
Shifter: A Consistent Multicast Routing Update
Scheme in Software-Defined Networks

Guanhao Wu, Xiaofeng Gao�, Tao Chen, Hao Zhou, Linghe Kong, Guihai Chen
Shanghai Key Laboratory of Scalable Computing and Systems,

Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai, 200240, China

{Tian zwyxhi, tchen, h-zhou, linghe.kong}@sjtu.edu.cn, {gao-xf, gchen}@cs.sjtu.edu.cn

Abstract—Consistent routing update based on Software-
Defined Networks (SDN) is a complicated problem due to
the asynchronous and distributed data plane. Existing ordered
update approaches mostly focus on the consistent routing update
problem for unicast other than multicast, which should guarantee
two consistencies, drop-freeness and duplicate-freeness. In this
paper, we propose Shifter, a novel dynamic ordered update
scheme for consistent multicast routing update based on SDN
to guarantee both consistencies. Shifter advocates configuring
inport match field in the forwarding rules to avoid duplicate. In
order to guarantee drop-freeness, Shifter employs a dependency
graph to dynamically schedule update operations, and uses a
greedy solution to solve a subproblem named Replace Operation
Tree Migration Problem (ROTMP). We conduct simulations to
evaluate Shifter and find that Shifter can give a near optimal
solution of ROTMP with very few rounds and little runtime for
multicast routing update scenarios. To the best of our knowledge,
Shifter is the first ordered update scheme to guarantee the two
consistencies simultaneously.

I. INTRODUCTION

Software-Defined Networking (SDN) is an advanced net-

work architecture decoupling the control plane from the data

plane, which allows the network managers to configure and

update the network using the controller. SDN provides a global

view of network and centralized computation for routing

management. In spite of the logically centralized control, the

switches still coexist in a distributed environment. During the

routing update, the instructions from the controller to the

switches take effect asynchronously, which may cause the

loss of consistent properties such as loop, black hole, con-

gestion and policy violation [1]. Nevertheless, as the logical

centralization management of SDN, the controller can apply an

update technique that carefully schedules the order of update

operations to guarantee various consistencies.

Many consistent update techniques have been investigated in

the literatures, such as two-phase commit [2]–[6] and ordered
update [7]–[15]. Two-phase commit (TPC) approach adds a

version tag to the rules and stamps packets with the new

version tag in the header field. It is a powerful consistent

update technique which guarantees the strong consistency

like per-packet consistency [2]. However, it has to encode

an irrelevant header field of packets with the routing version

tag and costs double precious Ternary Content Addressable

Memory (TCAM) memory [16]. Ordered update approaches

find a sequence of operations updated in a well-designed order,

which can be divided into static and dynamic approaches. The

static approaches schedule all update operations as a sequence

of operation sets executed round by round [9]–[13], while

the dynamic ones maintain a dependency graph and execute

dynamically-selected operations [7]. Besides, [17] combined

ordered update and two-phase commit approaches to solve the

policy-preserving update problem.

These proposed approaches solve consistent routing update

problems with the awareness of various consistency, but most

of them focus on unicast but less on multicast. Two-phase

commit approach can guarantee the per-packet consistency of

both unicast and multicast network update [2], but the header

field occupied by TPC is not specially used for consistent

updates. Therefore, this paper only focuses on ordered update

approaches. The existing approaches on multicast routing

update are not very effective. [18] proves that it is impos-

sible to guarantee both drop-freeness and duplicate-freeness

simultaneously by the previous ordered update approach.

The multicast routing update suffers transient drop and

duplicate packets [18]. Dropped packets result in loss of

data which could badly influence the Quality of Experience

(QoE). Duplicate packets appear when replicated packets are

forwarded into the same port, which consume double band-

width. Besides, when the multicast route forms a loop, unlike

the loop in unicast, a large amount of duplicate packets can

be replicated rapidly, because some switches in the loop may

replicate many copies of these packets and forward them back

to the replicators. The useless packets will cause congestions

on the ports of switches and receivers, and as a result, severe

delay happens on the receivers and the application QoE is

degraded. In addition, multicast protocols are based on UDP

but not TCP, so the applications cannot rely on the underly-

ing network protocols to eliminate the duplication. A good

multicast application must maintain the numbers of recent

received packets and check whether the incoming packets are

duplicate ones, which may bring CPU overhead and delay

jitter. Therefore, the network should try to void the duplication

in case the applications cannot check duplication because of

negligence of application designers.

In this paper, we propose Shifter, a novel ordered update

scheme for consistent multicast routing update ensuring both

duplicate-freeness and drop-freeness. In this paper, we write

in(e)gress port as in(out)port. The reason why we solve the

346

2018 IEEE 26th International Conference on Network Protocols

978-1-5386-6043-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICNP.2018.00050

problem which is proved to be unsolvable [18] is that we study

the necessary condition of the problem and employ a new rule

model which makes it possible to satisfy the condition during

the updates. The existing ordered update approach cannot

guarantee duplicate-freeness without violating drop-freeness

because the switch on both old and new routes cannot shift

traffic from one inport to another by itself, because the rules

in the switch do not have inport match field. This inspires us

that the rules in switches should have the match field with

inport, which is supported by Openflow protocol [19]. With

this new rule model, the switch can shift traffic from one inport

to another by itself using a replace operation, deleting an old

rule and adding a new rule with same outport but different

inports at the same time, without violating duplicate-freeness.
Based on the new rule model, it is easy to find all the

update operations that need to be executed. The challenge

is developing an algorithm to schedule the update operations

with a minimum of time without violating drop-freeness. We

observe that there are some dependency relations between

different kinds of operations, which are add, replace and delete
operations. We find two kinds of dependency, Add-Replace and

Replace-Delete, which describe the orders between replace
operations and add or delete operations. Then we can build a

dependency graph with three layers to dynamically schedule

three kinds of operations, so the execution time is no more than

three rounds of the past static scheduling. In our simulation,

over 80% of randomly generated scenarios can be solved by

the dependency graph only considering the two dependencies.
However, for the rest scenarios, such a dependency graph

is not enough and we address them by scheduling the order

of Replace operations. We formulate this problem as Replace

Operation Tree Migration Problem (ROTMP). The order of re-
place operations cannot be described by dependence relation,

so we choose to statically schedule them round by round and

integrate the solution into the dependency graph eventually.

