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AbstrAct

Density information plays an important role 
in intelligent transportation systems for not only 
traffic control but also information sharing. Exist-
ing products have been able to provide coarse-
grained density services. For example, Google 
Maps can illustrate the traffic conditions by differ-
ent colors via Internet connection. Vehicle-to-ve-
hicle wireless communications can locally acquire 
the density by information exchange and neigh-
bor counting. However, either the Internet access 
or one-by-one counting leads to a sub-second-lev-
el delay, which cannot satisfy real-time vehicular 
applications such as autonomous navigation and 
data dissemination. To speed up density acqui-
sition, we propose an RDD system. Leveraging 
the frequency resource, RDD divides the wire-
less channel into fine-grained subchannels and 
detects the neighbors in a parallel manner. We 
establish a testbed using software defined radios 
and experimentally validate RDD. Moreover, to 
evaluate RDD in high-density scenarios, exten-
sive simulations are conducted based on real col-
lected data. Both the experiment and simulation 
results demonstrate that RDD achieves 100 ms 
level density detection, while the state-of-the-art 
time-domain acceleration method is at the 10 ms 
level.

IntroductIon
Smart and connected vehicles [1, 2] are valuable 
for safe and efficient transportation. To enhance 
the connectivity, various wireless protocols have 
been applied into connected vehicles such as 
WiFi/LTE [3], millimeter-wave [4], and visible light 
communications [5]. Especially, 5.9 GHz spec-
trum is licensed to support IEEE 802.11p-based 
dedicated short-range communication (DSRC) 
[6]. The scale of connected vehicles is poised to 
increase dramatically.

Plenty of emerging applications are envisioned 
for connected vehicles such as traffic control [3], 
autonomous navigation [4], and satellite-terrestrial 
data forwarding [7]. Most of these applications 
rely heavily on real-time density. For example, an 
autonomous vehicle can “see” line-of-sight vehi-
cles by lidar and camera to avoid crashing. How-
ever, non-line-of-sight density is further needed for 
path planning.

A great number of density detection methods 
have been investigated in both the academic 

and industrial communities. For example, driv-
ers are used to checking Google Map to get 
road density via different colors, in which green 
presents the clear way and red indicates conges-
tion. However, Internet access causes a second 
level of delay. Dispensing with the Internet, vehi-
cle-to-vehicle communication systems [8] can 
get the local density by identifying and count-
ing neighbors through information exchange. 
However, one-by-one identification may trigger 
enormous wireless collisions and incomplete 
detection, especially in high-density and high-
speed cases.

Motivated by further accelerating density 
detection, we propose a novel real-time density 
detection (RDD) system for connected vehicles 
by fully exploiting the wireless spectrum. Using 
DSRC as an example, the core design of RDD 
is to divide a 10 MHz channel into fine-grained 
subchannels and detect the number of neigh-
bors in a parallel manner. In RDD, after receiv-
ing a request from a detector, every neighbor 
divides the channel into multiple subchannels 
and randomly chooses one subchannel to feed 
back simultaneously. The detector estimates the 
density by analyzing the overlapped feedback 
in the frequency domain. Although the concept 
of RDD sounds straightforward, it is not easy 
to implement in practice because of three chal-
lenges.

It is challenging to determine the number 
of subchannels without knowledge of density. 
On one hand, more subchannels can enhance 
the parallel capability. On the other hand, too 
many subchannels may lead to inter-subchan-
nel interference and decrease the estimation 
accuracy. In addition, factors such as frequen-
cy offset and communication range also affect 
the subchannel division. To this end, we initial-
ize a divisor by theoretical computation and 
then adaptively tune it to approach the opti-
mum.

It is challenging to accurately recognize the 
feedback because of co-channel interference. 
When detection is processing, concurrent DSRC 
transmission in the same channel possibly inter-
feres with RDD feedback. To address this chal-
lenge, we design a filter according to the different 
numbers of subchannels in proposed RDD (fine-
grained subchannels) and in standard DSRC. This 
filter can elaborately separate RDD feedback and 
DSRC transmission.
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The RDD design is an ingenious combination 
of several techniques including fine-grained chan-
nel division, interference separation, and density 
estimation. Integrating them effectively is challeng-
ing, and has never been examined before. We 
implement the RDD prototype by building a four-
node testbed. The feasibility of the RDD system 
is preliminarily validated by outdoor experiments.

