
ReFeR: Resource Critical Flow Monitoring in
Software-Defined Networks

Yihui Qian∗, Yutong Liu∗, Linghe Kong∗, Minyou Wu∗, and Shahid Mumtaz†
∗Shanghai Jiao Tong University, Shanghai, China
†Instituto de Telecomunicações, Losboa, Portugal

Email: {yh tsien, isabelleliu, linghe.kong, mwu}@sjtu.edu.cn, smumtaz@av.it.pt

Abstract—Flow monitoring is widely applied in software-
defined networks for monitoring network performance. Espe-
cially, the detection on heavy hitters can prevent the Distributed
Denial of Service attack. However, many existing approaches fall
in one of two undesirable extremes: (i) inefficient collection where
only accuracy is concerned in the method; (ii) low accuracy
caused by the sacrifice with fast detection. As a result, we aim
to find a balance between the accuracy and efficiency of flow
monitoring, where the network resources can be saved and the
error rate can also be confined simultaneously.

In this paper, we present ReFeR, a novel “Report-Feedback-
Report” scheme to improve the detection efficiency of heavy
item detecting while ensuring low error rate of the measure-
ment. ReFeR leverages the binary order of magnitude of item
measurement to replace the long statistical information shared
between switches and controller; after the items are analyzed
with the magnitude, only fewer uncertain items are involved in
further detection, where their information (i.e., significant digits)
is provided for final judgment.

Theoretical analysis and simulated evaluation have proved the
effectiveness of our solution. ReFeR keeps the error rate under
1% and the saving rate larger than 20% in most cases as the
selecting fraction α > 5

24
, which guarantees both high efficiency

and low error rate compared with existing methods.

I. INTRODUCTION

With the proliferation of the network threats in big data era,
network flow monitoring becomes indispensable to prevent
attacks. Distributed Denial of Service (DDoS) attack [1] is one
of the typical attacks in this class. It floods the targets with
superfluous requests to overload the system and block other
legitimate requests. Flow monitoring can effectively prevent
this attack by detecting heavy hitters in network topology.
The detected heavy items are defined as items with a larger
flow than a given threshold, including source or destination
addresses, OD pairs, etc. In software-defined network, the
control plane performs detection by collecting measurements
from source and destination nodes, involving the transmitted
number of data packets.

In the single-path setting, the measurement at each switch
simply belongs to one certain item. However, in multi-path
routing, the measurement for an item is collected from various
routes and summed up by controllers. Unfortunately, most ex-
isting approaches ignore the efficiency of the whole collection
process. They get the long lists of measurements even when
there are tremendous routes in the network. When applied
in a network where resources are much more critical, their
approaches cause too much waste.

To realize the full utilization of network resources, we
intend to shorten the length of the messages shared between
the switches and controller using the mathematical features of
measurement values. However, there are still some challenges
needed to be dealt with. On the one hand, the measurement
accuracy will be impacted by these approximate messages. On
the other hand, in a network where an item is highly possible
to be split between different sketches, whether it is heavy or
not will often be misjudged [2].

To address the above challenges, in this work, we present
a novel flow monitoring method, named ReFeR: a “Report-
Feedback-Report” three-step detecting scheme, which is es-
pecially efficient for heavy items detection. In this detecting
scheme, switches firstly report the binary order of magnitude
of measurements. After the calculation of controllers, reported
items will be asserted to three degrees: exactly heavy, not
heavy and uncertain. The controller then sends a feedback
containing the list of uncertain items to the switches, and the
switches will respond the significant digits of these uncertain
items in return, which leads to the final judgment on all items.

We run a simulator to evaluate the accuracy and the
efficiency of ReFeR. When practical parameters are set, the
error rate is kept under 1% in most cases. And the total
length of messages can usually be shortened by 20%–60%.
In summary, this paper makes the following contributions:

• We present ReFeR, a detecting scheme which allows the
controller to detect heavy items in a network with shorter
messages shared with switches.

• We leverage the order of magnitude and most significant
digits on measurements to shortened the messages, ensur-
ing the required detecting accuracy and higher efficiency.

• We evaluate ReFeR by extensive simulations with d-
ifferent characteristics and different monitoring tasks,
analyzing the appropriate parameters to set in practice.

