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Abstract—Smart devices (e.g., smartphones or tablets) have
become an indispensable part of our daily lives for conducting
mobile payment transactions, and storing both corporate and
personal sensitive data. As a result, unauthorized access to smart
devices can result in a catastrophic security breach. Lock screen
provides the first line of defense against unauthorized access to
smart devices, where users typically use PIN, pattern of drawing,
or biometric to unlock their devices. Unfortunately, recent studies
have revealed that individual unlocking methods are insufficient
to prevent unauthorized access to smart devices.

In this paper, we aim to increase the security barrier of smart
device unlocking. We present the CP3, a combined unlocking
framework to achieve highly secure and usable authentication
for commodity smart devices. We address several challenges of
combing unlocking methods from different modalities, such as
the high reliability and low latency. We implement a prototype
of our approach based on the Android platform, which selects
the fingerPrint authentication, bluetooth transmission Power
authentication and facial Pattern verification as our typical
Combination for the secure unlocking. We have made the source
code of our implementation public1. Real-world experiments
demonstrate the effectiveness of our solution. CP3 achieves 88%
accuracy and 2.88s operation latency, which guarantees both
good user experience and high security level compared with
existing methods.

Index Terms—Smartphone authentication; Combined unlock-
ing; Fingerprint; Auxiliary authentication; Facial recognition

I. INTRODUCTION

Smart devices (e.g., smartphones or tablets) are becoming
attractive targets for attacks as they are increasingly storing a
tremendous amount of sensitive information [1]. Unauthorized
access to smart devices may lead to catastrophic security
breaches in the case these devices get lost or stolen. A
Pew study from 2017 reported that 72% of people in 17
advanced economies like North America and much of Europe
depend entirely on a smartphone to access online services
and information [2]. An attacker could steal usernames and
passwords used to access apps and online services extracted
from a smartphone, resulting in personal information disclo-
sure and legal consequences, etc. For example, numerous cases
of celebrities losing their phones with private photos and
secret information have been reported on the news. According
to a Gartner group forecast [3], the global mobile payment
applications will get over 450 million users and a transaction

1https://goo.gl/oUwSfZ

value of over US$721 billion by the end of the year 2017.
Adversaries that gain unauthorized access to smart devices
may jeopardize banking and payment information stored on
these devices, leading to significant financial losses.

Locking screen provides the first line of defense against
unauthorized access to the contents of a lost or stolen smart
device. Typically, it requires a secret code (e.g., PIN, drawing
a pattern, or biometric) to gain access to their devices [4].
Unfortunately, recent studies have revealed that individual
unlocking (i.e., authentication) methods are insufficient to
prevent unauthorized access to smart devices. The shoulder-
surfing attack can acquire the secret code directly by obser-
vations, especially for traditional texture passwords, PINs or
patterns [5]. Smudge attack succeeds in bypassing pattern-
drawing authentication, where the oily residues left on the
screen will be simply captured to guess the true secret code
[6]. Even the fingerprint authentication, which is the most
popular unlocking in shelved smartphones, can be broken by a
simulated finger model created by hackers in Chaos Computer
Club [7].

Biometrics-based unlocking (e.g., fingerprints, face [8],
voice or eye patterns [9, 10], gait and gesture behaviors
[11, 12]) has attracted considerable attention recently due to its
uniqueness and thus high immunity to the accurate replication
by adversaries [10]. However, like the heart-beating [13] or
breathing authentication [14], they are not practical for mobile
users. And authentications like Eyeveri [10] or key-stroke
based identification [15] have long operating latency to achieve
high accuracy.