We propose a greedy solution which updates the maximum

number of operations in each round and also formulate the

ROTMP problem as a mixed integer program. We conduct

simulations to compare the greedy solution with the optimal

solution. The simulation results show that Shifter can give near

optimal solutions for most update scenarios with average less

than 1.2 rounds within 10 ms.
Specifically, our contributions are summarized as follows:

• We study the necessary condition to the solution and in-

troduce the rule model with inport field to avoid duplicate-

freeness. We also present a mechanism based on OpenFlow

protocol to support the rule model.

• We study the dependency between different kinds of update

operations and build a dependency graph to describe the

dependency between different kinds of operations.

• We formulate the problem of scheduling replace operations

as Replace Operation Tree Migration Problem and propose

a greedy solution.

• We conduct simulations of Shifter and the results show

that Shifter can give near optimal solutions for most update

scenarios with very few rounds and little runtime.

II. PRELIMINARIES AND OBJECTIVE

In this section, we introduce the drop-freeness and

duplicate-freeness, and explain why the existing ordered up-

date approaches cannot satisfy both of them. We indicate

that the solution to the problem needs a necessary condition

which can be supported by OpenFlow protocol [19], which

inspires us to change the rule model. Then, we give the model

of Consistent Multicast Routing Update Problem (CMRUP)

based on new rule model. Finally, we present a method to

generate appropriate different kinds of update operations.

A. Drop-freeness and Duplicate-freeness

Drop-freeness means the packets from the sender host can

be forwarded to all receivers, and duplicate-freeness means

the forwarding path from the sender to a receiver is unique.

Take Fig. 1 as an example. The source host is h0. Host h1 and

h2 are the multicast group members. Each switch along the

multicast trees has a flow table depicting the forwarding rule.

Shown at d1, once the forwarding rule matches the address

of source host h0 and the group address, it will forward the

packets to port 1 in the action field.

Now we will update the route according to the initial and

final multicast tree, and update the rules in switches s, m1

and m2. If m2 is updated lastly, the update satisfies drop-

freeness but duplicate will happen at d1 because the packets

will be replicated by s and be forwarded to d1 via both m1 and

m2. However, if m2 is not updated lastly, the update satisfies

duplicate-freeness but drop will happen when m2 is updated

before s and m1. This example also illustrates that the two

consistencies cannot be guaranteed simultaneously by ordered

update approaches no matter what is the order.

�
�

�
�

�
�

�
�

�
�

�
�

������

�	
�
������
��������� �
	������
���������

��������

�	
���

���	�

�����

������

�������	�
�������������

�����
�

�������
���

�
��������

�������
���
������

��������� ���������� ������� ��

�

�
�

�
�

�
�

� �

�
�

�
�

�
�

�
�

�
�

��
�
	����������
	������������

Fig. 1: A multicast routing update scenario

B. Necessary Condition

[18] claimed that the two consistencies cannot be guar-

anteed simultaneously by ordered update approaches, because

(take Fig. 1 as an example again), the flow traversing through

switch d1 must change its inport transiently, but such a process

has to be finished by at least two update operations on two

switches (e.g. s and m2). To guarantee both consistencies, we

have to change the inport of a flow transiently by only one

update operation on a switch, but not two different operations.

347

�� ��

��

������

������→

���→

������

�����	

	

�
�

�� ��

����

��

��	
��� ������� �

������������

���

����

��

��	
��� ������� �

�������������

���

�

������ ����	
���
������������ �	����

� �������� ��������� �������

� �������� ��������� �������

���������
��������	����

������������	������

Fig. 2: Flow table and group tables of Switch d1. The dotted
(dashed) lines represent the connection only in the old (new) route.
The full lines are the connection in both routes.

Actually, we can satisfy such requirement by configuring

the rules with the inport field and defining a replace operation

to transiently change the inport of the flow. By this way, the

switches can only accept the packets matching the inport field

of rules. We temporarily call the update based on the rules with

inport field Inport-based update. We can describe an inport-

based consistent routing update process as follows:

In the update scenario of Fig. 1 when switch s and m1

add their new rules, packets will come from s to d1 via m1,

while d1 will not accept these packets since it has no rule

matching the inport connected with m1. Then, d1 can execute

the Replace operation which deletes the old rule and adds the

new rule. In addition, it will not forward duplicated packets to

h1. Finally, m2 can delete the rule with outport to d1 safely.

Only using flow table is not able to execute the above

process because its action field of an entry can only be

replaced integrally, but not be added or deleted partially.

However, the key of replace operation is that we can add,

delete or modify the rules taking given inport and outport
as a unit. With the help of OpenFlow protocol [19], we can

use flow tables and group tables to complete the configuration.

An example is exhibited in Fig. 2 at switch d1. We set the

action field of each flow table entry matching an inport as

a group table. Here two entries bring two group tables. The

bucket in a group table can be individually added or deleted. In

this scenario, the replace operation can be done by adding the

bucket of outport 3 in Group 1 and deleting the the bucket of

outport 3 in Group 2. With this new rule model, it is possible

to guarantee both consistencies.

To compare the inport-based update with oneshot update
which do all update operations together, we conduct a sim-

ulation using Mininet 2.0 [20] network simulation tool and

Floodlight 1.2 [21] controller running on a PC with an Intel

i5-7300hq quad-core processor. We develop two Floodlight

modules to perform two kinds of updates in the update sce-

nario of Fig. 1 – oneshot and inport-based method. Oneshot

updates three switches s, m1 and m2 together while inport-

based method updates s and m1 in the first round, then d1 in

the second round and finally m2 in the third round.

According to [7], the per-rule update time on a commodity

switch is mostly less than 30 ms, but sometimes it can reach

100-200 ms. However, the simulation time it takes to update

a rule in Mininet is always less than 10 ms. Therefore, we

insert delay sentences before every update instruction in our

programs and the length of the latency is randomly set between

100 ms and 200 ms.