The major contributions of this work are two-
fold:
• We study the problem of real-time density 

detection for connected vehicles. To solve 
this problem, we design a novel RDD sys-
tem, which is a local density estimation 
framework based on vehicle-to-vehicle com-
munications. The core of RDD is fine-grained 
frequency division to reduce the time cost.

• We implement the RDD system on univer-
sal software radio peripherals (USRPs) and 
establish a four-node testbed. Extensive 
experiments and simulations are conducted 
to evaluate its performance. Performance 
results demonstrate that RDD reduces the 
estimation duration from the 10 ms level to 
the 100 ms level with competitive accuracy.

relAted Work
We divide existing density acquisition methods 
into four categories and briefly summarize them 
in Table 1.

Mathematical models formulate the movement 
of vehicles and estimate the density by these the-
oretical models. For example, a Poisson traffic 
model [9] can present the arrival/departure rates 
of vehicles, and historical data mining can predict 
future density. Although the theoretical method is 
statistically significant and has no communication 
delay, its results are not accurate enough for prac-
tical service.

Targeting the practical, global density acqui-
sition has become a commercial service. Goo-
gle Maps is currently a popular tool to illustrate 
coarse road density by red, yellow, and green. 
However, infrastructures and Internet access are 
required in this category, resulting in a second 
level of delay.

Independent from the Internet, local density 
detection leverages on-vehicle communication 
systems to identify neighbors one by one. In 
most vehicular applications, local density is ade-
quate because faraway density is usually useless 
for immediate operation. Nevertheless, one-by-
one identification such as neighbor discovery 
[10] may trigger enormous wireless collisions and 
incomplete detection, especially in high-density 
and high-speed cases.

Since ID information is not necessary for den-
sity detection, time-domain acceleration gives up 
the long ID messages and requires just 1-bit feed-
back from every neighbor to estimate the cardi-
nality, such as FSA [11], achieving 10 ms level 
density estimation. Although methods in this cate-
gory fully exploit the time resource, the frequency 
resource is totally ignored, where every DSRC 
channel has 10 MHz bandwidth.

Problem stAtement
The concept of local density in connected vehi-
cles and our motivation for studying real-time den-
sity detection are introduced in this section.

locAl densIty detectIon

This work mainly concerns local density detec-
tion, where local density is defined as the number 
of vehicles within a custom range. Compared to 
global density, local density plays a more import-
ant role in emerging vehicular applications, espe-
cially in data sharing applications. To quickly 
detect local density, vehicle-to-vehicle communi-
cation such as DSRC is the most appropriate tech-
nique, which avoids the time-consuming Internet 
access.

Then we give three definitions in this problem:
• The detector is present because the vehicle 

needs to know the local density.
• Local density is formulated as N/pR2, where 

N is the number of neighbors and R is the 
custom range. The custom range is set by 
the detector according to the application 
requirement. However, a too long R is use-
less because the faraway density is irrelevant 
to immediate operation. In this work, we set 
the range between 0 to 300 m according 
to field test of DSRC communication range 
[12]. Moreover, cooperative communication 
[13] can achieve a longer range in vehicular 
networks if needed.

• The neighbors are the vehicles in the custom 
range of the detector.

motIvAtIon

Two motivations inspire us to concentrate on the 
problem of real-time density detection.

First, since vehicles are highly dynamic, the 
functionalities of emerging vehicular applications 
fundamentally rely on real-time density informa-
tion. For example, [14] proposes the power con-
trol method using real-time density to balance 
the coverage and communication quality. More 
applications using real-time density can be found 
in autonomous navigation [4] and data dissemi-
nation [15].