To increase the security of individual unlocking, Saevanee et
al. proposed the combined authentication [16]. They designed
a multi-modal behavioral biometric authentication system to
overcome the weaknesses of individual protections. Despite
different concepts of the combined authentication [17, 18]
have been proposed in recent years, there still exist challenges
that hinder the practical usage of such techniques. Firstly,
selected methods for combination should be diverse. For
security enhancement, combined authentication should have
more than one input to defend against more attacks. Authors
in [18] chose different methods only based on one input.
The face, periocular and iris recognitions make use of one
image to get three results. The adversaries can break the
whole authentication simply by attacking this image. Secondly,



protection on smart devices should also continue when they
have been unlocked. To the best of our knowledge, there is
no combination can monitor devices after unlocking process.
Thirdly, average operation delay should be acceptable for
users. Former studies have ignored this practical requirement.
In [16], authors select behavior, keystroke and linguistic pro-
filing to combine pursuing the high accuracy. Nevertheless,
the operation on this authentication requires three behaviors
(walk, tap and speak), which will waste too much time on
input and make it unpractical for unlocking.

To address the above challenges, in this work, we introduce
a new unlocking design to increase the security barrier of smart
device authentication, named CP3: a Combined unlocking pro-
tection including fingerPrint authentication, Bluetooth trans-
mission Power authentication and facial Pattern verification.
The contributions from this work are summarized as follows:
• We propose a new combined unlocking framework to

achieve highly secure and usable authentication for com-
modity smart devices. Our design not only defends against
various unlocking attacks (including forgery attack, hacking
attack and snatch attack, etc), but also reduces the complex-
ity and latency on combined authentications.

• We exploit and present a new Bluetooth authentication
method making use of equipped devices for unlocking.
Transmission powers are modulated as the covert channel to
avoid wireless eavesdropping, and the background periodical
detection ensures that unauthorized users cannot access to
the device even after the legitimate user has unlocked it.

• We implement the CP3 prototype on Android platform and
make the source code of our implementation public. Real-
world experiments achieve 88% authentication accuracy and
2.88s operation latency, which prove the feasibility of our
solution.
The remaining part of the paper is organized as follows:

Section II surveys the related work. Section III describes the
attack model and design goals. Section IV and V introduce the
details of the design and implementation of CP3, respectively.
Section VI reports the evaluation results. Section VII provides
a security analysis of our approach and discusses in-depth
practical issues. Finally, Section VIII concludes the paper.

II. RELATED WORK

There are various unlocking methods to protect smart
devices, but these methods also bring new attacks. In this
section, we will discuss related work in two aspects: unlocking
schemes and attacks.

A. Unlocking Schemes

Generally, there are three unlocking schemes: traditional
authentication, biological authentication, and auxiliary authen-
tication. Developments have been made in each scheme, but
shortcomings still exist.

Traditional Authentication. It is considered as “what you
know” authentication scheme. Traditional authentication in-
cludes texture passwords, PIN codes and the Android Pattern,
which are most likely exposed to various adversaries [19].

XSide [19] exploits the front and the back of smartphones
to enter stroke-based passwords. This design can enhance
such authentications resistance to shoulder surfing. To avoid
taping both on the front and back, PassMatrix [20] leverages
a graphics-based login indicator. This indicator randomly
generates pass-images, to achieve higher security and easier
operation. While they enhance the security against the shoulder
surfing, the hardware overhead cannot be neglected and they
provide little resistance to the smudge attack.

Biological Authentication. It is considered as “what you
are” scheme. Biological authentication recognizes and un-
locks smart devices based on biological features, such as
fingerprints, face [8], voice or eye patterns [9, 10], gait
and gesture behaviors [11, 12]. Recent studies have shown
that they are vulnerable to imitating attacks [21]. To avoid
this, EyeVeri [10] captures eye-movements and extracts gaze
pattern for access. However, the use of EyeVeri is limited by
its unneglectable time delay, which can last more than 5 secs to
achieve better accuracy. Key-stroke based authentication [15]
exploits tapping strength on the screen which claims difficult
to be copied. More than 30 profiles should be manually
input which brings a complicated setting process. Additionally,
CardiacScan [13] provides a novel approach to implement
continuous heart-based user authentication. Also in [14], the
users’ breathing gestures are used as a biometric signature. But
such authentications are not practical for current smartphone
users.