During the simulation, host h0 constantly sends UDP pack-

ets with a fixed rate to h1 and h2. We check the received

packets in h1 and find the amount of lost and duplicated

packets. For each sending rate, we perform 100 times of up-

dates. Fig. 3 shows the average number of lost and duplicated

packets of two methods. As the sending rate increases, the lost

and duplicated packets in oneshot increases proportionally. In

contrast, the amounts in inport-based method keep less than 1.

Therefore, inport-based method can surely reduce the packet

loss and duplication. Note that there are a small amount of

packets lost or duplicated in the inport-based method because

the delay in the two paths from switch s to d1 may be a

little bit different, but the difference compared to the sum of

controller reaction time, the controller-switch delay and rule

installation time can be considered negligible.

(a) Packet loss (b) Packet duplication

Fig. 3: Packet loss and duplication of oneshot and inport-based
method in the update scenario of Fig. 1

C. Consistent Multicast Routing Update

The notations of basic elements are shown in Tab. I.

• Inports and outports: We use two nodes to represent a port

in a switch. ipt(vi, sj) means the inport on switch sj which

is oriented to a node vi. opt(sj , vk) means the outport on

switch sj which is oriented to a node vk. sj .ipt/opts means

the inport/outports in the rules on switch sj .

• Rules: In inport-based update, an inport ipt and an outport

opt decide a rule r(ipt, opt). The essence of r(ipt, opt) is

that a flow table entry matching inport ipt and its action

field points to a group table corresponding to ipt, which

has a bucket whose action is outport = opt.
• Update operations: Update operations take given inport and

outport as an abstract rule to modify the real rules in flow

tables and group tables. Rule addition and rule deletion are

trivial. Rule replacement is corresponding to two rules with

the same outport but different inports.

There are some extended concepts as follows:

348

TABLE I: Notations of Multicast Routing Model
Notation Description

h0 Sender host

hi ∈ {h1, ..., hn} Receiver hosts

Is Ingress switch

sj ∈ {s1, s2, ..., sm} Switch

v ∈ {h0, h1, ..., hn,
Is, s1, s2, ..., sm} Node (including switches and hosts)

ipt(si, sj) Inport on switch sj from si
opt(sj , sk) Outport on switch sj to sk
r(ipt, opt) Rule on sj of inport ipt and outport opt
add(r) Add operation of new rule r
del(r′) Delete operation of old rule r′
rep(r, r′) Replace operation of new rule r and old rule r′
sj .add/sj .rep/sj .del Add/Replace/Delete operation on switch sj
sj .ipt/sj .ipt

′ The new/old inport of switch sj
sj .opts/sj .opts

′ The new/old outports of switch sj

• Route: The set of all nodes and the rules in the switches. It

also represents a directed graph. If vi and vj are adjacent, vi
has a rule r(., opt(vi, vj)) and vj has a rule r(ipt(vi, vj), .),
it has an edge (vi, vj).

• Connection: vi → vj means that the packets sent from vi
will arrive at vj and vj will not drop them. We say that

vj is connected to vi in the route. Specifically, there exists

a sequence sq(vi, vj) of nodes and the rules in the nodes

make the packets be forwarded from vi to vj via sq(vi, vj).
• Join switch: the switch with different old and new inports.

• Common receivers: the receivers in both routes.

Now we can give the definition of Consistent Multicast
Routing Update Problem (CMRUP).

Definition 1 (CMRUP). Given two routes, which have the
same h0 and Is, generate the update operations and schedule
their order to make the old route change into the new route,
and the route during the update should guarantee that for any
common receiver hi, h0 → hi and there is only one sq(h0, hi).

Drop-freeness implies h0 → hi, which is equal to so-

called relaxed-loop-freeness [10] which means there are no

loops in the path from source to destination. Duplicate-freeness

implies there is only one sq(h0, hi). CMRUP is more complex

than the past consistent unicast routing update problem. The

solution should generate all update operations first and then

schedule them. The goal is to minimize the update time. In

unicast update, only one operation needs to be executed in

a switch, which directly changes the outport of the flow.

However, in CMRUP, a switch has an old and a new inport, and

several old and new outports. The two groups of outports may

have intersection, so it is not evident to generate appropriate

operations. Furthermore, in CMRUP, the effect of operations

are more complex than the operations using the rule model

that has not inport field. Besides, the receivers in CMRUP are

multiple and they can be removed, added or maintained during

the update, and only the common receivers need consistencies

during the update.

III. SHIFTER DESIGN

In this section, we present the three main components of

Shifter – generation of update operations, dependency graph

of update operations, static scheduling of replace operations.

First, we introduce how to generate proper update operations

according to given two routes to avoid duplicate. Next, in order

to avoid drop, we present the conditions of the dependency

between add and delete operations with replace operations.

We develop an algorithm to generate update operations and

build the update operation dependency graph. The dependency

graph could dynamically schedule the operations and solve a

portion of scenarios. As for the rest scenarios, the key to the

problem is to schedule replace operations.

However, the form of dependency graph cannot describe all

feasible orders of replace operations, so we choose to statically

schedule them. We formulate this problem as Replace Opera-

tion Tree Migration Problem (ROTMP) and propose a greedy

solution for it. The solution of ROTMP is a sequence of the

set of replace operations. Finally, we integrate the solution of

ROTMP into the dependency graph by adding edges between

replace operations in adjacent rounds. The execution of the

final solution is dynamic but we can measure the solution

by the number of layers in the solution. The dependency

graph first has three layers of three kinds of operations. The

operations in the same layers do not have dependencies with

each other. However, the replace operations are divided into

several sets according to the solution of ROTMP, so the actual

number of layers is 1+x+1, i.e., one layer of add operations, x
layers of replace operations and one layer of delete operations.

A. Generation of Update Operations

A rule in the routes can be either added or deleted, if

it does not exist in both routes. We can generate add or

delete operations according to whether the rule is new or

old. However, as Fig. 2 shows, some rules must be dealt with

replace operations. We present the basic conditions that a new

rule r and an old rule r′ in switch sj should be dealt with a

replace operation as follows:

• Inports of r and r′ are different and outports of r and r′ is

the same, according to the definition of replace operation.

• Assuming that the outport of r and r′ is opt(sj , sk), there

exists at least one common receiver hi, and sk → hi in both

old and new routes.

