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Abstract—Mobile Crowdsensing (MCS) is a promising
paradigm that utilizes ubiquitous mobile devices to collect envi-
ronmental data. Specially, location data is critical among all kinds
of data because most MCS applications are location-based. Faulty
data and missing values, however, may exist in the collected
location data due to various reasons. This brings forth an
important issue of detecting faulty location data in the presence
of missing values. To address this issue, we propose I(TS,CS),
a joint faulty data detection framework that combines Time-
Series and Compressive Sensing techniques. The framework
adopts a DETECT-and-CORRECT approach to iteratively detect
faulty data and reconstruct the dataset, which bypasses the
tradeoff between false positive ratio (Type-I error) and false
negative ratio (Type-II error), and thus detects more faulty data
without increasing False Positive Rate. We have evaluated the
proposed I(TS,CS) framework based on a real trace consisting
of the trajectories of 2, 000 taxies, showing I(TS,CS) dramatically
improve the performance of both faulty data detection and data
reconstruction.

I. INTRODUCTION

The popularity of smartphones and other mobile devices

(e.g. in-vehicle sensing devices such as GPS) enables the

pervasive collection of a large volume of data. Mobile Crowd-

sensing (MCS) [1] exploits such data collection opportunities

by leveraging individuals to collect and share sensory data

using their mobile devices. Furthermore, MCS is also a special

and effective scheme for Internet of Things (IoT) [2], which

is a rising concept that enables the environmental information

to be collected and shared across platforms. Many MCS

applications have emerged in recent years, including urban

transportation monitoring [3], urban noise monitoring [4],

indoor floorplan construction [5] and image sensing [6]. Most

of the MCS applications are location-based, i.e., the collected

data makes sense only when we know where it is collected [4,

6]. Moreover, location is almost the only collected data in

some traffic monitoring systems such as [3].

MCS, however, suffers from faulty data and missing values

due to its openness, especially for location data. In MCS, the

sensing devices are owned by end users instead of settled by

authority — anyone with a mobile device can participant the

sensing tasks, and contribute his data. This exposes the MCS

system to malicious and erroneous users, who are likely to

upload faulty or biased data [7]. In addition, sensor failures can

also cause faulty data and missing values [8]. Also, missing

values are common in MCS due to its user-centric property [9].
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Fig. 1. Example of faulty data and missing values

Figure 1 illustrates an example of faulty data and missing

values in MCS location data obtained from a real trace that

records the trajectories of over 2,000 taxies in the urban area

of Shanghai. Figure 1(a) illustrates a 2-hour trace of a taxi.

The location is collected every 30 seconds. We can easily

infer the route of the taxi from the trace, and the points that

deviates from the route are faulty data. By statistics, 28% of

the trace are faulty. Figure 1(b) illustrates missing values of the

dataset that consists of traces of 200 taxies in 2 hours. The

black point indicates the corresponding data is missing. By

statistics, 11% of the total data are missing. Such faulty data

and missing values can severely deteriorate the performance

of MCS applications, thus it is crucial to filter out faculty data

in the presence of missing values.

On one hand, much effort has been denoted to truth discov-

ery and data integrity in MCS [10–13], with twofold core idea:

taking advantages of user reputation and designing incentive-

mechanism. These approaches assume that multiple observa-

tions for a same object are uploaded by different participants

at the same time. However, location data is unique among par-

ticipants, thus multiple observations may not be available. As

a result, reputation-based error monitoring approaches are not

applicable. Incentive mechanisms focus on ensuring the user to

report correct data. However, they cannot avoid unintentional

false data caused by sensor errors or transmission errors.

Traditional outlier detection techniques [14] are alternatives

for faulty data detection. However, these techniques do not

take missing values into consideration.

On the other hand, compressive sensing [15, 16] is an

effective way to reconstruct incomplete dataset. However, it

does not work well when faulty data exists. Efforts have been

denoted to compensate this. [17] utilizes Compressive Sensing

(CS) technique [15, 16] to deal with missing values and users’
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reputation to filter out faulty data. However, that work assumes

that “trusted” participants will never contribute faulty data.

The assumption is impractical in most scenarios. [18] attempts

to decompose a noisy and not low-rank matrix into several

components including a low-rank and an error component.

However, the framework cannot automatically detect faulty

data.

To address these, we focus on the problem of faulty location

data detection in the presence of missing values. The major

challenges are twofold: (i) existing solutions require multiple

observations, which are not available for location data because

it is user-specific; (ii) false positive and false negative are

coupled and the tradeoff between them limits the performance

of faulty data detection.

In this paper, we propose an Iterative Time-Series and

Compressive Sensing I(TS,CS) framework to detect and cor-

rect faulty data in MCS, which does not demand multiple

observations. Specifically, I(TS,CS) (i) detects and filters the

faulty data via TS-based approaches, producing extremely-

low false negative rate (i.e., high recall), (ii) reconstructs the

dataset by CS to fill the missing values, and (iii) repeats the

process until convergence. The iterative execution of TS and

CS facilitates to bypass the tradeoff between false negative and

false positive, thus minimizing the negative impact of missing

values on faulty data detection. Although I(TS,CS) is designed

to deal with location data, it can be easily extended to other

kind of sensory data in MCS.