Auxiliary Authentication. It is considered as “what you
have” scheme. Authentication based on auxiliary devices is
newly proposed in recent years. The paper [22] firstly studied
using a smartphone to control the lock/unlock status of other
smart devices, i.e, smart doors or smart watches, by Bluetooth
transmission. But the instructions transmitted are just put in the
plain text in Bluetooth packets, which will be hacked easily.
Besides, IAuth [23] records behavioral characteristics through
smart watches to verify the identity. But its training overhead
cannot be ignored.

B. Unlocking Attacks

With the development of unlocking methods, more new at-
tacks are also proposed. At first, shoulder surfing is considered
as the most direct way to break unlocking system [5]. The
paper [24] gives an improved WiFi influence attack, but this
attack is not stable, as the WiFi signals can also be disrupted by
other body movements except finger moving. A more accurate
video based attack is studied. It constructs pattern password
simply by analyzing the filmed finger footage [25, 26].

For auxiliary authentication, the typical attacks are hacking
attack and eavesdropping attack, which aim to take control
of any side of device or listen on the legitimate channel.
Especially for Bluetooth communication, hackers will adapt
malformed objects, which can control the victim’s device to
list the attackers’ device as the trusted pair device [27]. They
will also eavesdrop on a legitimate transmission to learn the
password in a second, which is a completely random 64 or
128-bit key [28].



For biological authentication, forgery attack [7] and imi-
tating attack [29] are widely used. The forgery attack is to
acquire secret codes from known clues, like a simulated finger
model generated from the fingerprints left somewhere else. It
has been used by Chaos Computer Club to break fingerprints
authentication [7]. And the imitating attack can mimic users’
manners including gait patterns, eye movement patterns, or
touch gestures [29].

From the above discussions, single authentication is not
secure enough against various attacks. Combining multiple
methods for higher performance is becoming another dimen-
sion for safely unlocking. In addition to PIN codes, the authors
in [17] collect physical status, i.e, acceleration, pressure, time
features when tapping. It assumes the consistent behaviors for
users which is difficult to achieve in reality. The multi-model
authentication proposed in [16] combines three biometrics:
voice, facial features, and signature, but the problem lies in
its unacceptable time delay. The framework in [18] makes an
improvement by allocating weight factors to biometrics. The
leverage on one image for three recognitions (face, periocular,
iris) leaves this image as the simple target to be compromised.
So, the low level of security and the bad user experience are
important barriers to the currently combined authentication,
which are also our motivations on this paper.

III. ATTACK MODEL AND DESIGN GOALS

In this section, we first describe the threat model of this
work. Then, we discuss the design objectives of CP3.

A. Attack Model

We consider that an adversary wants to access the sensitive
information and controls privacy-concerned applications on
a target device which is protected by CP3. We concern the
following six different attacks that may bypass mobile device
authentications:
• Brute-force attack: The adversary tries every possible

combination of passwords to bypass the secret code based
authentication [30].

• Fingerprint forgery attack: The adversary will get finger-
prints left on somewhere else and make a simulated model
to fool the fingerprint authentication [7].

• Facial forgery attack: The adversary uses a forged image
(i.e., using a previously used photo to substitute the true
facial patterns) to fool the face authentication [31].

• Snatch attack: This attack specially works when the device
has been unlocked. The adversary may directly snatch the
device when the owner is using it [32].

• Eavesdropping attack: The adversary will monitor the
transmission on legitimate channel all the time to get packets
that contain private information [28].

• Device hacking: The adversary tries to control the Blue-
tooth devices for executing designed commands [27].
We also assume that mobile applications on the target device

are trustworthy. It is free of spyware, password modified capa-
bility and algorithm vulnerability. For example, no password
attack application is pre-installed and the devices are not

equipped with spied hardware. In addition, we assume that
attackers do not know the exact combined methods before
attacking and cannot try infinitely without being perceived by
legitimate users.