Theorem 1. If r and r′ in a switch sj satisfy the above
two conditions, unless r and r′ are dealt with rep(r, r′),
drop-freeness and duplicate-freeness cannot be guaranteed
simultaneously.

Proof. First, we prove that if there exists at least one receiver

host hi and in both old and new routes sk → hi, then sj → sk
and it should be guaranteed that there is at most one sq(h0, sk)
during the update.

h0 → hi should be guaranteed during the update, so

sq(h0, hi) always exists during the update. Because in both

old and new routes sk → hi, if there are two sq(h0, sk), there

will be two sq(h0, hi). Therefore, it should be guaranteed that

there is only one sq(h0, sk). In both routes, the next hop of

sj is sk, so sq(h0, hi) always includes sj following with sk.

If sj → sk becomes false during the update, sq(h0, hi) will

be broken. Therefore, sj → sk should be guaranteed.

349

Second, we prove that if sj → sk and only one sq(h0, sk)
are guaranteed during the update, then r and r′ should be dealt

with rep(r, r′). If r is added by add(r) and r′ is deleted by

del(r′) respectively, neither two orders of two operations can

satisfy the requirements. Assume that inports of r and r′ are

ipt(si, sj) and ipt′(s′i, sj). There are two cases:

• add(r) happens first. If at the moment before add(r)
happens, h0 → si and si is forwarding packets to sj ,

there will be two sq(h0, sk) after add(r) happens. More

detailedly, before add(r) happens, sq(h0, sk) via s′i exists

and when add(r) happens, the old sq(h0, sk) still exists

because add(r) cannot break it. Then, two sq(h0, sk) will

coexist. Otherwise, if at the moment before add(r) happens

sq(h0, sk) via si does not exist, sq(h0, sk) does not exist

and thus h0 → sk cannot be guaranteed.

• del(r′) happens first so that h0 → sk cannot be guaranteed.

Therefore, add(r) and del(r′) should happen at the same

time, which must only be done by rep(r, r′). rep(r, r′) is the

necessary condition for h0 → sk and only one sq(h0, sk).

If the generation of operations satisfies Thm. 1, the update

guarantees duplicate-freeness because any two rules with dif-

ferent inports but identical outport could not coexist. The spe-

cific method for operation generation is integrated in Alg. 1.

B. Update Operation Dependency Graph

After generating all operations, it’s time to schedule them

with the aware of drop-freeness. As mentioned before, it is

a complex problem for different kinds of operations and the

multicast routing structures. We hope the order of operations

can be described by a few constraints so that we can determine

the order of every single operation simply. Fortunately, we

have the following observation which implies how to schedule

add and delete operations:

• add(r(., opt(sj , sk))) and del(r′(., opt(sj , sk))) could

cause drop only when a join switch exists in the

downstream of sk in the old route.

In this paper, we consider the downstream of a switch sj in

the route, including sj itself. When no join switches exist in

the downstream of sk in one route, there will be no common

receivers, so the operations do not cause drop. Without the

loss of generality, we only consider add operations. Assume

that hi is a common receiver and sj → hi via sk in the

new route. If the switches in sq(sj , hi) of the new route are

not join switches, sq(h0, hi) of the old route must include

sq(sj , hi). However, add(r(., opt(sj , sk))) should not be gen-

erated because r exists in both routes. Therefore, if no such

join switches exist, and thus no common receivers exist, the

operations will not cause drop.

We can demonstrate the observation in Fig. 2. d1 is a join

switch, so the add operations in s and m1 and the delete
operation in m2 may cause drop if they are not carefully

scheduled. The method to avoid violation of consistencies is

to let the add operations happen before the replace operation

in the join switch d1 and the delete operations happen after

d1.rep. We describe it by an Update Operation Dependency

Graph (UODG) – a dependency graph of update operations

as nodes and the order between two operations as directed

edges. With the UODG, the controller constantly checks and

executes the operations in the UODG who have no in-coming

edges. After getting a reply message from the switch, the

controller deletes the corresponding operation and the edges

connected to it in the UODG. The controller executes this

process repeatedly until the graph becomes empty.

Now we give the conditions that an edge between two

operations should be built in the UODG as follows:

(Add-Replace) add(r(ipt(., sj), opt(sj , sk))) must happen

before rep(r(ipt(sa, sb), opt(sb, sc)), r
′(ipt′(s′a, sb), opt(sb,

sc)) is executed.

1) sa is in the downstream of sk in the new route.

2) There are common receivers in the downstream of sc.

3) For any sx followed with sy in sq(sj , sb), there is no

edge from sx to sy in the old route.

(Replace-Delete) del(r(ipt(., s′j), opt(s
′
j , s

′
k))) must happen

after rep(r(ipt(sa, sb), opt(sb, sc)), r
′(ipt′(s′a, sb), opt(sb,

sc)) is finished.

1) s′a is in the downstream of s′k in the old route.

2) There are common receivers in the downstream of sc.

3) For any sx followed with sy in sq(s′j , sb), there is no

edge from sx to sy in the new route.

Before proof, we demonstrate the third condition by Fig. 4.

There are 4 add operations and 4 delete operations in this

scenario. We can find that there are no dependencies between

the add operations in s and m1 with the replace operation in

d. In fact, d only depends on the add operations in m4 and

m5. The reason is that m3 → m4 in both routes, and therefore

h0 → m4 is guaranteed during the update. The connection in

the upstream of m4 is irrelevant with d. The delete operations

are similar with the add operations.

�

�� ��

��

��

�

�� ��

��

��

����� ������ ������ ������

����� ������ ������ ������

��	�
���	�

Fig. 4: An update scenario and its UODG. Operations in s,m1,m2

have no dependencies with the replace operation in d.

Now we explain the order between operations which satisfy

the conditions. The relation between the two operations that

the conditions describe can be summarized as sj is connected

with sb by a path, whose edges only exist in either old or

new routes. In addition, h0 → sk should be guaranteed during

the update because of the second condition. Therefore, before

rep happens, the old path cannot be broken by any delete
operations in the switches in the old path, and the new path

should be established by the add operations in the switches in

the new path.