Through real trace based experiments, we show that

I(TS,CS) can produce over 95% recall and precision in faulty

data detection even when 40% of the data is missed and 40% is

faulty, and the reconstruction error remains about 200m when

30% of the data is missed and 20% is faulty.

Our major contributions are listed as following.

• We explore the faulty data detection in MCS in a different

scenario from existing works, where the sensing is sparse

and multiple observations on the same object are not

available.

• We design an Iterative Time-Series and Compressive

Sensing framework, which iteratively applies outlier de-

tection and compressive sensing until convergence. The

framework bypasses the tradeoff between false positive

and false negative, achieving high recall and precision at

the same time.

• We evaluate I(TS,CS) based on the SUVnet dataset,

showing its effectiveness even when 40% of the data are

missing and 40% of the data are erroneous.

The rest of the paper is organized as follows. We first model

the problem in Section II. The I(TS,CS) framework is proposed

in Section III. In Section IV, we evaluate our framework

through real data based experiment. We briefly review the

related work in Section V. Finally, we conclude this paper

in Section VI.

II. PRELIMINARIES

Here we present the problem formulation and introduce the

SUVnet dataset [19] used in the design and evaluation.

A. Problem Statement

We consider a location-focused MCS system consisting of

n participants. Each participant uploads their location to the

centralized server periodically. Time is divided into slots of

duration τ (e.g., 30 seconds per unit), and participants upload

their locations to the centralized server at each time slot, in

the form of (x(i, j), y(i, j)) for the i-th participant at the j-

th time slot. Considering a system operating period of t time

slots, i ∈ [1, n] and j ∈ [1, t]. Also, we assume x(i, j) and

y(i, j) will be accurate/inaccurate/lost together.

We make the following definitions to mathematically for-

mulate the problem.

Definition 1. Coordinate Matrices (CM): describe the

real locations of the participants in each time slot. We use

two matrices Xn×t and Yn×t to denote x and y coordinates,

respectively:

X = [x(i, j)]n×t, (1)

Y = [y(i, j)]n×t. (2)

This way, each line of X and Y represent a time series

of location data of one participant. Note that X and Y are

participants’ true locations, thus containing no missing value

or faulty data. Also note that all the following definitions

besides Definition 3, 5 and 7 have two copies for X and

Y . We will only explain the X-version due to space limit.

Definition 2. Sensory Matrices (SM): contain location data

uploaded by participants, where faulty data or missing values

may exist. SM are denoted by SX and SY .

According to [20], if there is no faulty data in SM, it can

be represented as a linear combination of CM:

SX = A(X) (3)

= E ◦X, (4)

where A(·) is a linear operator, and E is Existence Matrix
defined as following:

Definition 3. Existence Matrix (EM): is an n× t matrix,

denoting if a data point in CM is actually collected in SM:

E(i, j) =
{
0 , if X(i, j) and Y (i, j) are missing in SM,

1 , otherwise.
(5)

However, when faulty data is present in the dataset, the

problem is no longer linear. To address this, we make the

following definitions:

Definition 4. Faulty Data: A data point SX(i, j) is faulty if

the difference between SX(i, j) and X(i, j), denoted by εXi,j ,

satisfies |εXi,j | > T , where T is a pre-defined threshold. The

optimal value of T is system-specific, which will be elaborated

in Section III-B.

This way, the SM can be mathematically defined as:

SX(i, j) =

{
0 , if X(i, j) is missing,

X(i, j) + εXi,j , otherwise,
(6)

where εXi,js satisfy: (i) εXi,j is small for normal data and large
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for faulty data, and (ii) the expectation of sum of εXi,js in

normal data E(
∑

εXi,j) = 0.

Definition 5. Faulty Matrix (FM): is a matrix marking if

X(i, j) and Y (i, j) are faulty. It is denoted by F and defined

as:

F(i, j) =
{
1 , if SX(i, j) and SY (i, j) are faulty

0 , otherwise.
(7)

The task of identifying the faulty data in SX and SY —

can be formulated as following.

Problem 1. Faulty Data Detection (FDD): Given SX , SY

and E , find the Detection Matrices(DM), denoted as D, that

is as close to F as possible, i.e.,

Objective: min ‖D − F‖F
Subject to: SX , SY and E , (8)

where ‖ · ‖ is the Frobenius norm quantifying the difference

between D and F .

To formulate the task of data reconstruction, we further

make the following definitions.

Definition 6. Reconstructed Matrices (RM): is generated

by removing faulty data and reconstructing the missing values

in SX and SY . They are denoted by X̂ = [x̂(i, j)]n×t and

Ŷ = [ŷ(i, j)]n×t.