B. Design Goals

Under the above attack model, we have three security goals:
• Defeat any individual unlocking attack that attempts to

circumvent the smart devices authentication.
• Improve the robustness against potential combined attacks

by increasing the difficulties that an attack could bypass the
authentication.

• Achieve continuous authentication of smart device users to
defend against snatch attacks.
To achieve our security goal without compromising the

authentications usability, we identify the following design
objectives for developing a secure and usable combined un-
locking scheme.
• Diversity: There should be more than one input for the

whole authentication. Unlike the paper [18] introduced in
section II-A, one input image will be the target for attackers
to simply bypass the authentication.

• Low latency: The simple combination of multiple authenti-
cations inevitably increases the operation time of authen-
tication. The authentication in [16] requires all walking,
tapping and speaking profiles, which causes an extremely
long latency. So a practical combined unlocking scheme
should be time-efficient and user-friendly.

• Continuous authentication: To the best of our knowledge,
existing combined authentications [16]-[18] do not protect
the smart devices after the unlocking process. In case of
snatch attacks, the continuous monitoring is necessary to
detect and react immediately to block attackers when using
devices.

IV. DESIGN OF CP3

In this section, we first introduce the rationale of combining
different unlocking methods in CP3. We then present the
design overview, followed by the detailed description of key
components, including the Bluetooth based auxiliary authen-
tication and facial pattern verification.

A. Design Choices

In CP3, we combine three different methods to prevent
unauthorized access to smart devices: 1) fingerprint authen-
tication; 2) Bluetooth based auxiliary authentication; and 3)
facial pattern based authentication. We make these design
choices due to their favorable features for practical deploy-
ment, including low overhead/cost, high accuracy, and short
latency. Firstly, all these three methods are readily available
on commodity smart devices. For example, mobile phones are
typically equipped with standard fingerprint sensors, Bluetooth
interfaces, and cameras. Thus, our approach will not incur
extra equipment overhead/cost. Secondly, these methods can
individually achieve high detection rates. For instances, deep
learning based fingerprint and facial recognition algorithms
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are recently shown to be quite reliable [8, 33]. In particular,
we exploit pre-processing techniques in facial recognition to
further reduce possible inaccuracies. For the Bluetooth based
authentication, we utilize the covert channel in Bluetooth
communication to improve its security. Thirdly, these methods
individually incur reasonable latency, which guarantees the
usability of our CP3. We seamlessly integrate them to achieve
a secure and usable unlocking scheme, where the the user-side
operation is simply touch the fingerprint sensor while watching
the screen. In Section VII, we report the accuracy and latency
of experimental results and demonstrate the feasibility of our
design.

B. System Overview

An unlocking scheme is normally composed of two stages:
setting stage (e.g., data collection and feature extraction) and
authentication stage, which are introduced as follows.

Fingerprint Setting System Fingerprint Setting

Auxiliary Device Binding

Power Token Setting

Bluetooth Initialization

Facial Record
Portrait Photo Uploading 

or Photographing

Fig. 2. Setting steps in CP3

1) Setting: When a user initiates CP3 at the first time, there
are three setting steps as shown in Fig. 2:
• Fingerprint settings: It first collects the user’s fingerprints,

e.g., sampling center and edge fingerprints for three times.
• Bluetooth initialization: It then asks the user to specify her

secret power token (e.g., k-bit key), which will be trans-
mitted via the Bluetooth covert channel from the auxiliary
device to the master device for authentication. We use the
standard Bluetooth low energy (BLE) mode. We refer the
authentication device as the master device, and the auxiliary
device (e.g., a smart watch) as a slave/peripheral device.

• Facial record setting: The user finally uploads at least one
clear portrait photo or takes a camera photo using the mobile
device (glass wearing is acceptable for authentication).