350

Note that the two kinds of dependency are necessary con-

ditions for all feasible orders. The possible orders described

by UODG must includes all feasible orders, and even in some

scenarios they are identical. Furthermore, there are no more

constraints on the orders of add and delete operations, because

based on the current UODG they will not cause neither drop-

freeness nor duplicate-freeness.

We combine the generation of update operations and the

UODG into an algorithm which is a depth-first search al-

gorithm which uses a recursive function called UODG-DFS

(Alg. 1). The algorithm first starts from the ingress switch

as the parameter of the function and finally return the update

operation dependency graph.

Algorithm 1: UODG-DFS

Input: sj , G
1 if sj /∈old route then
2 foreach r(., opt(sj , sk)) of sj in the new route do
3 G.add node(add(r))
4 UODG-DFS(sk)

5 else
6 if sj .ipt == sj .ipt

′ then
7 foreach opt(sj , sk) ∈ s.opts′ do
8 if opt(sj , sk) /∈ s.opts then
9 G.add node(del(r′(sj .ipt, opt(sj , sk))))

10 foreach opt(sj , sk) ∈ s.opts do
11 if opt ∈ s.opts′ then
12 UODG-DFS(sk)
13 else
14 G.add node(add(r(sj .ipt, opt(sj , sk))))
15 UODG-DFS(sk)

16 else
17 foreach r′(ipt′(si, sj), opt(sj , sk)) ∈ sj in the old route do
18 if opt /∈ sj .opts

′ then
19 G.add node(del(r′(ipt′(si, sj), opt(sj , sk))))

20 foreach r(ipt(si, sj), opt(sj , sk)) ∈ sj in the new route do
21 if opt /∈ sj .opts

′ then
22 G.add node(add(r(ipt, opt(sj , sk))))
23 UODG-DFS(sk)
24 else
25 G.add node(rep(r(sj .ipt, opt(sj , sk)),
26 r′(sj .ipt′, opt(sj , sk))))
27 // Traverse along the new route upstream.
28 cur ← si, prev ← sj .
29 while cur is not the next hop of a join switch do
30 G.add edge(add(r(ipt(sx, cur),
31 opt(cur, prev))),rep)
32 prev ← cur, cur ← sx.

33 // Traverse along the old route upstream.
34 // sj .ipt

′ = ipt(s′i, sj)
35 cur ← s′i, prev ← sj .
36 while cur is not the next hop of a join switch do
37 G.add edge(rep,del(r(ipt(sx, cur),
38 opt(cur, prev))))
39 prev ← cur, cur ← sx.

40 UODG-DFS(sk)

Alg. 1 omits the generation of some delete operations, which

do not depend on replace operations. They can be easily added

by traversing those switches only in the old routes. Alg. 1

checks the rules in a switch and generates replace operations

according to Thm. 1 as well as add and delete operations. The

pseudo-code from Line 27 and 39 traverse upwards along the

new and old route to find the add and delete operations satisfy

Add-Replace and Replace-Delete conditions, and then add

directed edges between the operations. The time complexity

of the DFS algorithm is O(N+E), where N is the number of

switches and E is the number of edges in both routes, because

an edge can be traversed for three times at most.

We can make a summary of the generation of update

operations and the UODG. First, the operations generated by

Alg. 1 implies that the update will be duplicate-free, because

every switch cannot keep two rules with the same outport but

different inports, which must be dealt with a replace operation.

Second, based on the UODG, add or delete operations have no

other constraints, and only the order of the correlated replace
operations involve consistencies, because sq(h0, hi), where hi

is a common receiver, are only changed by replace operations.

Finally, there are some scenarios that UODG cannot guarantee

drop-freeness, which should be solved by static scheduling of

the replace operations (e.g. Fig.5).

� ���� ��

�� �� � ��

��� ���

��� �����

Fig. 5: An infeasible case for UODG

The replace operations in m1, m2, m3, m4 and d cannot

be executed in an arbitrary order. It is obvious that m1.rep
and m2.rep cannot be executed first, otherwise drop will

happen. We carefully check all feasible orders of the 5 replace
operations and find that no dependency relation can describe

all feasible orders of them. Therefore, the replace operations

should be statically scheduled in a sequence of subsets of

them, updated round by round, based on the UODG.

C. Static Scheduling of Replace Operations

According to the UODG, every replace operation should be

executed after a path from the ingress switch is finished by

some add operations. At the moment before the replace op-

eration happens, the switch actually receives packets from the

new inport, though they are dropped because the new rule has

not been added. However, after the replace operation happens,

the path from h0 to this switch may be broken. For example, in

Fig. 5, after m4′ .add finishes, m4′ is sending packets to m1

and then m1.rep can be executed according to the UODG.

However, after m1.rep happens, m1 cannot receive packets

from s and m4′ cannot either. A feasible order of the five

replace operations can be {m3,m4, d} → {m2} → {m1}.

The reason for why we have to schedule the order of replace
operations is that some replace operations can cause loops

during the update. Such a loop must consist of a part of old

route and a part of new route, because the old or new route

cannot have any loops. The two parts of different routes are

connected by two join switches (sj and sk). sj is an upstream

351

switch of sk in the old route, and in contrast sk is an upstream

switch of sj in the new route (e.g. m2 and m3 in Fig. 5).
This reason inspires us that the route during the update

may be able to described as a tree which do not have loops

between h0 and common receivers. The unit of update is

simplified as only one replace operation since that the orders

of Add and Delete operations are correlated to it by the UODG.

Besides, the switches that are not be updated by any replace
operations can be ignored, except Is. Finally, the original

problem is converted into a problem called replace Operation

Tree Migration Problem (ROTMP), whose answer is the order

of replace operations. First, we present the detailed definition

of some related concepts about ROTMP as follows:

• Replace Operation Tree (ROT) is a directed graph includ-

ing Is and the join switches. A ROT is transformed from

a route. Two nodes, e.g. sj and sk, are connected from sj
to sk in the ROT if and only if in the route sj → sk and

sq(sj , sk) has no other join switches except sj and sk (sj
can be Is). The ROTMP has two ROTs at the beginning,

which are converted from the old and new routes, denoted

as OROT and NROT. The nodes may have different father

nodes in OROT and NROT. The migration process is to use

Migration operations to migrate OROT to NROT.