The remaining part of the paper is organized as follows.
Section II illustrates the background and the related work.
Section III gives a statement of the problem that our approach
ReFeR solves. Section IV presents the design of ReFeR. Sec-
tion V demonstrates the theoretical analysis on the accuracy
of the result and the efficiency of data transmission. Section
VI presents the results of our stimulated evaluation. Finally,
Section VII concludes the paper.

II. RELATED WORK

The methods of flow measurements have been proposed
for measuring the traffic in software-defined networks in
recent years. As there are three parts in flow monitoring
system: monitor, target switches and shared measurement
information, previous efforts can be classified into the three
categories respectively: monitor optimization, collection cost
from switches optimization and sketches leverage.

First of all, some researchers focus on the optimization of
monitors, including the monitoring coverage and sampling
granularity. Zang et al. [3] apply greedy heuristics for flow
monitoring, while optimizing coverage and cost in an IP
network. To maximize the coverage of the entire universe of
potential communication pairs, there is another way proposed
by Jackson et al. [4] that to minimize the number of monitors
considering the autonomous systems. For another perspective,
Suh et al. [5] optimize the sampling rates of flow monitoring
while sampling only a portion of the network. While the
network can be always changing, Zhang et al. [6] develop
a prediction-based algorithm, dynamically changing the gran-
ularity of measurement. And recently, LEISURE [7] achieves
a load-balanced performance among monitors dealing with
monitoring tasks globally. All of these efforts can reduce the
cost of the monitors to some extent, but some of the monitors
only have one monitoring function where extra overhead is
unavoidable.

The second category tackles with the bandwidth cost caused
by collection of statistics from target switches. The most
popular approach is OpenFlow [8]. It firstly splits the data
and the control planes by standardizing an open interface
which can be dictated by the remote software controllers. The
push-based mechanism designed for flow statistics collection
has some limits in practical applications. The dynamic traffic
will frequently trigger switches to send massive number of
measurement reports to the controller, causing large cost of
control channel bandwidth. To deal with this, Su et al. [9] and
Chowdhury et al. [10] reduce the communication cost while
making a balance between cost and flexibility. Moreover, Yu
et al. [11] propose a memory-efficient solution which balances
measurement load. Recently, Xu et al. [12] use wildcard-
based requests and also extend the problem to the general
case, reducing the amount of floats needed to be collected.
And a OverWatch detection algorithm [13] is proposed in the
same year. This lightweight flow monitoring algorithm can
capture the key features of DDoS attack traffics on the data
plane by polling the values of counters in OpenFlow switches,
where the method is specifically designed for DDoS attack
prevention. Although the collection quantity is reduced by the
above methods, the accuracy sacrifice is still noneligible.

The third category is about researches on the measure-
ment messages shared between switches and control plane.
Previous work focuses on using and optimizing sketches
for messages. OpenSketch [14] separates the measurement
data plane from the control plane and stores a library of
predefined functions in routers, where controllers can easily
reprogram them depending on different task requirements.
SCREAM [15] allocates resources in an efficient way on

A

B

4000

packets

5000

packets

O D

Fig. 1. Example topology of multi-path routing

hardware switches with constrained resources. Although both
of these two methods can offer convenient library or efficient
resource allocation, they cannot operate new custom sketches
for each task. According to this, UnivMon [2] is designed to
achieve both generality and high accuracy, supporting multiple
applications with high fidelity. Its data plane nodes play the
monitoring role and report sketch summaries to the control
plane which calculates application-specific metric estimates.
However, as the network resources become more and more
critical, this sketches summary information is still as long as
an exchanging information.

In this control-switch transmission scheme, what we focus
on is to efficiently collect the flow measurement information
with low cost and monitor network performance accurately.
To realize it, we propose a novel method especially for this
type of tasks in multi-path routing, where each switch needs to
report less data, combining by the binary order of magnitude
and significant digits for further analysis. A correct result can
be gotten after the controller’s calculation on data collected
from all switches.