2) Authentication Process: Fig. 1 illustrates the authentica-
tion process in CP3. There are three parallelled threads in the
authentication process. Once the fingerprint sensor is triggered,
the camera captures the user’s facial images. Meanwhile, the
Bluetooth module begins to send authentication messages and
wait for feedback. For the thread 1, when capturing an input
from the fingerprint sensor, we compare the input fingerprint
with the training dataset. If their difference can be accepted,
CP3 returns True feedback on the first authentication, and
then passes the result to the final decision center.

For the thread 2, the master device modulates the trans-
mission power of Bluetooth broadcasts depending on the pre-
specified secret power token. This modulation is considered as
the convert channel to convey the token message. The auxiliary
device continuously scans the wireless channels to receive any
broadcasts from the master device. Received signal strength
of the broadcast messages will be analyzed to decode the
secret token. If the decoded token matches with the recorded
one in the setting stage, the True feedback for Bluetooth
authentication will be sent to the master device.

For the thread 3, the camera catches three frames of the
portrait photo as its input. Through our facial recognition
algorithms, two conditions are analyzed: (i) if the differences
among three captured frames are below an empirical threshold;
and (ii) if the captured frame matches the pre-stored pictures
in the setting phrase. If they are all satisfied, the facial
authentication returns the True feedback.

If three feedbacks are all True, the device will be unlocked.
Otherwise, the authentication process fails.

C. Secure Bluetooth Based Auxiliary Authentication

CP3 uses a covert channel to convey the secret token by
modulating the transmission power of Bluetooth messages,
which can hide the token deeply into normal traffics [34]. On
the master device, the specified transmission power sequence
(i.e., secret token) is represented as a k-bit key (e.g., a 5-bit
token 01001 means “low, high, low, low, high”), which will
be modulated on k broadcasts. Then, the feedback will be
received from the auxiliary paired device.

We use the Received Signal Strength Indication (RSSI) to
measure the received power at the auxiliary device. After
receiving k broadcast messages, the auxiliary device gets k



RSSI values (δ1, δ2, ..., δk). CP3 firstly calculates the arith-
metic mean δ of these k RSSIs. If δi > δ, it is then considered
as the high level (i.e., bit 1) and smaller ones are the low level
(i.e., bit 0). By comparing the final decoded result with the pre-
specified secret token, we obtain the authentication output.

Continuous Authentication Support: Our design inherently
supports continuous authentication and thus can defend against
the snatch attack. For example, the Bluetooth communication
module runs as a background thread, and periodical detects
the presence of the master device. Any failure can cause the
immediate locking on the screen.

D. Efficient Facial Pattern Based Authentication
The facial pattern verification process is composed of four

steps: 1) face detection, 2) position transformation, 3) face
encoding, and 4) the final classification.

Face detection. This step is mainly to get the basic structure
of a face from a photo. To avoid the influence of lightness, CP3

firstly changes the color photo to a gray-scale map. Histogram
of Oriented Gradients (HOG) is then used [35] to find the face
area passed to the next step. It focuses on every single pixel
and its surroundings. The gradients between them are denoted
by the directions of arrows, directing from a lighter pixel to
a darker one. In particular, to reduce the analysis delay, CP3

partitions the image into 16×16 small squares and selects the
“strongest” arrow which appears most to represent this square.
The HOG figure of a face can be presented by these arrows,
and then the face will be detected by comparing to the known
HOG patterns in the setting stage.

Position transformation. It is inevitable that the faces in
some photos are not towards the center. Making use of face
landmark estimation [36], the problem can be simplified to
locate 68 face landmarks on photos. No matter which direction
people look, the relative positions of eyes and mouths will
not change. Actually, the process of finding landmarks is a
regression process from appearance to the basic shape. So
the main purpose is to train a regressor using gradient tree
boosting algorithm.

We next transform these positions to the center. Instead of
fancy 3D wrap, which will introduce distortions to the changed
pictures, CP3 uses affine transformations including rotate,
scale and shear to preserve parallel lines. Such transformation
can improve the accuracy of the next measurement.