Second, real-time density detection can free 
more wireless resources. Large amounts of vehic-
ular applications such as transportation safety, 
advertisement, and entertainment drastically con-
strain the time resource of DSRC, especially in 
high-density scenarios. In order to avoid channel 
saturation and reduce collisions, it is significant to 
efficiently exploit the wireless channel.

desIgn of rdd system
The design overview of the RDD system includes 
two major parts: detector and neighbors. The 
detector is in charge of the custom range setting 
and fine-grained subchannel division, while every 
neighbor randomly chooses one subchannel to 

Table 1. Existing density detection methods.

Category Representation Limitation Time cost

Mathematical model Poisson traffic model [9] Inaccurate in practice N/A

Global density acquisition Google Map Internet access  1 s

Local density detection
Neighbor identification 
one by one [10]

Collision avoidance  100 ms

Time-domain acceleration
Frame slotted ALOHA 
(FSA) [11]

Underuse the bandwidth  10 ms
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send the shortest beacon as feedback simultane-
ously. As a result, the detector can recognize the 
concurrent feedbacks and estimate the local den-
sity very quickly. The architecture of the RDD sys-
tem is illustrated in Fig. 1. Four key components in 
RDD are described briefly as follows.

Parameter setting determines the custom range 
and the divisor of frequency division. The custom 
range is set according to the vehicular applica-
tions. The divisor is initialized by the historical 
density and tuned by the latest density estimation.

Instant Interaction Protocol (IIP) establishes the 
interaction rules bridging the detector and the 
neighbors. The interaction procedure consists of 
five modules (the dashed line area shown in Fig. 1), 
which generate simple one-return interaction. First, 
the detector broadcasts its detection message to 
trigger this procedure. After receiving the message, 
every neighbor generates feedback by randomly 
choosing one subchannel and immediately sends 
this feedback. All neighbors execute the same oper-
ation so that their feedback overlaps at the detector.

Feedback recognition translates the feedback 
into a bitstream by orthogonal frequency-division 
multiplexing (OFDM), whose essence is to get the 
bit 0 or 1 from every subchannel by fast Fourier 
transform (FFT). Particularly, if co-channel inter-
ference is observed, a carefully designed filter will 
separate the feedback from the interference.

Density estimation estimates the number of 
neighbors based on the recognized bitstream, 
and thus obtains the local density. If the bitstream 
is insufficient to accurately estimate, this com-
ponent will tune the parameter and trigger the 
detection again.

Benefiting from these components, RDD can 
significantly reduce the time consumption on 
local density acquisition compared to the existing 
methods in Table 1:
• There is only one-return interaction between 

the detector and neighbors. All neighbors 
send feedback concurrently without any 
time consumption in collision avoidance or 
retransmission.

• The detector just recognizes the number of 
beacons in fine-grained subchannels instead 
of decoding information from packets. 
Hence, the feedback can be the shortest 
beacon without any meaningful information.

• Besides the communication component IIP, 
all computing components in RDD are of 
low computational complexity.
Next, we detail four components one by one.

PArAmeter settIng
Two parameters, the custom range R and the divi-
sor m, should be set in this component.

The custom range is set according to the 
requirements of vehicular applications. For exam-
ple, we suggest a relative long range R = 300 m 
for traffic control and a short range R = 100 m for 
data sharing between autonomous vehicles. Fur-
thermore, to know the multi-level local densities, 
we can execute multiple detections with different 
ranges such as R = 50, 100, 200, ….

The divisor is the parameter to determine the 
number of subchannels in the frequency domain. 
Too few subchannels are inadequate to afford 
concurrent feedback from large numbers of 
neighbors, while too many subchannels may incur 
inter-subchannel interference, resulting in inaccu-
rate density estimation. Hence, it is nontrivial to 
set this divisor:
• Without the pre-knowledge of real-time 

neighbors, the divisor is initialized by the 
average of historical divisors at the same 
location and same hour in different days. 
This setting is inspired by the strong spa-
tio-temporal stability of traffic densities.

• When the density estimation component 
considers the divisor too small or too large, 
the detection will be triggered again, and the 
divisor will be double or half.

Note that the number of subchannels cannot be 
infinite. The setting of the divisor should consider 
practical factors such as noise, multi-path, and 
frequency offset.