Definition 7. Generalized Binary Index Matrix (GBIM):
is the combination of Existence Matrix E and Detection Matrix

D. It is denoted as B and defined as:

B(i, j) =
{
1 , if E(i, j) = 1 and D(i, j) = 0,

0 , otherwise.
(9)

This way, the task of data reconstruction can be formulated

as following:

Problem 2. Data Reconstruction (DR): Given SX , SY

and B, determine the optimal X̂ and Ŷ that best approximate

X and Y , i.e.,

Objective: min ‖X − X̂‖F
Subject to: SX and B. (10)

B. Real-World Mobility Traces

We evaluate our design with a publicly available dataset of

SUVnet [19]. SUVnet records the trajectories of over 2, 000
taxies in the urban area of Shanghai, covering a period of

28 days during 2007-02-01 – 2007-03-01. The raw data of

SUVnet, however, is not suitable for evaluation because of

significant missing values and corrupted data (which has been

illustrated in Section I), leading to the lack of ground truth.

Thus, we perform preprocessing on the raw data and select

complete subset. The selected subset contain 158 participants

× 240 slots, with a slot duration of τ = 30 second.

III. ITERATIVE TIME-SERIES AND COMPRESSIVE SENSING

Below we explain Iterative Time-Series and Compressive

Sensing framework I(TS,CS) in detail.

Fig. 2. Logic flow of I(TS,CS).

A. Overview

Intuitively, false negative and false positive are two closely

coupled challenges in faulty data detection. I(TS,CS) mitigates

such coupling with a DETECT-and-CORRECT procedure.

In the DETECT phase, I(TS,CS) aims to find as much faulty

data as possible, even at the cost of misjudged normal data —

minimizing the false negative rate at the cost of false positive.

Such sacrifice on false positive is then compensated at the

CORRECT phase by reconstructing the data with compressive

sensing. The application of compressive sensing here is justi-

fied by (i) compressive sensing is known to reconstruct missing

values effectively, and comparing to classical interpolation

methods, it is relatively insensitive to the ratio of missing

values [21], and (ii) the major limitation of compressive

sensing — suffering from faulty data with large deviation [22]

— has been mitigated during the DETECT phase.

Figure 2 presents an overview of the I(TS,CS) framework,

taking Sensory Matrices (SM) SX , SY , Existence Matrix
(EM) E and Detection Matrix (DM) D as the input. In DE-

TECT phase, I(TS,CS) processes the data with TS Detect(),
a time-series based outlier detection algorithm, after which

“suspicious” data will be detected and marked in D. In COR-

RECT phase, I(TS,CS) treats the “suspicious” data as missing

values, marks them in Generalized Binary Index Matrix
(GBIM) B, and reconstructs them with CS Reconstruct().
Then, I(TS,CS) uses the Reconstructed Matrices(RM) X̂, Ŷ
as ground truth to check the result of TS Detect() and update
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Fig. 3. Local Median Method

D. If D changes, I(TS,CS) sends the RMs, together with

updated DM, EM and original SMs, back to TS Detect().
The procedure continues until D never changes again. The

final DM is the set of detected faulty data.

In the rest of this section, we will introduce the detailed

design of TS Detect(), CS Reconstruct() and Check().
Specifically, we designed optimized local median method for

faulty data detecting and checking, and modified Compressive

Sensing for missing value reconstruction.

B. Optimized Local Median Method

Optimized Local Median Method is a variant of outlier

detection method in time-series. Here we use outliers and

faulty data interchangeably — neither of them can be used

by the MCS system and thus are faulty in our focus.

Figure 3 illustrates the main idea of the Local Median

Method. We select the i-th row of the sensory matrix SX

(or SY ), denoted as xi = [x
(1)
i , x

(2)
i , · · · , x(t)

i ], and test the

data points one by one. Define an odd window size w. When

testing x
(k)
i , we consider the (w − 1) points around x

(k)
i ,

i.e., [x(l)
i , · · · , x(k)

i , · · · , x(l+w−1)
i ], and calculate the median

of these w values, denoted by m(k). Note that l is the index of

the first timeslot in the window, as defined in Equation (12).

The tested data x
(k)
i is judged as faulty if |x(k)

i −m(k)| > δ,

where δ is a tolerance threshold.

Pre-defining a fixed δ for the Local Median Method does

not work well for location data. For example, vehicles on a

highway may run at 100km/h, but only at 20km/h on local

road. Assuming τ = 30s, the maximum distance a vehicle

can run in a time slot is 833m in the former case, but is only

167m in the latter — a data point with 300m deviation from

median will be normal in the highway scenario but is likely

faulty on local road.

We use velocity, i.e., the changing rate of location, to

optimize the setting of δ, which is readily-available on many

mobile systems such as vehicles and smartphones. The veloc-

ities are represented by two matrices Vx = [vx(i, j)]n×t and

Vy = [vy(i, j)]n×t, where vx(i, j) and vy(i, j) represent the

velocity component in X and Y direction of the ith participant

in the jth timeslot, respectively.

