads to less standard deviation in statistic process.

Varying Number of Classifications: Performance evaluation is also carried out when M changes from 1 to 20.
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Fig. 4. (a) T total against N under uniform distribution. (b) T total against N under Max-1-0 distribution. (c) ε against N under uniform distribution. (d) ε
against N under Max-1-0 distribution. Fig. 4 (a) and (b) are log-scale graphs.

Fig. 5 (a) and (b) illustrate the performance of T total with varying M in two distributions. We observe that (i) there 
are almost no changes for ALOHA and ABS. T total of them does not depend on M; (ii) T total of the other four approaches 
increases when M increases; (iii) TAG10 still provides the good performance of T total . Obviously, TAG10 are periodic waves 
in Fig. 5 (a) or (b). The jumps exist when M = 5, 10, 15, where are the multiples of F = 5. In these positions, TAG needs 
one more turn to allocate all CIDs to subcarriers.

Error ratios against M are exhibited in Fig. 5 (c) and (d). It can be seen that (i) TAG10 keeps performing better than USE 
and LoF; (ii) ε of the four approaches are more sensitive to N than to M when comparing with Fig. 4 (c) and (d).

8. Conclusion

In this paper, we have formulated a new problem classification statistics in RFID systems. We have also discovered 
the significance and challenges of time efficiency issue in this problem. However, nearly no existing approaches can solve 
this problem satisfactorily. To address this problem, we have proposed a novel TAG approach. TAG achieves the processing 
time in O (logN) by accelerating the classification in frequency domain as well as the statistics in time domain. Theoretical 
analysis and simulation show the feasibility and high-performance of TAG.

Since the fast classification statistics of RFID system is a relatively new concept, several issues still remain to be studied. 
e.g., this paper studies the single reader case for RFID classification statistics. Using multiple readers by TAG to further 
improve the performance of RFID classification statistics efficiency and accuracy is an interesting topic. Moreover, we plan 
to extend the TAG method from simulation to real world applications in our future work.
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Fig. 5. (a) T total against M under uniform distribution. (b) T total against M under Max-1-0 distribution. (c) ε against M under uniform distribution. (d) ε
against M under Max-1-0 distribution. Fig. 5 (a) and (b) are log-scale graphs.
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