III. PROBLEM STATEMENT

In a network containing m switches and one controller,
G(V,E) is the topology of flow network, where the set of
verticals V denotes the set of switches, and the set of edges
E denotes the set of paths among switches, sources and
destinations. The controller receives enquiries of detecting
heavy items, whose values are larger than a given threshold
g, which we define as the heavy threshold. Here, the items
are the objects in the network, including source or destination
addresses, OD pairs, etc. The values include the amount of
data, or number of packets sent from or to the address. The
value of an item can be split over several switches, as in the
multi-path routing, which means a switch itself is only able
to measure a part of the value, and the value of an item is
known only after the controller sums up from all switches. An
example is shown in Figure 1. The packets sent from O to D
split across two paths, and the number of packets sent from O
or to D should be measured as the sum 4000+5000 = 9000.

We need to find an approach, allowing the messages be-
tween the switches and controller to be much shorter than
just sending every exact value, while ensuring a high accuracy
on heavy item detection. For convenience of describing the
problem, we define the splitting degree sP of an item, as the
number of switches that its paths are split across. Therefore,
the value of the item is P =

∑sP
1 pi, where pi is the value of

the item at the ith passed switch. Again as shown in Figure
1, the split degree of source O and destination D should be

Source O1 O2 O5 O6 O7

Number of packets 1 230 50 6 40

Binary order of mag. 0 7 5 2 5

A

B

1

230

50

6

40

166

403 600

O1

O5 O7

O6O2

O4O3

Destinations

5

FIRST REPORT

A

B

Controller

Calculation of A

Source O1 O2 O3 O4 O5 O6 O7

EP 1.5 384 384 768 48 12 48

Heavy / Not / Uncertain NH Unc Unc H NH NH NH

sP 2 1

UP 1 2

Calculation of controller

FEEDBACK

IP
O1□□IP

O6□□□IP
O5IPO7□□IP

O2

□□IP
O6□□□□□ IP

O2□IP
O3□IP

O4

A

B

□IP
O2□IP

O3

SECOND REPORT

A

B

0 115

0 83 1 101

New IP (Source) 0 (O2) 1 (O3)

Approximate value 396 404

Heavy / Not heavy NH H

Calculation of controller

0 1

Topology of example network

Controller

Controller

Fig. 2. An example network and our approach

measured as 2. We also define the average splitting degree
sav as the average value of splitting degrees of all items.

IV. DESIGN OF REFER

We propose a novel measurement method named ReFeR,
standing for “Report-Feedback-Report”. A measurement re-
port in ReFeR is created by three steps: first report, feedback,
and second report.

The upper right part of Figure 2 shows an example of a
network. We suppose that the task is to detect heavy sources,
so the target items are source addresses. The heavy threshold
is set as g = 400. We explain the three steps of ReFeR in the
example network as following.

A. First report

We define the binary order of magnitude of P as the integer
k which satisfies 2k ≤ P < 2k+1. To make a first report, each
switch categorizes the items linked to it into different sets,
according to the binary order of magnitude of their values.
The message sent from that switch to the controller is created
by grouping up the IPs of items within the same set, and
putting a pre-defined separator (hereinafter referred to as �)
between two groups where the difference of their binary order
of magnitude is 1.

For switch A in the example network, 5 items send packets
with a path passing the switch. As shown in the upper left
part of Figure 2, the switch first calculates their binary order
of magnitude, such as 7 for O2, because its value 230 satisfies
27 ≤ 230 < 27+1. Then the switch categorizes them into 4 set-
s and sends IPO1��IPO6���IPO5IPO7��IPO2 to the
controller. Note that no item at this switch has a value whose
binary order of magnitude is 1, so 2 separators are between the
IP of O1 (binary order of magnitude 0) and IP of O6 (binary
order of magnitude 2). Similarly, 3 separators are between
IPO6 and IPO5 and 2 are between IPO7 and IPO2. In other
words, the binary order of magnitude for an item value at a
switch is equal to the number of separators before its IP in the
message sent by that switch, as shown in Figure 3. In the same

●●●□●●□●●□●●□□●…

● IP of an item

□ Separator

Total number of separators from the beginning

1 2 3 4 5

Binary order of magnitude

0 1 2 53

Fig. 3. Number of separators and binary order of magnitude

way, switch B sends ��IPO6�����IPO2�IPO3�IPO4

to the controller.

B. Feedback

In this step, the controller sums up the reported values and
calculates the approximate value of each item. It picks out the
items whose values are close enough to g, which need further
verification before making an assertion of being heavy or not.
Then it sends the list of selected items to all switches.