Face encoding. This step extracts features for deep learn-
ing based classification. We use a deep convolutional neural
network for model training and get the face encoding. For
instance, CP3 uses the OpenFace [37], a widely used tool for
deep learning based facial pattern classification, to get 128
measurements for our input images. It encodes a face image
to a series of numbers.

Final classification. CP3 uses linear SVM classifier [38] to
find any match in the database for authentication. This step
only takes milliseconds from input to classification output.

V. IMPLEMENTATION

To demonstrate the feasibility of our approach, we have im-
plemented a prototype, which uses multiple off-the-shelf tools

(a) Fingerprint set-
ting

(b) Bluetooth Setting

Camera View

(c) Facial setting

Fig. 3. CP3 user interfaces in the setting stage

and libraries on Android platform. Our prototype is developed
on Android Studio 2.3.3, where the compile sdk version is 21
and the build tool version is 25.0.0. In this section, we present
key implementation aspects in our prototype. We also provide
the source code of our implementation2.

A. CP3 Prototype

We use a mobile phone equipped with Android 6.0.1 system
(API 23) and Bluetooth 4.2 version as the master device.
For the auxiliary device, we use a smart watch equipped
with Android 5.1 system (API 22) and Bluetooth 4.0 version.
For the Bluetooth communication, the transmission range is
around 10 meters, and the channel band is ISM 2.4GHz. Its
transmission power has four levels: -18dBm, -6dBm, 0dBm
and 3dBm. In our prototype, we only use the low level (i.e.,
-18dBm) and the high level (i.e., 3dBm) to modulate broadcast
messages for the covert channel communication.

Fig. 3 shows the user interfaces for the fingerprint setting,
the secret power token setting, and the facial pattern setting,
respectively. In this prototype, the Bluetooth authentication
frequency is 3 minutes once and the secret power token is
a 5-bit key. In the authentication stage, once the fingerprint
sensor captures any input, the fingerprint, Bluetooth and facial
pattern recognition threads start in a parallel manner:
• Fingerprint. The implementation of fingerprint function is

based on the built-in fingerprint package (i.e., four classes
in FingerprintManager) provided by Android platform.

• Bluetooth. RepeatSendActivity is in charge of sending
modulated broadcasts and receiving the feedback from the
auxiliary device. We use timer-based scanning to implement
the continuous monitoring.

• Facial pattern recognition. We develop three activities for
the face authentication: FaceInitialization, FaceRecognition
and FaceVerification. The implementation of recognition is
based on the offline Face++ package and SVM package
provided by Android platform.

B. Permission Request

Considering the dynamic permission request from Android
6.0, we need the following permissions set by users (permis-
sions only need to be given once at the initial phrase of CP3):

2https://goo.gl/oUwSfZ
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• Positioning permission: Bluetooth communication concerns
about the location information. Only when such permission
is given, the Bluetooth module can work.

• Floating window permission: To shield HOME button, we
design the interfaces of our app on floating windows. But
Android adds this permission to prevent rogue software
occupying the screen maliciously. Thus, we need to ask
users to give this permission.

• Camera permission: The camera access permission should
be enabled so as to capture facial pictures.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CP3 com-
pared with three individual authentications. We ask 15 vol-
unteers, including 10 males and 5 females, to test each
authentication method for 20 attempts, including 10 attempts
for true positive test and another 10 attempts for false positive
test. Our experiments aim to answer the following questions:
• Does our approach incur a large authentication delay, com-

pared with other individual baseline authentications?
• How about the detection accuracy, including the true positive

rate and false positive rate?
• What are the impacts if we allow multiple attempts in the

authentication process?

A. CP3 vs. Individual Authentication

In this experiment, it allows only one unlocking attempt
per authentication. That is, if a user does not pass any of the
individual authentications among fingerprint, Bluetooth and
face, the authentication is failed. The true positive rate (TPR)
in this subsection is defined as the value that the number of the
true feedback for true inputs divided by the number of true
verification. The false positive rate (FPR) is also defined as
the value that the number of the true feedback for false inputs
(i.e., wrong fingerprints, wrong transmission power, and fake
facial images) divided by the number of false verification.