We estimate how far a participant could travel within one

timeslot based on his velocity. However, vx(i, j)s and vy(i, j)s
are instant velocities at exactly the time when location is

collected, and thus may not capture the average velocity

within a time slot accurately. As a remedy, we define Average

Velocity Matrices V x and V y as:

V x =

⎡⎢⎢⎢⎢⎣
vx(1, 1)

vx(1,1)+vx(1,2)
2 . . . vx(1,t−1)+vx(1,t)

2

vx(2, 1)
vx(2,1)+vx(2,2)

2 . . . vx(2,t−1)+vx(2,t)
2

...
...

...

vx(n, 1)
vx(n,1)+vx(n,2)

2 . . . vx(n,t−1)+vx(n,t)
2

⎤⎥⎥⎥⎥⎦ .

(11)

and V y is defined similarly. We then apply linear interpolation

to estimate the average velocity based on V x and V y . Denote

V x(i, j) as the average X direction velocity component of the

ith participant from the (j−1)th to jth timeslot. For simplicity,

we assume vx(i, 0) = vx(i, 1) and vy(i, 0) = vy(i, 1), i.e., the

average velocity from the 0th and the 1st timeslot is instant

velocity of the 1st timeslot.

We define the dynamic tolerance δ based on the maximum

distance a participant can travel within w timeslots. Specifi-

cally, the tolerance of the ith participant, jth timeslot, in X
direction is defined as

δ
(j)
i = ξ × max

k=1,2,··· ,w
{
l+k∑
p=l

V x(i, j)× τ},

l = min{max{1, j − (w − 1)/2}, t− w + 1},
(12)

where l is the index of the first timeslot in the window, τ is

the length of each timeslot, and ξ is a parameter to fine-tune

the tradeoff between false negative and false positive errors.

Note that we ignore missing values in the Local Median

Method — if there are n missing values in the window, we

calculate median m(j) and δ
(j)
i based on the remaining (w−n)

data points. Such simplification may reduce the reliability of

the faulty data detection method, which can be compensated

in the CHECK phase, as we will explain later.

Algorithm 1 shows the pseudo code of the Optimized Local

Median Method. First, the first three input of TS Detect()
can be either X-Version or Y-Version. The returned D is also

either DX or DY . The final DM is D = DX ∪ DY (see

Figure 2). Second, D is set to all ones when TS Detect()
is executed for the first time, and its corresponding element

will be set to 0 if a data point is concluded to be normal.

This is because TS Detect() is designed to find as much

faulty data as possible, regardless of how many normal data

are misjudged. Moreover, this ensures the convergence of

the I(TS,CS) framework. Third, missing values appear in

TS Detect() only when it is first executed, and will be

replaced by the reconstructed value after reconstructing the

dataset.

C. Improved Compressive Sensing

Compressive Sensing (CS) [15, 16] is originally designed to

compress transmitted data to reduce data transmission cost. It
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Algorithm 1: TS Detect(S,Ŝ,V ,D,E ,w,ξ)

Input : Sensory Matrix S; Reconstructed Matrix Ŝ;

Average Velocity Matrix V ; Detection Matrix

D; Existence Matrix E ; Window Size w;

Tradeoff Coefficient ξ
Output: Faulty data detection result D

1 if Not first executed then
2 foreach S(i, j) do
3 if E(i, j) = 0 then
4 S(i, j)← Ŝ(i, j);

5 E ← ones(n, t);

6 for i← 1 to n do
7 for j ← 1 to t do
8 if E(i, j) = 0 then
9 continue;

10 Calculate l and δ according to Equation (12);

11 N ← ∅;
12 for k ← l to l + w − 1 do
13 if E(i, k) = 1 then
14 Add S(i, j) to N ;

15 m← median of N ;

16 if |S(i, j)−m| < δ then
17 D(i, j)← 0;

18 return D;

is also proved to be a powerful tool for data reconstruction,

and is tolerable to high data loss. Essentially, CS-based data

reconstruction is a matrix completion method, which only

applies to low-rank (sparse) matrix. Next, we first analyze

the structure of location dataset to show its sparseness, and

then design an optimized compressive sensing approach for

location data reconstruction.

1) Low-rank Feature of Sensory Data: The low-rank prop-

erty of location dataset can be proved analytically. Consider

a Coordinate Matrix X (we just discuss X here as the

analysis on Y is identical) with n rows (n participants)

and t columns (t timeslots), and denote its first column

as α1 = [x(1, 1), x(2, 1), · · · , x(n, 1)]T . If every participant

move at constant velocity, i.e., v = [v1, v2, · · · , vn]T , then X
can be presented by

X = [α1, α1 + τ · v, · · · , α1 + (t− 1)τ · v]. (13)

Through elementary transformation, X can be transformed

to

X ′ = [α1, τ · v, 0, 0, · · · , 0], (14)

with a rank of 2. The rank of X is not exactly 2 in practice,

because participants do not always move at constant velocity.