From the first report, the controller sums up the approximate
value of each item. For an item whose value is P and split
degree is sP , if each of the sP switches reports the binary
order of magnitude k1, k2, ..., ksP , we have

∑sP
1 2ki ≤ P <

2
∑sP

1 2ki . Let LP =
∑sP

1 2ki , and then LP ≤ P < 2LP .
Since the controller has not yet got any extra information,
we consider P at complete random and estimate it as its
expectation EP = 3

2LP . The controller processes these steps
for each distinguished item, and estimates the corresponding
value.

Next, the controller compares EP of each item with g, to
determine whether IPP is a heavy item or not. According
to the inequality above, we know that IPP cannot be heavy
if g is larger than 2LP = 4

3EP , and similarly IPP must be
heavy if g is smaller than LP = 2

3EP . But we are uncertain
with the remaining items. The list of items that the controller
makes a feedback is selected from them, about which the
switches need to make one more report for verification. For
the efficiency of data transmission, we set a selecting fraction
α. If (1− α)EP < g < (1 + α)EP , then the item is put into
the list. Otherwise the controller simply determines whether it
is heavy or not by whether EP is larger than g. As shown in
Figure 4, α is selected between 0 and 1

3 . α = 0 means the list
of feedback is empty, and α = 1

3 means all uncertain items
are put into the list. The value of α will have an effect on the
accuracy of the result and efficiency of data transmission. We
determine its adequate value in Section VI. In the example
network, the controller calculates EP of each item as shown
in the bottom left part of Figure 2. Supposing that we set
α = 1

3 , then an item is uncertain when 300 < EP < 600.
The controller detects IPO4 as heavy, IPO1, IPO5, IPO6 and
IPO7 as not heavy, and the rest 2 items as uncertain.

For the items put into the list, we do not expect the switches
to report every digit of their values. We define the n most
significant digits of a number as the n digits who have
the greatest values, such as the digits 1102 are the 3 most
significant digits of the integer 11002, and similarly for the

1
PE

g

Detected as not heavy

Detected as heavy

Uncertain Feedback

Must be heavy

Cannot be heavy

3

1

3

1

α

α

0

Fig. 4. Selecting fraction and feedback

least significant digits. We can discard several least significant
digits to shorten the messages. Suppose that we are estimating
the value P =

∑sP
1 pi, each value of pi is in binary. We

already know that its splitting order is sP , and the required
absolute error is at most ϵ. The number of digits that can
be discarded depends on sP . Fewer digits can be discarded
when sP is larger, since P is calculated as the sum of sP
addends. In the example network, the splitting degree of O2
is 2, while that of O3 is 1. If we discard U least significant
digits of the value of O3, the absolute error is at most 2U .
While for O2, discarding U digits makes the absolute error at
most 2 · 2U because its value at switch A and B are summed
up. We define the number of unnecessary digits of P as UP ,
where UP is the integer satisfying 2UP ≤ ϵ

sP
< 2UP+1. Then

UP least significant digits can be discarded for P .
The controller gets sP by counting the number of switches

from which this item has appeared in the message. Aiming at
keeping the error rate in the best cases under 1%, we set ϵ =
0.01g. If the values are integers, like the number of packets,
there are no negative unnecessary digits. It means that if the
integer UP satisfying 2UP ≤ ϵ

sP
< 2UP+1 is negative, we

set UP = 0. In the example network, the controller calculates
that O2 has 1 unnecessary digit, while O3 has 2.

What the controller sends to all switches is similar to the
first report, but the binary order of magnitude is replaced by
UP . In the example network, it sends �IPO2�IPO3. Also,
UP is equal to the number of separators before the IP of the
item in the message sent by the controller.

C. Second report

After receiving the feedback from the controller, each
switch makes a second report to allow the controller to verify
the values of the items within the list of feedback. The
message sent from each switch involves only the items in
the list that has a path at it. To shorten the message, we
do not need to send the original IP of an item, but instead
its sequence number within the list. Therefore, we only need
⌈log2 F ⌉ bits to identify an item when there are F items in
the list. We define the sequence number of an item as its new
IP. In the example network, the new IP of O2 and O3 are 0
and 1 respectively.