• Migration operation is a combination of all replace oper-

ations in a switch. The ROT needs to be migrated from one

to another by migration operations, as the route needs to

be updated by update operations. In ROTMP, the add and

delete operations are ignored because they are correlated to

replace operations, and the corresponding add operations of

a replace operations are integrated into a migration operation

together with the replace operation. A migration operation

in switch sj will change the father node of sj in the ROT.

• Target Nodes are the switches that should always be con-

nected with Is in a ROT. In the route, common receiver(s)

are in the downstream of a target node and the path from

a target node and the common receiver has no other join

switches. During the migration, all nodes have a father node

and some intermediate ROTs may not only have a tree but

also another separate part that does not have any target nodes

so that common receivers are still connected to Is.

• Concurrent Migration Operation Set (CMOS) is a set of

migration operations that can be executed in a round. When

n migration operations in a CMOS are updated together,

the ROT may be changed into one of 2n − 1 different

ROTs. Every possible ROT should guarantee all target nodes

connected with Is.

Now we give the definition of Replace Operation Tree Migra-

tion Problem (ROTMP) as follows:

Definition 2 (ROTMP). Given OROT and NROT converted
from the old and new routes, find a sequence of CMOSs, which
are disjoint subsets of all migration operations, to migrate
OROT to NROT.

ROTMP is similar to the static ordered update approaches,

whose goal is to minimize the rounds of update, so we

also regard the migration of a CMOS as a round of update

though the final solution is dynamic. Note that to simplify

the problem, a migration operation represents all replace
operations in the switch other than one, which may slightly

increase the number of rounds but the solution still exists.

Fig. 6 shows the ROTMP of the scenario in Fig. 5 and a

solution to it. The shadowed nodes are the nodes which have

not been migrated. The switches mx′ where x ∈ {1, 2, 3, 4}
are removed because they do not have replace operations.

The migration operation on m1, for example, means that

in CMRUP m1.rep happens after m4.add according to the

UODG so that m1 is connected to m4 directly in the third

round. It takes 3 rounds to migrate OROT to NROT. Note that

the first CMOS has 3 operations and it can be proved that no

matter what the order of these 3 operations is, the ROT can

guarantee drop-freeness (h1 and h2 are connected to s).

�

��

��

��

��

��

�

�

��

��

��

��

��

�

���� ����

�� ���� ��

�

��

��

��

��

��

�

�� ��

�

��

��

��

��

��

�

�� ��

�

��
��	
��

��
��	
�� �

��
��	
��

Fig. 6: ROTMP and its solution of the scenario in Fig. 5

Fig. 7 shows the whole solution of the scenario in Fig. 5. It

connects the replace operations in the previous round to those

in the next round in the UODG. This instance maybe seems

to have too many layers, but the evaluation results show that

such a complex case is very hard to appear.

�
��
���� �

��
���� ����� �

��
���� �

��
����

�
�
���	 �

�
���	 ����	

�
�
���	

�
�
���	

����
 �
��
���
 �

��
���
 �

��
���
 �

��
���

Fig. 7: Final solution of the scenario in Fig. 5.

In the next subsection, we formulate the maximum update

problem and the optimal update problem as mixed integer

programs.

IV. GREEDY AND OPTIMAL SOLUTIONS

In this section, we present two mixed integer programs:

greedy program to compute the maximum number of nodes

to update in a round, and optimal program to compute the

minimum number of update rounds. The greedy solution runs

the greedy program in each round and updates the Replace Op-

eration Tree (ROT) by its solution. We use randomly-generated

352

Replace Operation Tree Migration Problem (ROTMP) in-

stances to compare their runtime and number of rounds.

A. Greedy Solution
During the update, the ROT is migrated to intermediate

ROTs and the updated nodes could be removed to reduce

the input scale of the mixed integer program in each round,

while not changing the solution. We reconstruct the two ROTs

by removing the updated nodes while keeping connectivity

between every two remaining nodes changeless. Therefore, the

input of the greedy program in each round is two ROTs which

have the same nodes and every node except the source has

different previous hop.
Now we formulate the maximum consistent multicast rout-

ing update problem as a mixed integer program. Given the two

ROTs, we should choose the maximum Concurrent Migration

Operation Set (CMOS). Every migration operation is corre-

sponding with an old edge and a new edge which respectively

connects with the old and the new father node. In fact, a set

of migration operations can be a CMOS if and only if we can

add the new edges into OROT without introducing any loop

containing a node in an s-d path. The evidence is that every

node except the source has only one father node. If there are no

loops between the source and destinations, every target node

can traverse upstream and finally reach the source. Otherwise,

if a node in the s-d path is in a loop, the target node in that

path will traverse along the loop and cannot reach the source.

The reason why we can reserve the old edges is that the old

and new incoming edges of a node cannot be in the same loop.

From this inference, we can formulate the greedy program (1).
We denote the set of old edges in OROT as Eo and the set

of new edges in NROT as En (let E = Eo ∪ En), an the set

of all updateable nodes as V . We also have a source s and a

destination set D consisting of all target nodes.

max
∑

(u,v)∈En

xu,v (1)

s.t. xu,v = 1, (u, v) ∈ Eo (1a)

zu,d = xu,d, d ∈ D, (u, d) ∈ E (1b)

zu,v ≤ xu,v, (u, v) ∈ E (1c)

zu,v ≥ zv,w + xv,w − 1, (u, v), (v, w) ∈ E (1d)

|V | · zu,v + tu − tv ≤ |V | − 1, (u, v) ∈ E (1e)

First, we use binary variables xu,v ∈ {0, 1} to signify

whether the edge (u, v) ∈ E may appear during this round.

The objective is to maximize the number of newly-added

edges. Constraint 1a sets xu,v = 1 when (u, v) is an old

edge. Then, we set the binary variables zu,v ∈ {0, 1} to

indicate whether the edge (u, v) may appear and some target

nodes are in its downstream. Constraint 1b sets zu,d = xu,d

as (u, d) contains a target node d. Constraint 1c enforce if

xu,v = 0, i.e., (u, v) does not appear, then zu,v should be

0. Constraint 1d embodies if zv,w = 1 and (u, v) appears,

then zu,v should be 1 because the downstream of (v, w) is

also the downstream of (u, v). If zv,w or xv,w is 0, then the

constraint is meaningless. Finally, zu,v represents the edges

between the source and target nodes which should not form

any loop. Therefore, constraint 1e sets the Miller-Tucker-

Zemlin constraint [22] to avoid loops.