However, the Coordinate Matrix is most likely to show low-

rank (sparse) property because the velocity of is stable in most

cases [23].

Actually, according to [21], besides location data, most

sensory data is low-rank. We further use Principal Component

Analysis (PCA) to show the sparseness of location data.

According to PCA, a matrix X can be approximately represent

by

X̃ =

r∑
i=1

σiuiv
T
i , (15)

where σi is the i-th largest singular value of X , meaning X
can be approximately represented by its top-r singular values.

Clearly, X is low-rank if r � min(n, t). Figure 4(a) shows

the distribution of singular values in Coordinate Matrices,

based on SUVnet dataset described in Section II-B. The X-axis

represents the ith singular values, and the Y-axis represents the

CDF of the first i singular values, i.e.,
∑i

k=1 σk. We normalize

X-axis for uniformity, i.e., min(n, t) is normalized to 1. This

figure suggests that the total energy of Coordinate Matrices is

always occupied by the top few singular values. For instance,

top 9% singular values of X and top 11% singular values

of Y occupy 95% of the total energy, verifying the low-rank

property of the Coordinate Matrices.

2) Compressive Sensing Based Method Design: The goal

of Data Reconstruction is to estimate X̂ and Ŷ based on

SX and SY . Again, because the reconstruction of SX and

SY are identical, we only discuss the reconstruction of SX

in this section for simplicity. According to Equation (15), a

sparse matrix Xn×t can be represented by X̃ =
∑r

i=1 σiuiv
T
i .

Conversely, given an incomplete matrix SX , we can construct

a sparse matrix

X̂ =

r̂∑
i=1

σ̂iûiv̂i (16)

to approximate the origin matrix X . The challenges, however,

lie in estimating r̂, ûi and v̂i.

With the low-rank property of X , we can find X̂ by solving

the following problem:

Objective: min(rank(X̂))

Subject to: X̂ ◦ BX = SX
(17)

The problem, however, is non-convex, and thus difficult

to solve. As a remedy, we take advantage of the SVD-like

factorization of X̂:

X̂ = Û Σ̂V̂ T = LRT , (18)

where Σ̂ is an r̂ × r̂ diagonal matrix containing the top r̂
singular values σ̂i, i = 1, 2, · · · , r̂, and L = Û Σ̂1/2, R =
V̂ Σ̂1/2.

According to the theory of Compressive Sensing [15, 16],

if the restricted isometry property holds, rank minimization

problem (17) can be transformed into the nuclear norm min-

imization problem of low rank matrix LRT . Thus, we only

need to minimize the sum of L’s and R’s Frobenius norms:

Objective: min(‖L‖2F + ‖R‖2F )
Subject to: (LRT ) ◦ BX = SX

(19)
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In practice, it is difficult to find L and R that strictly

satisfy (19), because (i) collected location data always contains

noise; (ii) as shown in Figure 4, X is only approximately low-

rank. Therefore, we apply Lagrange multiplier method to relax

the constraint:

min(‖(LRT ) ◦ BX − SX‖2F + λ1(‖L‖2F + ‖R‖2F )), (20)

where λ1 is a parameter for tuning the tradeoff between rank

minimization and fitting accuracy.

3) Temporal Stability and Velocity Improvement: The above

section describes the basic form of compressive sensing. In

this section, to improve the reliability of compressive sens-

ing against faulty data, we introduce temporal stability and

velocity improvement into compressive sensing.

In real world, most environmental value tends to be stable

between adjacent timeslots when the interval is not too large.

We measure the temporal stability of participant i at timeslot

j by calculating the difference between adjacent timeslots

	x(i, j) = |x(i, j)− x(i, j − 1)|, (21)

and 	y(i, j) is defined similarly.

We can introduce temporal stability into compressive sens-

ing by adding the summation of 	x(i, j) into object func-

tion (20). Theoretically, the smaller 	x(i, j) is, the more

accurate the result is. Thus, we incorporate velocity to further

extract temporal stability property. The rationale of the design

is that the estimated average velocity times the timeslot dura-

tion τ should be approximately equal to the distance travelled

in the timeslot. We measure “velocity improved temporal

stability” of participant i at timeslot j by

	vx(i, j) = |x(i, j)− x(i, j − 1)| − V x(i, j)× τ, (22)

where V x is Average Velocity Matrix defined by Equation (11)

and τ is timeslot duration.

Figure 4(b) shows the CDF of 	x, 	y, 	vx and 	vy.

The X-axis represents the normalized difference between two

consecutive timeslots in Coordinate Matrices, and the Y-axis

represents the cumulative probability. In the figure, we see that

before incorporating velocity, 95% of 	x(i, j)s are less than

410m, which is reduced to 210m by incorporating velocity.