The unnecessary digits of the values are discarded, but since
the values will be summed up by the controller, we use the
rounded value when discarding them. In the example network,
switch B needs to send the value of O2, 16610 = 101001102
with 1 digit discarded, so 10100112 = 8310 is sent. It also

U
P

= 2 110010011 1100101

U
P

= 2 110010001 1100100

U
P

= 3 10 Nothing

U
P

= 3 10110 11

… …

New IP

New IP

New IP

Sent to controller

Fig. 5. Some items do not need to be sent at all, including its new IP

needs to send the value of O3, 40310 = 1100100112, and 2
digits are unnecessary, so 11001012 = 10110 is sent instead of
11001002 = 10010, since 1100101002 is closer to 1100100112
than 1100100002 is to 1100100112. This can be seen as the
integer closest to p

2UP
is sent, where p is the value of the

item at that switch. If p
2UP

< 0.5, the item does not need to
be sent, since the integer supposed to be sent is 0. Therefore, it
is possible that a switch does not have to send the value of an
item even when there is a path at it, and thus the switch does
not have to send its new IP either, contributing to improve the
efficiency, as shown in Figure 5.

When the controller receives the messages of the second
report, it sums up the values of every distinguished item. If
an item has UP unnecessary digits, and v1, v2, ..., vsP are the
integers sent from sP switches (vi = 0 if the item does not
appear in the message from the ith switch), then the controller
estimates the value of the item as 2UP

∑
vi, and determines

whether it is heavy or not according to it. As shown in the
bottom right part of Figure 2, the controller in the example
network estimates the value of O2 and O3 as 396 and 404
respectively, so it detects IPO3 as heavy.

V. THEORETICAL ANALYSIS

In this section, we analyze the accuracy of the result and
efficiency of data transmission of our approach theoretically,
in order to find out which parameters have an effect on the
final result.

A. Accuracy analysis
The accuracy of the result is affected by the selecting

fraction α, as mentioned in Section IV-B. We consider an
item uncertain when (1− α)EP < g < (1 + α)EP , where α
is between 0 and 1

3 . We then define a false positive as an item
detected as heavy while actually not heavy, and similarly, a
false negative as an item detected not heavy while actually
heavy. Thus we define the error rate as nFP+nFN

nH
, where

nH , nFP and nFN are the number of heavy items, false
positives and false negatives respectively. If we define N(x, y)
as the number of items whose values are between x and
y, then nH = N(g,+∞), nFP ≤ N(23g, (1 − α)g), and
nFN ≤ N((1 + α)g, 4

3g).

B. Efficiency analysis
To evaluate the efficiency of data transmission, we define

the saving rate as L0−L
L0

, where L0 and L are the minimum
length of messages between the switches and controller to
detect all heavy items, without and with ReFeR respectively.