InstAnt InterActIon Protocol

The objective of IIP is to build the interaction 
between detector and neighbors while minimizing 
the time cost. Before detailing the IIP design, we 
introduce the channel division in standard DSRC 
and derive the shortest duration of feedback, 
which are the theoretical foundation of IIP.

Every channel in DSRC [6] is 10 MHz and is 
divided into 64 subchannels by default. The left-
most six and rightmost six subchannels stay empty 
(set as 0) for a guard interval. In addition, four 
subchannels are set as pilots. The other 48 sub-
channels can carry modulated data. The duration 
of the minimal transmission unit (i.e., an OFDM 
symbol) is 8 ms. A DSRC receiver receives a time 
domain packet and obtains the data in subchan-
nels by an OFDM module.

In IIP design, the duration of every feedback 
should be minimized, including two parts. One 
is the necessary duration for recognition, and the 
other is the additional duration against different 
propagation delay, as shown in Fig. 2.

The necessary duration should guarantee 
enough sampling points for signal recognition 
according to Nyquist’s theorem. The additional 
duration is adopted because the farthest neighbor 
and the closest neighbor may be at a distance of 
R, leading to different propagation delay to the 
detector. To guarantee that the overlapped part 
of all feedback is larger than the necessary dura-
tion, the additional duration should be added.

Figure 1. Architecture of the RDD system.
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Based on the above analysis, IIP works as fol-
lows:
• The detector sends the detection message 

with the tuple including the divisor, the given 
channel, the real-time location of the detec-
tor, and the custom range R.

• Once receiving the detection message, every 
neighbor extracts the parameters from the 
tuple. Then the feedback generation mod-
ule starts to prepare the feedback including 
three steps: 

 – Feedback or not: If this neighbor is out of 
the custom range of the detector, feedback 
is unnecessary; otherwise, feedback is need-
ed. 

 – Beacon generation: The channel is divid-
ed into m subchannels. The feedback is a 
beacon in a randomly selected subchannel, 
that is, a baseband sine signal attaching no 
information, as shown in Fig. 2.

 – Feedback duration: The duration is set as 
the foundation analysis. All neighbors con-
currently send their feedback, which over-
laps in the air.

• The detector receives the overlapped feed-
back as one signal and extracts the neces-
sary part, which contains beacons from all 
neighbors. The overlapped signal in the nec-
essary part is delivered to the next compo-
nent for feedback recognition.

feedbAck recognItIon

The overlapped signal is translated into a bit-
stream by this feedback recognition component. 
Similar to the OFDM in standard DSRC, FFT 
changes the time-domain signal into the frequen-
cy domain. Then every subchannel is scanned: 
an empty subchannelthat has no feedback is rec-
ognized as a bit 0, and a non-empty subchannel 
that has one or more instances of feedback is 
recognized as bit 1. All recognized bits form an 
m-length bitstream.

The feedback may suffer from co-channel 
interference. Such interference is attributed to 
other DSRC transmissions in the same chan-
nel. We address this problem by designing a 
filter that separates the feedback and the DSRC 
packet based on their different numbers of sub-
channels.

We introduce our solution for co-channel 
interference by a typical example. Assume RDD 
sets a 256-subchannel division and recall that the 
standard DSRC has 64 subchannels. The detector 
receives a fused signal combined by RDD feed-
back and conventional data packets.

Executing FFT on this fused signal, we can 
observe two obvious peaks at 64 Hz and 256 
Hz due to their numbers of subchannels. Using 
a high pass filter, we can separate them and get 
the filtered signal, which is nearly the same as the 
original feedback.

densIty estImAtIon

The main goal of this component is to compute 
the local density based on the recognized bit-
stream. Several existing estimators have been 
studied in time domain acceleration that build the 
model between the length of stream m and the 
number of entities to be estimated. These estima-
tors can also be applied in our frequency-divided 

scenarios. For example, the classic UPE [11] esti-
mator can provide fast and accurate estimation of 
N using the 0–1 distribution in the stream. With 
the number of neighbors N, the local density can 
be calculated.