For fingerprint verification, each participant is required to
record one finger in the system. To test the TPR, each partici-
pant presses the same finger on the sensing area for 10 attempts
to see the result. Evaluations show that the recognition rate
achieves up to 96%. For the FPR, each participant presses a
different finger on the sensor. For instance, one records the

index fingerprint but presses his ring finger on the screen.
It shows that FPR is as long as 1.33%. We record the
authentication delay for each correct recognition. The average
authentication time (AAT) is around 0.8s.

For Bluetooth verification, participants are required to cus-
tomize their own transmission power and start to test the
unlocking results. The AAT of this method depends on the
distance, as shown in Fig. 4(a). Longer distance will increase
the transmission time on Bluetooth communication. According
to this, we ask volunteers to wear the watch on the left hand
and hold the phone in right hand, keeping an average distance
40 cm between two devices. The corresponding operation
time is 2.763s. From the test results, we get TPRb=91.33%.
Participants then modify the power sequence to a false one,
and 3 unlocking results come back, which makes FPRb=2%.
From our practical observation, participants cannot stay stable
during the test period. Any move of the hands will cause
the different RSSI value, which makes it possible to get the
opposite result.

For facial verification, participants are required to stare at
the camera for a while. The camera captures three following
frames right after initialization. To simulate the light intensity
in real life, several pictures in low light intensity are selected
for evaluation in the experiment. Results show that the facial
recognition achieves a TPR up to 91.1% and FPR about 2.2%.
The false positive samples have two characters: 1) same skin
color and 2) similar facial features. Especially, two volunteers
are the father and son relationship, which contribute most to
the FPR. The ATT is 2.55s, where 1.43s is for initialization
time plus frame capturing time and 1.12s for computation.

For the CP3 test, participants test on our implemented
prototype. From 150 collections, the combined TPRc=88%
and the FPRc=0%, where no pass for incorrect input in our
samples. The time delay measured is 2.88s.

As shown in Fig. 4(b) and Fig. 4(c), CP3 achieves com-
parable accuracy and latency as other individual baseline
authentications. It only incurs 12.9% larger delay than the
facial pattern based authentication. CP3 yields 88% overall
TPR, which demonstrates the feasibility of its practical de-
ployment. In the next section, we show that the TPR can be
further improved by allowing multiple unlocking attempts per
authentication, without compromising much of the AAT.
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Fig. 5. Authentication with Multiple Attempts

B. Authentication with Multiple Attempts

In this experiment, we evaluate the impact of unlocking
attempts on the authentication performance by allowing mul-
tiple unlocking attempts per authentication. We change the
unlocking attempts from one to three. The evaluation results
are shown in Fig. 5.

It is obvious that the accuracy of all these methods will
be improved by allowing multiple attempts, especially for
CP3. The increase rates for all these authentications from
one to three attempts are: 3.33% for fingerprint, 4.67% for
Bluetooth, 6.68% for face and 8.67% for CP3. On the latency
performance, with the increase of unlocking attempts, all
methods do not incur a large increase on the operating delay,
as most authentications can pass on one attempt. Take CP3

for example, it takes 2.88s, 3.04s, and 3.24s, which only has
12.5% increase rate from one to three attempts.

C. Energy Consumption

The main energy cost in CP3 comes from the continuous
Bluetooth monitoring. However, it only runs when the screen
is on. We test the energy consumption in two scenarios for
12 hours, where a smart device keeps playing music with and
without the Bluetooth authentication running on the backend.
Our experimental results reveal that Bluetooth based authenti-
cation consumes 2% higher of battery energy compared with
the case without Bluetooth authentication. This result depends
on the latest BLE mode, which reduces the broadcast channel
time of RF to save energy.

VII. DISCUSSION

In this section, we analyze the security guarantees of CP3,
and discuss practical considerations to improve our method.