1 2 3 4
g/P

av

0

0.2

0.4

0.6

E
rr

or
 r

at
e

(a) α = 1
24

1 2 3 4
g/P

av

0

0.2

0.4

E
rr

or
 r

at
e

(b) α = 1
12

1 2 3 4
g/P

av

0

0.1

0.2

0.3

E
rr

or
 r

at
e

(c) α = 1
8

1 2 3 4
g/P

av

0

0.1

0.2

E
rr

or
 r

at
e

(d) α = 1
6

1 2 3 4
g/P

av

0

0.05

0.1

E
rr

or
 r

at
e

(e) α = 5
24

1 2 3 4
g/P

av

0

0.02

0.04

0.06

0.08

E
rr

or
 r

at
e

(f) α = 1
4

1 2 3 4
g/P

av

0

0.02

0.04

0.06

0.08

E
rr

or
 r

at
e

(g) α = 7
24

1 2 3 4
g/P

av

-0.5

0

0.5

sa
vi

ng
 r

at
e

(h) α = 5
24

, overall

1 2 3 4
g/P

av

-0.2
0

0.2
0.4
0.6

sa
vi

ng
 r

at
e

(i) α = 5
24

, n > m, Pav ≥ 256

1 2 3 4
g/P

av

-0.5

0

0.5

sa
vi

ng
 r

at
e

(j) α = 1
4

, overall

1 2 3 4
g/P

av

-0.4
-0.2

0
0.2
0.4
0.6

sa
vi

ng
 r

at
e

(k) α = 1
4

, n > m, Pav ≥ 256

1 2 3 4
g/P

av

-0.5

0

0.5

sa
vi

ng
 r

at
e

(l) α = 7
24

, overall

1 2 3 4
g/P

av

-0.4
-0.2

0
0.2
0.4
0.6

sa
vi

ng
 r

at
e

(m) α = 7
24

, n > m, Pav ≥ 256

1 2 3 4
g/P

av

-0.5

0

0.5

sa
vi

ng
 r

at
e

(n) α = 1
3

, overall

1 2 3 4
g/P

av

-0.4
-0.2

0
0.2
0.4
0.6

sa
vi

ng
 r

at
e

(o) α = 1
3

, n > m, Pav ≥ 256

Fig. 6. (a)–(g) are error rates for 7 different values of α; (h)–(o) are saving rates for 4 different values of α

Without ReFeR, each switch will send the IP and the value
of all items with a path through it. We consider the length of
each IP as 16 bits, and the length of each value is at least
the number of its binary digits, while assuming they are all
integers. It needs at least int(log2 t)+1 bits to send the exact
value of an integer t. If there are n items within the whole
network, the splitting degree of the ith item is si, and the value
of each one of the si paths is pj , then L0 =

∑n
i=1

∑si
j=1(16+

int(log2 pj) + 1).
In ReFeR, the length here is made up of three parts:
First report. The message that each switch sends is com-

bined by the IPs of items at it, and separators �. Suppose that
there are m switches, the number of items with a path at the
ith switch is ai, and the value of the jth item at that switch
is pj . Since the binary order of magnitude of the value of an
item at a switch is equal to the number of separators before its
IP in the message sent by that switch, as mentioned in Section
IV-A, the number of separators sent by a switch is equal to
the maximum binary order of magnitude of the items at it.
Thus max(int(log2 pj))(1 ≤ j < ai) separators are needed at
the ith switch. Again considering the length of IP as 16 bits,
and a separator costs at least 1 bit, then the minimum length

for the first report is:

Lfirst =
m∑
i=1

(16ai +max(int(log2 pj)))(1 ≤ j < ai).

Feedback. The length of the feedback message from the
controller depends on the number of items in the feedback list
and separators. Suppose that there are F items, the ith item
has Ui unnecessary digits. Similar to how many separators
are needed at each switch, we can conclude that max(Ui)
separators S are needed by the controller. The controller puts
the IPs of these items and the separators in the message. Still
considering the length of IP as 16 bits, and a separator costs
at least 1 bit, then the minimum length for the feedback is:

Lfeedback = 16F +max(Ui).

Second report. The length of the message that each switch
sends depends on the total length of the new IPs of items at it,
and their values without the unnecessary digits. As mentioned
in Section IV-C, the length of the new IP of an item is
⌈log2 F ⌉ when there are F items in the list of feedback. If
the number of items in the list of feedback with a path at the
ith switch is bi, and the value of the jth item at that switch
is pj , with Uj unnecessary digits, then the minimum length
for the second report is:

Lsecond =

n∑
i=1

bi∑
j=1

f(j),

where

f(j) =

{
⌈log2 F ⌉+ int(log2

⌊
pj

2Uj
+ 1

2

⌋
) + 1 ,

pj

2Uj
≥ 1

2

0 ,
pj

2Uj
< 1

2

.

Note that
⌊

pj

2Uj
+ 1

2

⌋
is the rounded value of pj discarding Uj

unnecessary digits. When it is 0, which means all the digits
of the item are unnecessary, both the value and the new IP
of the item do not need to be sent, as mentioned in Section
IV-C.

Finally, the whole length is the summary of these three
parts: L = Lfirst + Lfeedback + Lsecond.

Whether L is smaller than L0 determines whether the sav-
ing rate is positive. Various parameters of network topology
have an effect on the saving rate, including n, m, the splitting
degree of each item, the value of each item (which determines
the binary order of magnitude), and the heavy threshold g
(which determines F). In the next section, we show how the
results change when these parameters change, and analyze in
which type of networks is better to apply ReFeR.

VI. PERFORMANCE EVALUATION

Evaluations are divided into two parts, dealing with the
accuracy of the result and the efficiency of our approach
respectively. We run simulators with different parameters of
network topology. Packet flows are generated at random. A
Python program is used for calculating the error rate and
saving rate for each case.