We can find out the variables in the objective whose value

is 1 to decide the nodes to be updated in this round.

The greedy solution can be divided into three steps:

1) Run the program (1) with the input of OROT and NROT.

Get the nodes to be updated.

2) Update the OROT with these nodes and reconstruct OROT

and NROT by removing the updated nodes.

3) If OROT has no updateable nodes, then stop. Otherwise

return to step (1).

B. Optimal Solution

We formulate the optimal update problem as a single mixed

integer program to find the minimum number of rounds. First,

we should assume that the number of rounds has an upper

bound R bound. Let Γ = {1, · · · , R bound}. Then, we use

xr
u,v ∈ {0, 1}, r ∈ Γ to represent whether the ROT contains

(u, v) after the rth round. Specially, x0
u,v is corresponding

with the OROT. Only when node v is updated in round r,

xr
u,v is different from xr−1

u,v . Therefore, constraint 2a enforces

the lower bound of R. Constraint 2b and 2c implies every

old edge will be deleted from the ROT once and only once.

Constraint 2d relates the new edge to the old edge pointing

at the same node. We use the binary variables yru,v ∈ {0, 1}
to signify whether (u, v) may appear before and after the rth

round (see constraint 2e and 2f). Constraints 2e-2i are similar

with constrains 1b-1e, which avoid loops between the source

and destinations.

min R (2)

s.t. R ≥ r · (xr
u,v − xr−1

u,v), (u, v) ∈ En, r ∈ Γ (2a)

xr−1
u,v ≥ xr

u,v, (u, v) ∈ Eo (2b)

xR bound
u,v = 0, x0

u,v = 1, (u, v) ∈ Eo (2c)

xr
u,v + xr

w,v = 1, (u, v) ∈ Eo, (w, v) ∈ En (2d)

yru,v ≥ xr
u,v, (u, v) ∈ E (2e)

yru,v ≥ xr−1
u,v , (u, v) ∈ E (2f)

zru,d = yru,d, d ∈ D, (u, d) ∈ E (2g)

zru,v ≤ yru,v, (u, v) ∈ E (2h)

zru,v ≥ zrv,w + yrv,w − 1, (u, v), (v, w) ∈ E (2i)

|V | · zru,v + tu − tv ≤ |V | − 1, (u, v) ∈ E (2j)

The program 2 does not guarantee feasible solutions unless

R bound is big enough. However, the program scale is propor-

tional to R bound and the runtime can increase exponentially

with the growth of R bound. Therefore, we tend to start from

a small R bound (e.g. 3) and try R bound+ 1 next time.

C. Comparison

In consideration of the trade-off between runtime and round

number, we should choose a proper solution according to the

characteristics of the ROTMP instances. We explore the influ-

ence of three characteristics of a ROT on the two solutions,

353

(a) (b) (c) (d)

Fig. 8: Comparison between greedy and optimal solutions of ROTMP instances transformed from multicast routing update scenarios

including the total number of updateable nodes (written as

#Nodes), the number of leaf nodes (written as #Leaves) and

the number of target nodes (written as #Targets). We conduct

numerical simulations with randomly generated ROTMP in-

stances and run the two solutions with the same input. We use

the state-of-the-art mathematical programming solver, Gurobi

Optimizer 7.5 [23], to solve both mixed integer programs.

The ROTMP instances are randomly-generated according

to the input parameters (#Nodes, #Leaves and #Targets). The

generation can be divided into four steps:

1) Set s0 as the source node of two ROTs. Generate a node

set S, |S| = #Nodes. Select a node set D ⊆ S as the

target nodes, |D| = #Targets.

2) In each ROT, randomly select a node si from S and

randomly select a node sj already in the ROT as si’s
father node, and guarantee that the number of leaf nodes

in the ROT does not exceed #Leaves. Then remove si
from S. Repeatedly insert a node in S into the ROT until

S is empty.

3) Remove the nodes which are not in any path from s0 to

a target node si ∈ D.

4) Compare the two ROTs and recursively remove the nodes

which have the same old and new father nodes and the

non-common nodes that are not in both ROTs. When a

node is removed, its father node should connect with its

Fig. 9: Comparison between greedy and optimal solutions of
directly generated ROTMP instances

next hops.

The above process can guarantee randomness as much as

possible. Note that these instances are not transformed from

the consistent multicast update scenarios and the ROTMP

instances transformed from the scenarios have much smaller

problem scale and thus solutions when the original input

number of nodes are the same.
We conduct 125 groups of experiments with different pa-

rameters. #Nodes, #Targets and #Leaves of these instances

are respectively {10,20,30,40,50}, {1,2,3,4,5} and {1,2,3,4,5}.

For each group of parameters, we generate 500 instances and

test the average number of rounds (#rounds) and average

runtime (#runtime) of greedy and optimal solutions.
Fig. 9 shows the interrelation between #rounds and #runtime

of two solutions. When #rounds is small, #runtime of two

solutions are close, but when #rounds becomes large, #runtime

of optimal solution increases rapidly. Therefore, we can use

the greedy solution instead of the optimal solution.

V. EVALUATION

In this section, we perform simulations to compare the run-

time and performance of greedy and optimal solutions in mul-

ticast routing update scenarios and explain that Shifter should

use the greedy solution. We randomly generate multicast trees

and update scenarios. The multicast trees can be generated by

the same method of ROT. We use #Nodes, #Leaves and #Tar-

gets to describe the parameters of the multicast trees. For each

group of parameters, we generate 500 instances of multicast

routing update scenarios. Then we apply Alg. 1 to build the

update operation dependency graph, and then test greedy and

optimal solutions on the formulated Replace Operation Tree

Migration Problem instances (ROTMP). Finally, we illustrates

that the greedy solution can solve most update scenarios with

very few rounds and little runtime.
Fig. 8(a) shows the distribution of #rounds and #runtime

of both solutions. Almost all points has less than 1.2 #rounds

and 6 ms, so we can choose either greedy or optimal solution

for this problem without much waste on runtime or update

duration. Fig. 8(b) shows that #rounds and #runtime of both

solutions do not have evident change with the growth of

#Nodes. Therefore, it can be inferred that #Nodes may not

have an evident influence on #rounds.