After incorporating velocity-improved temporal constraint,

the minimization problem (20) changes into:

min(‖(LRT ) ◦ BX − SX‖2F + λ1(‖L‖2F + ‖R‖2F )
+λ2‖LRT

T− τV x‖2F ,
(23)

where V x is average velocity matrix defined in Equation (11),

τ is timeslot duration, and

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0

0 1 −1 . . .
...

0 0 1
. . . 0

...
...

. . .
. . . −1

0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
t×t

. (24)

The matrix LRT
T captures time stability of the dataset,

and τV X incorporates velocity. Note that temporal stability is

an intrinsic property of location data, and velocity is closely

related to location, but collected from another dimension.

Thereby, the additional constraint provides more information

and can filter out more noises.

4) Modified CS Algorithm: The Modified CS algorithm

finds the appropriate L and R that minimize (23). We define

the object function

f(L,R) = f1(L,R) + f2(L,R) + f3(L,R), (25)

where

f1(L,R) = ‖(LRT ) ◦ BX − SX‖2F , (26)

f2(L,R) = λ1(‖L‖2F + ‖R‖2F ), (27)

f3(L,R) = λ2‖LRT
T− τV x‖2F . (28)

Obviously, (25) is non-convex. However, if we fix L or

R, the other would be convex. Thus, we apply Alternating

Steepest Descent (ASD) algorithm [24, 25], which has been

proved to be efficient for minimization problem. The main

idea of ASD is to alternatively perform steepest gradient

descend on L and R. First, L and R are randomly initialized.

Note the parameter r is the estimated rank of X , which

can be determined by experiment. Next, we iteratively fix L
and perform gradient descent on R, and fix R and perform

gradient descent on L. The steepest descent along R and

L are selected to minimize the updated value of f along

the direction ∇r and ∇l, respectively. This can be solved

by calculating the differential of f and set it to zero, i.e.,
assume gr(α) = f(R,R− α∇r), gl(α) = f(L,L− α∇l), let

g′r(α) = g′l(α) = 0, and solve α.

ASD might suffer from local-optimal in practice. To miti-

gate it, we optimize the initial value of R and L by: (i) letting

S′ = S and the missing values in S′ be its nearest existing

value; intuitively, S′ is approximate to the original Coordinate
Matrix (CM); (ii) applying SVD to S′ and computing R and

L. This way, starting points of R and L are close to the optimal

one, and thus alleviates the potential local-optimal problem.

The pseudo code of modified CS is shown in Algorithm 2.

Check() compares the original SMs to RMs: if the differ-

ence is less than a lower threshold while the corresponding
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Algorithm 2: CS Reconstruct(S,B,V ,λ1,λ2,r,ratio)

Input : Sensory Matrix S; Generalized Binary Index

Matrix B; Average Velocity Matrix V ; Tradeoff

Coefficient λ1, λ2; Rank bound r; Terminate

Ratio ratio
Output: Reconstructed Matrix Ŝ

1 m,n← size(S);
2 S′ ← S;

3 foreach S′(i, j) in S′ do
4 if B(i, j) = 0 then
5 S′(i, j)← the nearest existing value;

6 [U,Σ, V ]← svd(S′);
7 L← U ∗ Σ1/2

r ; /* The first r cols of Σ */
8 R← V ∗ (ΣT

r )
1/2/* The first r rows of Σ */

9 repeat
10 μ1 ← f(L,R);

11 ∇r ← ∂f(L,R)
∂R ;

12 αr ← argminα f(L,R− α∇r);
13 R← R− αr∇r;

14 ∇l ← ∂f(L,R)
∂L ;

15 αl ← argminα f(L,L− α∇l);
16 L← L− αl∇r;

17 μ2 ← f(L,R);
18 until μ2−μ1

μ1
< ratio;

19 Ŝ ← L ∗RT ;

20 return Ŝ;

element in D is 1, turn it to 0; if the difference is larger than

a upper threshold while the corresponding element in D is 0,

turn it to 1. Similar to Algorithm 1, this algorithm also has

X-Version and Y-Version, whose pseudo code is summarized

in Algorithm 3.

D. Discussion

The overall time complexity of I(TS,CS) framework is

N(O(TS Detect) + O(CS Reconstruct) + O(Check)),
where N is the number of iterations. O(TS Detect) =
O(ntw) = O(nt) and O(Check) = O(nt). The computa-

tional cost of O(CS Reconstruct) is dominated by a series

of matrix multiplications, which is O(mnt), where m is

the iteration time in ASD algorithm. As a result, the total

complexity of I(TS,CS) is O(Nmnt).

In the design of I(TS,CS), velocity plays an important part.

It seems that if the velocity data itself is faulty and contains

missing values, the performance of I(TS,CS) framework will

be impacted. In fact, this impact is negligible. This is proved

in Section IV-D.

IV. EVALUATION

In this section, we evaluate I(TS,CS) in terms of faulty data

detection performance and data reconstruction accuracy.