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
α

4

5

6

7

8

A
ve

ra
ge

 to
ta

l l
en

gt
h

(b
it)

×106

Without ReFeR
0.2P

av
≤ g≤0.6P

av

0.8P
av
≤ g≤1.2P

av

g≥1.4P
av

Fig. 7. Average total length of messages to detect all heavy items

n ≤ m n > m
0

2

4

6

8

A
ve

ra
ge

 to
ta

l l
en

gt
h

(b
it)

×106

UnivMon Multi-path
With ReFeR (α = 1/3)
With ReFeR (α = 5/24)

Fig. 8. Comparison of average total length of messages

A. Accuracy evaluation

We run a simulator to show how the error rate changes
when the number of items n, average splitting degree sav,
and average value of all items Pav change. We set α at 7
different values where 0 < α < 1

3 , like 1
24 , 1

12 , 1
8 , ..., 7

24 , and
repeat the simulation. We run it in 96 different cases for each
α, with n from 2 to 65536, sav from 4 to 256, and Pav from
256 to 65536. The heavy threshold g is another parameter that
has an effect on the error rate. For each case, we set g at 20
different values, from 0.2Pav to 4Pav .

As shown in Figure 6 (a)–(g), when α is set as the smallest
of the 7 values, 1

24 , the error rate grows up to over 20% in
some cases, and sometimes even larger than 50%, because
most items which should be in the list of feedback are not
put into the list. Smaller error rates appear more often when
α gets larger. And when α > 5

24 , the error rate is mostly kept
under 1%, and rarely over 5%.

Therefore, we recommend that α be set between 5
24 and

1
3 in practical use considering the accuracy. While a larger α
allows the result to be more accurate, the efficiency of data
transmission drops down when α grows, which is mentioned
in the next subsection. The selection of α should depend
on the tasks to accomplish. A larger α is appropriate for
tasks requiring higher accuracy, while a smaller α for those
requiring better efficiency.

B. Efficiency evaluation
We run another simulator to show how the saving rate

changes when the number of switches m, number of items
n, average splitting degree sav, and average value of all items
Pav change. According to the result of accuracy evaluation,
we set α at 4 different values selected in Section IV which
keeps the error rate low, 5

24 , 1
4 , 7

24 , and 1
3 , and repeat the

simulation. We run it in 348 different cases for each α, with
m from 4 to 65536, n from 2 to 65536, sav from 4 to 256, and
Pav from 256 to 65536. The total length of messages will get
longer if we apply ReFeR while there is less than one item
on average at each switch. Therefore, we keep nsav > m.
The heavy threshold g also has an effect on the saving rate,
similar to its effect on the accuracy. For each case, we again
set g at 20 different values, from 0.2Pav to 4Pav.

We first set α = 5
24 . As shown in Figure 6(h), the

saving rate is mostly larger than 20% when g < 0.8Pav or
g > 1.2Pav. When 0.8Pav ≤ g ≤ 1.2Pav , the saving rate
gets negative in half of the cases, and reaches below −70%
in extreme cases. When the saving rate is negative, the total
length of messages with ReFeR is larger than that without
ReFeR. We observe that most negative saving rates appear
when n ≤ m or Pav = 256. The saving rates when n > m and
Pav ≥ 256 are shown in Figure 6(i). In these cases, negative
saving rates appear in only few cases, and the saving rate
is usually between 20% and 60%. When α gets larger, as
shown in Figure 6(j)–6(o), the result is similar to that when
α = 5

24 , but negative saving rates appear a bit more often,
because more items are put into the list of feedback, making
the messages longer.

When we consider g, as shown in Figure 6, for all values
of α, the smallest saving rate appears mostly when g = Pav ,
because there are usually more items in the list of feedback
when g is closer to the average value of all items. We get larger
saving rates more often when g ≤ 0.6Pav or g ≥ 1.4Pav .
We divide all monitoring tasks into 3 groups according to g,
and compare the average total length of messages of each
group with and without ReFeR. As shown in Figure 7, we
run the simulator with 4 values of α. When 0.8Pav ≤ g ≤
1.2Pav, the average total length with ReFeR gets larger than
that without ReFeR, because g is close to Pav , as mentioned
above. Otherwise, the average total length is shortened.