354

Fig. 8(c) shows that #rounds and #runtime increase slightly

with the growth of #Targets. Since that the two paths from

one source to a destination are likely to be different, there

may exist a replace operation in the join switch of the two

paths. Therefore, more destinations could increase the number

of replace operations and thus the problem scale of ROTMP.

Fig. 8(d) shows that #rounds and #runtime have a sharp

decrease when #Leaves increases from 1 to 2, which explains

the gap in the scatter points of Fig. 8(a). It implies that more

complex routing structures make the nodes more disordered

and decrease the probability that a node has the same previous

hop and thus the problem scale.

Considering the impact of all parameters, when #Tar-

gets=#Nodes and #Leaves=1, the update scenarios could be

the most difficult to update. We conduct simulations on small

scale scenarios (see in Fig. 10(a)) and large scale scenarios (see

in Fig. 10(b)) and let #Targets=#Nodes and #Leaves=1. We

can see that in both small and large scenarios, #rounds of two

solutions are very close and lower than 1.2. In small scenarios,

#runtime of optimal solution is always less than 5 ms, but it

increases much faster than greedy solution in large scenarios.

Therefore, taking the runtime and the number of rounds into

account, we should choose the greedy solution to solve the

ROTMP. Fig. 10 also proves that the greedy solution can give

very few rounds and little runtime for multicast routing update

scenarios, even if the scenario is very large.

(a) (b)

Fig. 10: Comparison between greedy and optimal solutions of
ROTMP instances transformed from multicast routing update
scenario instances (#Nodes=#Targets, #Leaves=1)

VI. CONCLUSION

In this paper, we propose Shifter, a novel ordered up-

date scheme to address Consistent Multicast Routing Update

problem based on Software-Defined Networks while ensuring

both drop-freeness and duplicate-freeness. To the best of our

knowledge, Shifter is the first ordered update scheme to

guarantee drop-freeness and duplicate-freeness in consistent

multicast routing updates. Shifter enables the inport field,

which makes it possible to solve this problem, and employs an

update operation scheduling algorithm that combines dynamic

and static methods. We present a greedy solution to solve the

static scheduling problem. The simulations prove that Shifter

can perform near-optimal solutions for most update scenarios

with very few rounds and little runtime.

VII. ACKNOWLEDGMENT

This work was supported in part by the Program of In-

ternational S&T Cooperation (2016YFE0100300), the China

973 project (2014CB340303), the National Natural Science

Foundation of China (Grant number 61472252, 61672353),

the Shanghai Science and Technology Fund (Grant num-

ber 17510740200), and CCF-Tencent Open Research Fund

(RAGR20170114). Xiaofeng Gao is the corresponding author.

REFERENCES

[1] D. Li, S. Wang, K. Zhu, and S. Xia, “A survey of network update in
SDN,” Frontiers of Computer Science, vol. 11, no. 1, pp. 4–12, 2017.

[2] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in ACM SIGCOMM, 2012, pp. 323–
334.

[3] C. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven WAN,”
in ACM SIGCOMM, 2013, pp. 15–26.

[4] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A.
Maltz, “zUpdate: Updating data center networks with zero loss,” in ACM
SIGCOMM, 2013, pp. 411–422.

[5] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in ACM SIGCOMM HotSDN, 2013, pp. 49–54.

[6] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in IEEE ICNP, 2015, pp. 1–10.

[7] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in ACM SIGCOMM, 2014, pp. 539–550.

[8] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in ACM HotNets, 2013, pp. 20:1–20:7.

[9] S. A. Amiri, A. Ludwig, J. Marcinkowski, and S. Schmid, “Transiently
consistent SDN updates: Being greedy is hard,” in SIROCCO, 2016, pp.
391–406.

[10] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling loop-free
network updates: It’s good to relax!” in ACM PODC, 2015, pp. 13–
22.

[11] D. M. F. Mattos, O. C. M. B. Duarte, and G. Pujolle, “Reverse update:
A consistent policy update scheme for software-defined networking,”
IEEE Communications Letters, vol. 20, no. 5, pp. 886–889, 2016.

[12] K. Förster, R. Mahajan, and R. Wattenhofer, “Consistent updates in
software defined networks: On dependencies, loop freedom, and black-
holes,” in IFIP, 2016, pp. 1–9.

[13] S. Dudycz, A. Ludwig, and S. Schmid, “Can’t touch this: Consistent
network updates for multiple policies,” in IEEE/IFIP DSN, 2016, pp.
133–143.

[14] A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good network updates
for bad packets: Waypoint enforcement beyond destination-based routing
policies,” in ACM HotNets, October 27-28, 2014, pp. 15:1–15:7.

[15] W. Wang, W. He, J. Su, and Y. Chen, “Cupid: Congestion-free consistent
data plane update in software defined networks,” in IEEE INFOCOM,
2016, pp. 1–9.

[16] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Transactions on Networking (TON), vol. 18, no. 2, pp. 490–500, 2010.

[17] S. Vissicchio and L. Cittadini, “FLIP the (flow) table: Fast lightweight
policy-preserving SDN updates,” in IEEE INFOCOM, 2016, pp. 1–9.

[18] T. Kohler, F. Dürr, and K. Rothermel, “Consistent network management
for software-defined networking based multicast,” IEEE Transactions on
Network and Service Management (TNSM), vol. 13, no. 3, pp. 447–461,
2016.

[19] “Openflow switch specification,” https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.0.noipr.pdf.

[20] “Mininet,” http://mininet.org/.
[21] “Floodlight,” https://floodlight.atlassian.net/wiki/.
[22] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming

formulation of traveling salesman problems,” J. ACM, vol. 7, no. 4, pp.
326–329, Oct. 1960.

[23] “Gurobi,” http://www.gurobi.com/.

355