Algorithm 3: Check(S,Ŝ,D,thresl,thresh)

Input : Sensory Matrix S; Reconstructed Matrix Ŝ;

Detection Matrix D; Threshold thresl, thresu;

Output: Updated Faulty Data Detection Matrix D
1 foreach S(i, j) in S do
2 if |S(i, j)− Ŝ(i, j)| < thresl and D(i, j) = 1 then
3 D(i, j)← 0;

4 if |S(i, j)− Ŝ(i, j)| > thresu and D(i, j) = 0 then
5 D(i, j)← 1;

6 return D;

A. Evaluation Settings

We evaluate I(TS,CS) based on the taxi data in SUVnet [19].

We preprocess the data using the same method with Sec-

tion II-B. The selected traces contain 158 participants × 240

timeslots, with slot duration τ = 30s. The original data is

stored in two matrices Xn×t and Yn×t. The spatial size of the

taxi data is 110× 140km, covering major area of Shanghai.

In the trace-driven evaluation, the Existence Matrix E is

randomly generated with a control parameter α specifying the

ratio of 0s (i.e., missing values) in E . Also, we randomly select

a fraction of the dataset as faulty data. These points are marked

in the Faulty Matrix F by setting the corresponding element

to be 1. The ratio of faulty data is controlled by β. For the

faulty data, we add a random bias εi,j to the original data, i.e.,

the generated Sensory Matrices are SX = X ◦E+F ◦ [εi,j ]n×t

and SY = Y ◦ E + F ◦ [εi,j ]n×t.

We evaluate the performance in two aspects: performance

in faulty data detection and performance in reconstruction

error. The performance in faulty data detection is judged by

Precision and Recall, which are defined as Precision =
#TP

#TP+#FP and Recall = #TP
#TP+#FN , where #TP , #FP

and #FN represent True Positive (concluded as faulty data

and is indeed faulty data), False Positive (concluded as faulty

data while actually is not faulty data) and False Negative

(not concluded as faulty data while actually is faulty data),

respectively.

The accuracy of missing value reconstruction is measured

by Mean Absolute Error (MAE):

err =

∑
i,j:E(i,j)=0 or D(i,j)=1

√
errx(i, j)2 + erry(i, j)2∑

i,j:E(i,j)=0 or D(i,j)=1 1
,

(29)

where

errx(i, j) = |X(i, j)− X̂(i, j)|, (30)

erry(i, j) = |Y (i, j)− Ŷ (i, j)|. (31)

We use the following 3 methods as benchmarks when

evaluating the performance in faulty data detection:

• Two-sided median method(TMM): A time-series based

outlier detection algorithm proposed in [26], which also
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Fig. 5. Performance of faulty data detection

compares each data points with the median in the window,

but the outlier range is predefined;

• I(TS,CS) without VT: Similar to I(TS,CS), but the com-

pressive sensing is not temporal and velocity improved;

• I(TS,CS) without V: Similar to I(TS,CS), the com-

pressive sensing is temporal improved but not velocity

improved.

Because TMM does not provide data reconstruction, when

evaluating the reconstruction error, we replace it with the

following method:

• Modified compressive sensing: The algorithm is de-

scribed in Section III-C.

B. Performance in Faulty Data Detection

We first evaluate the performance of faulty data detection

in terms of precision and recall. The experiment is conducted

when missing value ratio α = 0%, 20% and 40%, and in each

experiment the faulty data ratio β varies from 10% to 40%.

The results are shown in Figure 5.

When missing value ratio α = 0% (Figure 5(a) – 5(c)) and

faulty data ratio β is low (≤ 20%), all these four methods

produce similar precision and recall (> 98%). However, with

β continuing raising, the precision and recall of TMM drops

while the that of the other three methods remains high. When

α = 0%, precision and recall of time-series based method

drops to 91% and 96%, respectively, while that of the other

three methods is still more than 98%. This indicates that

I(TS,CS) improves faulty data detection even in case of no

missing value.

When α > 0%, even if β is low, there is still a distinct

gap between the performance of TMM and the other three

methods. We can observe that the performance of the three

I(TS,CS)-like methods is very stable. Even when the data

quality is quite bad, i.e., with α = 40% and β = 40%, the

precision and recall is still more than 95%.

Note that the precision and recall of the three I(TS,CS)-like

methods is almost indistinguishable. This is because the faulty

data is typically at least kilometers away from the normal data.

However, as we will see later, the reconstruction error of all

these three I(TS,CS)-like methods is less than 1 km in most

cases. Consequently, the difference in reconstruction error

among the three I(TS,CS)-like methods can hardly influence

the performance of faulty data detection.

C. Performance in Missing Value Reconstruction

In this section, we evaluate I(TS,CS)’s reconstruction er-

ror. The experiment is conducted when missing value ratio

α = 10%, 20% and 30%, and in each experiment the faulty

data ratio β varies from 0% to 40%. The results are shown

in Figure 6. When there is no faulty data (β = 0%), the

reconstruction error of CS is slightly less than those of the

three I(TS,CS)-like method. That is because in I(TS,CS), the

DETECT phase will introduce misjudged “faulty data”, and in-

crease the overall missing value ratio. However, the difference

between reconstruction of CS and other three I(TS,CS)-like

methods decreases when more values are missing.