Furthermore, this component can adap-
tively tune the divisor. If all bits in the recog-
nized stream are bit 1s, we consider the recent 
divisor too small to estimate the number of 
neighbors. Thus, this component will double 
the divisor and trigger a new detection. On the 
contrary, if most bits are 0s in the stream, this 
component will halve the divisor to reduce the 
recognition error.

ImPlementAtIon
We build a four-node testbed and implement 
RDD in this testbed. Every node consists of a 
USRP B210, a laptop, a smartphone, and an iRo-
bot, as shown in Fig. 3.

USRP B210: The IIP component is implement-
ed on USRP B210. We select USRP B210 as our 
hardware because it supports transmission fre-
quency from 70 MHz to 6 GHz, which covers 
the 5.9 GHz DSRC spectrum. Also, B210 utilizes 
the fast USB 3.0 port, so the laptop can imme-
diately dump the signals for subsequent compu-
tation. 15 dBi antennas are equipped in B210 to 
enhance the communication range. In addition, 
we adopt GnuRadio as our development envi-
ronment and the open project gr-ieee802-11 as 
the physical layer of IEEE 802.11p. Based on such 
hardware and software, we develop IIP as intro-
duced above.

Laptop: On one hand, the laptop takes on 
the major computation tasks. The components, 
including parameter setting, feedback recogni-
tion, and density estimation, are developed and 
executed on the laptop. On the other hand, the 
laptop is also a junction that connects the USRP 
and the smartphone.

Smartphone: Since location information 
is needed in RDD to make the feedback deci-
sion and to compute the additional duration, 
the smartphone is used to provide real-time GPS 
information.

iRobot: An iRobot carries all the other devic-
es and moves in a random manner to imitate a 
mobile vehicle.

PerformAnce evAluAtIon
Using the testbed, we conduct experiments and 
real-data-driven simulations to verify the feasibility 
and evaluate the performance of the proposed 
RDD system.

Figure 2. The duration of feedback includes the effective part and the addition-
al part. When the custom range R = 300 m, the additional part is 2R/(3 × 
108) = 2 ms.
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exPerIment settIng

In the experiments, the center frequency of the 
selected channel is set as 5.9 GHz, which is Chan-
nel 180 in DSRC. The bandwidth of this channel 
is 10 MHz according to the DSRC standard. The 
data rate is set as 3Mb/s [6]. The frequency stabil-
ity is 2 ppm provided by USRP B210. The trans-
mission power is set as 10 dBm [12]. In addition, 
the major parameters are tested in different cases 
to understand their effects. For example, we test 
different numbers of subchannels at m = 64, 128, 
256, and 512 and different custom ranges at R = 
100, 200, and 300 m.

In the four-node testbed, one node acts as the 
detector, and the other three nodes act as either 
neighbors or interferers depending on their dis-
tance to the detector. All iRobots randomly move 
in the campus area, so three scenarios can be 
evaluated, that is, the number of neighbors at N = 
1, 2, 3. For instance, a Google Earth snapshot of 
our experiment is shown in Fig. 3. In this scenario, 
the custom range is R = 100 m. Two nodes are 

within the custom range, so they are neighbors. 
However, one node is outside the 100 m range. 
This node keeps sending DSRC packets to inter-
fere with the RDD feedback.

All request tuples are logged in the detector. 
All feedback, interference information, and loca-
tion information are logged in neighbor/interferer 
nodes. Totally, more than 500,000 detection mes-
sages, 1,000,000 feedback signals, and 100,000 
interference packets are logged in our experi-
ments. These logs are our ground truth to assess 
the RDD results.

exPerIment results

Feasibility of RDD: We show the estimation 
accuracy of RDD in Fig. 4 under different set-
tings such as N = 1, 2, 3 and m = 64, 128, 256. 
From Fig. 4, we find that except for m = 64, the 
estimated numbers Ñ (Y-axis) are always close to 
the actual numbers of neighbors N (X-axis), while 
the standard deviations (error bar) are extremely 
tiny compared to the actual numbers. This result 
demonstrates the feasibility of RDD in low-densi-
ty scenarios. Moreover, the exception case hap-
pens at m = 64. This exception comes from the 
interference of DSRC packets, whose number 
of subchannels is also 64. When both RDD and 
DSRC adopt 64 subchannels, the filter design fails 
to separate the DSRC packet and the RDD feed-
back. Hence, the setting of m = 64 is unavailable 
in RDD.

sImulAtIon settIngs

Since our testbed has only four nodes, the exper-
iments of RDD are only conducted in low-density 
scenarios. In order to evaluate the RDD perfor-
mance in high-density scenarios, we conduct 
extensive real-data-driven simulations.