UnivMon uses sketches for flow monitoring [2]. When
extended to multi-path routing, it requires all switches with
sketches to report the counters to the controller. We com-
pare the total length of messages between the switches and
controller in tasks of heavy item detection in networks. As
shown in Figure 8, in both categories of tasks where there are
relatively fewer items per switch (n ≤ m) and more items per
switch (n > m), ReFeR shortens the total length of messages
to detect all heavy items, either when we set a larger or smaller
selecting fraction (α = 1

3 and α = 5
24 respectively).

From the results of the evaluation, we recommend that
ReFeR be applied to networks where the average number of
items per switch and average value of each item are relatively
large. If g can be estimated in advance, it is better to apply
ReFeR if g usually satisfies g ≤ 0.8Pav or g ≥ 1.2Pav , like

where it is often required to monitor quite heavy items with g
much larger than 1.2Pav. Also, whether to adopt a smaller or
larger value of α should be decided according to the degree
of importance on accuracy and efficiency.

VII. CONCLUSION

We present the novel method ReFeR for reporting mea-
surements from switches to the controller in flow monitoring
tasks in software-defined networks, especially sufficient for
detecting heavy items. When the items within a network, like
source addresses, are mostly in a multi-path setting, we can
shorten the total length of the messages between the switches
and controller. Adopting different values of the selecting
fraction α results in different error rate and saving rate. While
in most cases an agreeable tradeoff can be reached. We plan to
adjust the chronological order of the report from each switch
to optimize the time cost of our approach in future work.

REFERENCES

[1] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Comput.commun.rev, vol. 34,
no. 2, pp. 39–53, 2004.

[2] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,
“One sketch to rule them all:rethinking network flow monitoring with
UnivMon,” in ACM SIGCOMM Conference, 2016.

[3] H. Zang and A. Nucci, “Traffic monitor deployment in IP networks,”
Computer Networks, vol. 53, no. 14, pp. 2491–2501, 2009.

[4] A. W. Jackson, W. Milliken, C. A. Santivez, M. Condell, and W. T.
Strayer, “A topological analysis of monitor placement,” in IEEE Inter-
national Symposium on Network Computing and Applications, 2007.

[5] K. Suh, Y. Guo, J. Kurose, and D. Towsley, “Locating network moni-
tors: complexity, heuristics, and coverage,” Computer Communications,
vol. 29, no. 10, pp. 1564–1577, 2006.

[6] Y. Zhang, “An adaptive flow counting method for anomaly detection
in sdn,” in ACM Conference on Emerging NETWORKING Experiments
and Technologies, 2013.

[7] C. W. Chang, G. Huang, B. Lin, and C. N. Chuah, “LEISURE: load-
balanced network-wide traffic measurement and monitor placement,”
IEEE Transactions on Parallel & Distributed Systems, vol. 26, no. 4,
pp. 1059–1070, 2015.

[8] O. E. Ferkouss, R. B. Ali, Y. Lemieux, and C. Omar, “Performance
model for mapping processing tasks to OpenFlow switch resources,” in
IEEE International Conference on Communications, 2012.

[9] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “CeMon: a cost-effective flow
monitoring system in software defined networks,” Computer Networks,
vol. 92, pp. 101–115, 2015.

[10] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess: a
low cost network monitoring framework for software defined networks,”
in Network Operations and Management Symposium, 2014.

[11] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic
monitoring in software defined networks,” in The Workshop on Hot
Topics in Software Defined NETWORKING, 2014.

[12] H. Xu, Z. Yu, C. Qian, X. Y. Li, and Z. Liu, “Minimizing flow statistics
collection cost of SDN using wildcard requests,” in INFOCOM 2017 -
IEEE Conference on Computer Communications, IEEE, 2017.

[13] X. Yang, B. Han, Z. Sun, and J. Huang, “SDN-based DDoS attack de-
tection with cross-plane collaboration and lightweight flow monitoring,”
in GLOBECOM, 2017.

[14] “Software defined traffic measurement with OpenSketch, author=Yu,
Minlan and Jose, Lavanya and Miao, Rui, booktitle=NSDI, year=2013,.”

[15] M. Moshref, M. Yu, A. Vahdat, and A. Vahdat, “Scream: sketch resource
allocation for software-defined measurement,” in ACM Conference on
Emerging NETWORKING Experiments and Technologies, 2015.