Faulty data, even if only 5% of the total volume, increases

CS’s reconstruction error dramatically. In contrast, the recon-

struction error of the other three I(TS,CS)-like methods does

not change a lot. When β = 40%, CS’s reconstruction error

increases to over 1200m, while that of I(TS,CS) remains at

about 200m. I(TS,CS) performs the best among the three

I(TS,CS)-like methods. Specifically, the reconstruction error
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Fig. 6. Performance of missing value reconstruction
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Fig. 7. Impact of velocity faulty data

of I(TS,CS) is only half of that with I(TS,CS)-without-VT,

and about 10− 18% better than I(TS,CS)-without-V. In most

cases (β ≤ 30%, α ≤ 20%), the reconstruction error of

I(TS,CS) is less than 200m. Even when there 30% of the data

is missing and 40% of the data is faulty, the reconstruction

error is still less than 300m. Compared to spatial size of the

traces (110× 140km), the error is acceptable. Such errors can

be further reduced via map matching [27].

D. Impact of Faulty and Missing Data in Velocity

In this section, we evaluate the impact of faulty data in

velocity. In the experiment, we randomly select a fraction

(noted by γ) of velocity dataset, and artificially add 100%
error onto it (i.e., suppose the original velocity is v, the

modified velocity with error is randomly selected between 0
to 2v). From Section 5 we know, that the Recall and Precision

do not show much difference between the three I(TS,CS)-

like methods. Thus, we only compare the reconstruction error

between I(TS,CS)-with-faulty-velocity and I(TS,CS)-without-

V.

The results are shown in Figure 7. The experiment is

conducted when missing value ratio α = 20% and 40%, and

the faulty data ratio varies from 10% to 40%. We can observe

that when 20% of the velocity is faulty, the reconstruction

error is almost the same as that when no faulty data exists

in velocity. Even when 40% of the velocity is faulty, the

reconstruction error only slightly increases. In contrast, if

velocity is not utilized, the reconstruction error dramatically

increases.
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Fig. 8. Converging rate of I(TS,CS).

E. Convergence of I(TS,CS)

Last but not the least, we evaluate I(TS,CS)’s converging

rate. The precision and reconstruction error in each iterations

are shown in Figure 8. Under all circumstances, the improve-

ment between iteration 1 and iteration 2 is significant, and the

later iterations only contribute tiny improvement. Moreover,

I(TS,CS) converges in no more than 4 iterations even when

α = 40% and β = 40%.

V. RELATED WORK

Faulty data and missing values are common in mobile

crowdsensing applications [9]. Works have been done to

maintain data integrity. Most of them are based on user

reputations and focus on designing incentive mechanism to

ensure users to report correct data [10–13]. [28] considers the

influence of context and propose a context aware data quality

estimation scheme. However, all the above approaches rely

on multiple observations on the same sensing target, which is

impractical for some applications, especially for location data.

Moreover, all these approaches did not take missing values

into consideration. [17] utilizes Compressive Sensing (CS)

technique to deal with missing values and users’ reputation to

filter out fault data. However, it does not propose an adequate

approach to select faulty data.

A time-series [29] is a series of data points indexed (or listed

or graphed) in time order. Correspondingly, outlier detection in

time-series [14] is distinctive from time-independent dataset.

Various of approaches for time-series outlier detection have

been developed, including unsupervised approaches [30], su-

pervised approaches [31] and window based approaches [32].
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These approaches cannot be directly applied to faulty location

data detection in MSC because they didn’t take missing val-

ues into consideration. Moreover, they didn’t utilize intrinsic

structure of location data.

Compressive Sensing (CS) [15, 16] is a technique that

originally designed to compress transmitted data in order to

reduce data transmission cost. It is also proved to be a powerful

tool for data reconstruction, which can tolerate high data

loss [21]. CS is able to reconstruct the whole dataset from

only a small fraction of data, if only the dataset is low-rank.

However, according to the theory of compressive sensing,

faulty data is not allowed in the reconstruction matrix [22].

[18] compensates this by decomposing a noisy and not low-

rank matrix into several components including a low-rank and

a error component. However, the framework cannot automat-

ically detect faulty data.

VI. CONCLUSION

In this paper, we focused on location data in mobile crowd-

sensing and considered the problem of faulty data detection

in the presence of missing values. We proposed I(TS,CS)

framework in which time-series based outlier detection method

and compressive sensing are iteratively conducted. We further

improve the performance of I(TS,CS) by modifying compres-

sive sensing and having the outlier region of time-series based

outlier detection method dynamically calculated. Finally, we

conduct a real trace based evaluation, showing the proposed

I(TS,CS) framework can drastically improve the performance

of faulty data detection and missing value reconstruction.
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