A. Security Analysis

We discuss the security enhancement provided by CP3

against different exploitation techniques. We summarize se-
curity guarantees of different unlocking schemes in Table I.
In conclusion, our combined authentication has the high level
of security, which can defend against individual attacks, limit
combined attacks and the snatch attack.

Single attack defending. Generally, the single attack can
only have one true feedback for the whole authentication.
It cannot pass the final decision part in CP3 where three

TABLE I
SECURITY GUARANTEES OF DIFFERENT UNLOCKING SCHEMES

Methods
Brute-
force
attack

Finger-
print

forgery

Blue-
tooth

hacking

Facial
forgery

Snatch
attack

Com-
bined
attack

Finger N N Y Y N N
Bluetooth N Y N Y N N

Face N Y Y N N N
CP3 Y Y Y Y Y L

1 Y- enable to defend; N- unable to defend; L- defended by limited attempts

feedbacks should be all true. For fingerprint forgery and facial
forgery, it is possible to success but only for one protection.
The other two attacks, including device hacking and eaves-
dropping attack, will not success depending on convert channel
exploitation. Despite the adversary attempts to acquire the
secret token or modify the MAC address, it cannot catch the
transmission power deeply hidden into normal traffics and pass
the comparison process on pair device.

Combined attacks and brute-force attack limitation.
Brute-force attack has low possibility of success proved by our
FPR test results in section VI. As the assumption proposed
in section III-A, it is extremely challenging to choose the
correct attacks because of the undetectable of convert channel.
Attackers also must collect the fingerprint and the facial photos
for owners without being sensed, which is a difficult project.

Snatch attack prevention. The simple way to break the
system is snatch attack. CP3 has a periodical detection to
prevent this attack. Only if attackers snatch both the main and
the pair device, can he get into the system at the first time.
But the second time he wakes up the screen, there are still
three “doors” waiting for him.

B. Practical Considerations

Availability or DoS attacks on auxiliary devices. It
is possible that the auxiliary device is out of battery or
being compromised to shut down intentionally rather than
accidentally. In this case, the Bluetooth authentication should
be automatically disabled to ensure the normal operation. A
possible solution is to let users flexibly enable or disable this
authentication in the setting stage. Increasing the resilience of
auxiliary authentication will be an interesting research topic.
We leave it as an important part of our future work.



Authentication performance. As tested in Section VI,
allowing multiple attempts in authentication improves the
accuracy of CP3. However, it also increases the FPR. The
tradeoff between TPR and FPR should be considered when
choosing the optimal unlocking times. As the CPU speed
improves, authentication time is also expected to be further
reduced where the analysis on three inputs can be performed
more quickly.

Light impact on facial verification. Our facial verification
changes the color images to gray ones to reduce the influence
on light condition. But it will not work when the surroundings
is totally dark, even the screen light is enabled. In such
condition, we can improve CP3 with context awareness, i.e.,
automatically opening flashlight in front.

Applicability to diverse smart devices. In Section VI, we
have evaluated CP3 using the typical Android smartphone and
smart watch. It is expected to apply CP3 on different platforms,
such as iOS or Windows platforms etc.

VIII. CONCLUSION

In this paper, we presented the CP3, a new authentica-
tion solution that combines unlocking methods from different
modalities. We introduced the combined unlocking framework
and addressed several challenges to achieve highly secure
and usable authentication for commodity smart devices, which
seamlessly integrate fingerprint, Bluetooth and facial verifica-
tions. In particular, we proposed a new Bluetooth based aux-
iliary authentication method, which modulates transmission
power as a convert channel to avoid wireless eavesdropping.
A prototype of CP3 have been implemented on Android
platforms and the source code is on public. Real-world experi-
ments with 15 participants demonstrate the effectiveness of our
solution. CP3 achieves 88% detection accuracy with very low
false negatives and 2.88s operation latency, which guarantees
both good user experience and high security level compared
with existing methods. In the future, we will investigate the
mutual authentication for smart devices, and address the DoS
attacks on auxiliary authentication.
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