Data synthetic: Based on the feedback and 
interference packets logged in our experiments, 
we synthesize the data for simulations. In order 
to imitate high-density scenarios, we superpose 
multiple time-domain feedback signals into one, 
which is equivalent to multiple neighbors respond-
ing simultaneously. Consequently, we have var-
ious numbers of neighbors N ranging from 1 to 
1000.

We comparatively study two methods.
Frame Slotted ALOHA [11]: FSA uses time-di-

vided slots to collect the bitstream and the UPE 
estimator to estimate the number of neighbors.

Real-Time Density Detection: RDD obtains 
the bitstream through the frequency-divided sub-
channels and adopts the UPE estimator for densi-
ty estimation.

The default settings of RDD include: the num-
ber of subchannels is set as m = 256, and the 
duration of feedback is set as 64 ms. In addition, 
the custom range is set as R = 300m [12].

sImulAtIon results

Estimation accuracy is one of the most important 
metrics for density detection because accurate 
density information can lead to the right decision 
in vehicular applications. Since RDD adopts 256 
subchannels by default, for fairness, feedback in 
FSA is assigned 256 time slots. In this simulation, 
we test the cases in which the number of num-
bers are from N = 100 to 1000. Their average 
estimation results and corresponding standard 

Figure 3. Testbed node and experiment scenario.

Figure 4. Performance of accuracy in the low-density experiment scenario (top) 
and high-density simulation scenario (bottom).
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deviations are plotted in Fig. 4. First, we observe 
that RDD achieves accurate estimation in all 
cases, where its average estimation results are 
always close to the ground truth. However, FSA 
cannot estimate when N > 800 due to the limita-
tion of the UPE estimator. Second, we observe 
the interesting variation trend of standard devi-
ations. When N is small, the standard deviations 
of FSA is a little better than that of RDD. When 
N is big, RDD is better than FSA. The transition 
happens at N = 600. Combining the average esti-
mation and standard deviation, RDD outperforms 
FSA in terms of estimation accuracy.

Time cost is the main goal pursued in this 
work. To evaluate the performance of time cost, 
we show the comparison results of FSA and RDD 
in Fig. 5. In this simulation, for FSA, we plot the 
minimal time costs needed for density estimation, 
while for RDD, we plot the average time cost 
with the initial number of subchannels m set as 
128. We observe that the increase of FSA is linear 
because the UPE estimator requires more slots for 
a larger amount of estimation. In contrast, benefit-
ing from the frequency-divided subchannels, RDD 
achieves a time-saving estimation, which stays at 
the 100 ms level with relatively small increase 
with the number of neighbors. The small increases 
are generated by the divisor tuning and multiple 
detections. This result demonstrates that RDD can 
detect the density within a very short duration, 
approximating real time.

conclusIon
Motivated by real-time traffic control and data 
forwarding in connected vehicles, we present a 
novel RDD system to accelerate the local density 
detection. Different from existing time division 
concepts, RDD introduces a parallel detection of 
neighboring vehicles via frequency division, large-
ly reducing the time cost. In addition, RDD is fully 
distributed, which does not require any roadside 
infrastructure. We implement the RDD system in 
USRPs and cover several practical design issues. 
The RDD system achieves 100-ms-level density 
detection with high accuracy.

We believe RDD has wider implications for 
density detection than explored in this work. 
Many issues need to be further investigated. For 
example, we will study the local density in dif-
ferent directions, which can benefit smart path 
planning. Second, based on RDD, we can design 
more aggressive upper-layer protocols to enhance 
the time-critical applications in connected vehi-
cles. Moreover, RDD can be extended to other 
OFDM-based mobile networks such as fifth gen-
eration and narrowband Internet of Things.
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