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Abstract—Apache Spark is an efficient distributed com-
puting framework for big data processing. It supports
in-memory computation of RDDs (Resilient Distributed
Dataset) and provides a provision of reusability, fault
tolerance, and real-time stream processing. However, the
tasks in Spark framework are only performed on CPU. The
low degree of parallelism and power inefficiency of CPU
may restrict the performance and scalability of the cluster.
In order to improve the performance and power dissipation
of the data center, heterogeneous accelerators such as
FPGA, GPU, MIC (Many Integrated Core) exhibit more
efficient performance than the general-purpose processor in
big data processing. In this work, we propose a framework
to integrate FPGA accelerator into a Spark cluster. We use
FPGA to accelerate the Spark tasks developed with Python,
and in this way, the main computing load is performed on
FPGA instead of CPU. We illustrate the performance of the
FPGA based Spark framework with a case study of 2D-
FFT algorithm acceleration. The results showed that FPGA
based Spark implementation acquires 1.79x speedup than
CPU implementation.

Keywords: Spark, Distributed Computing, Python, F-
PGA, Heterogeneous Computing, OpenCL, High Perfor-
mance, Power Efficiency

I. INTRODUCTION

As the rapid increasing of data size in recent years,

it raises the challenge of processing these huge amount

of data in the data center with high performance and

acceptable power dissipation. MapReduce model [1] [2]

provides an efficient data flow engine to improve the

performance of data processing in cluster environment.

The popular MapReduce based frameworks such as

Apache spark [3], Apache Hadoop [4] are applied in

many distributed computing scenarios. Spark is an open-

source distributed framework for big data processing,

and it supports in-memory computation of RDDs and

provides a provision of reusability, fault tolerance, real-

time stream processing [5]. Hadoop is mainly used as

the distributed file system.

In Spark application, the tasks are only performed

on CPU. The low degree of parallelism and power

inefficiency may restrict the performance and scalability

of the cluster. Heterogeneous accelerators such as FPGA,

GPU, MIC exhibit more efficient performance in big

data processing than the general-purpose processor. If we

integrate these heterogeneous accelerators to the original

Spark framework, we can dramatically enhance the per-

formance of the cluster. Due to the customized hardware

architecture of FPGA, it exhibits higher energy efficiency

than the fixed architecture such as CPU, GPU, and

MIC. In this paper we use FPGA as the heterogeneous

accelerator.

Spark applications can be developed with Scala, Java,

and Python programming language. Python has been

quickly gained popularity over the past few years, and it

is used from testing microchips to building video games

with the PyGame library [6]. In this work, we explore

the integration of FPGA accelerator to the original Spark

framework to offload the computing tasks which are

programmed by Python from CPU to FPGA. The main

contributions are as follows.

- The methodology of integrating FPGA accelerator

to the Spark framework. We use Xilinx develop-

ment tool SDAccel and Python class ctypes to

address the gaps between FPGA and Python call.

Then we utilize RDD method pipe to connect the

Spark application with Python function.

- A case study of 2D-FFT algorithm acceleration on
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FPGA based Spark framework. We implement 2D-

FFT algorithm on FPGA and integrate it to the

Spark framework. We acquire about 1.79x speedup

than CPU implementation.

The organization of the rest of this paper is as follows.

Section II introduces background and related works. Sec-

tion III presents the methodology of integrating FPGA

accelerator to Spark framework. Section IV illustrates

the performance of FPGA based Spark framework with

a 2D-FFT algorithm acceleration case. We draw a con-

clusion in Section V.

II. BACKGROUND AND RELATED WORKS

A. Apache Spark

Apache Spark is an open-source cluster computing

framework for big data processing. The first system was

developed by the group of the University of California,

Berkeley, and it gained incubator status in Apache very

quickly in June 2013 [7]. Spark overtook MapReduce

and Hadoop and emerged as the next generation big data

processing engine. Spark supports in-memory computing

and enables very fast data query operation compared

to Hadoop which is the disk-based engine [5]. Spark

maintains the fault tolerance and linear scalability of

MapReduce, and it extends a data-sharing abstraction

called RDD (Resilient Distributed Data sets). Besides,

Spark provides rich API in Scala, Java, Python, so it

is easier and convenient to program. Spark also provide

many high level tools shown in Fig. 1, such as Spark

SQL, MLlib library for machine learning, GraphX for

graph processing, Spark Streaming for stream process-

ing, and so on [8].

B. FFT Algorithm

FFT (Fast Fourier Transformation) is widely applied

in speech processing, graphic processing and software

ratio [9], [10], is a high-efficiency implementation of

DFT (Discrete Fourier Transform). In DFT, the sequence

X(k) (where k = 0, 1, ..., N-1) is calculated by input

sequence x[n] (where n = 0, 1, ..., N-1), it is defined in

Eq. 1,

X(k) =

N−1∑

n=0

(x[n]Wnk
N ) (1)

phase factor Wnk
N is also called twiddlefactor, it is

defined in Eq. 2.

Wnk
N = e−jnk 2π

N (2)

Fig. 1: Apache Spark software stack

FFT is based on decomposing the DFT of N
length sequence into successively small DFTs. Algo-
rithm that decompose time series x[n] into successively
sub-sequences is called decimation-in-time algorithm.
For sequence X[k] decomposition, it is decimation-in-
frequency algorithm [11]. In Radix-2 FFT, sequence x[n]
is separated into two sequences. One is generated by odd
indexes sequence of x[n], and the other is for even. We
can write Eq. 1 into Eq. 3, and the complexity of DFT
computation is reduced. We only need to compute two
DFTs with half complexity. After recursive procedure,
the computation reduced to only 2-point. Radix-4/8 FFT
is that the essential computation are 4/8-point DFTs. In
Fig. 2 we illustrate the signal flow graph of a 16-point
Radix-2 FFT example.

X(k) =

N
2
−1∑

n=0

x(2n)W 2nk
N/2 +W k

N

N
2
−1∑

n=0

x(2n+ 1)W 2nk
N/2 (3)

C. Related Works

In the data center, the heterogeneous accelerators have

been used for accelerating the application of cluster.

For example, Baidu’s Parallel Distributed Deep Learning

platform (Paddle) [12]. It integrates GPU and FPGA to

accelerate the applications of the cluster. IBM presents

the Coherent Accelerator Processor Interface (CAPI)

in IBM POWER8. It provides a high bandwidth, low

latency path between external devices, the POWER8

core, and the system’s open memory architecture [13].

Microsoft has developed a customized FPGA board,

Catapult, and placed it into each server in a 1,632-

node cluster [14]. Under high load, the throughput of
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Fig. 2: Signal Flow Graph of a 16-point Radix-2 FFT

each server is improved by a factor of 95%, and while

maintaining equivalent throughput, it reduces the tail

latency by 29%. However, these works have not provided

enough details of integrating FPGA to the cluster. Yu-

Ting Chen [15] and Ehsan Ghasemi [16] research on

integrating of FPGA to Spark framework in detail. They

bridge the gap between JVM and FPGA (Java and

C/C++) through JNI. In our work, we use FPGA to

accelerate the Spark application developed with Python

and propose the method of connecting Spark with Open-

CL application which can be used to manipulate diverse

processors (such as FPGA, GPU and the other processors

which support OpenCL programming) in Spark. We

address the gaps between Python and FPGA (C/C++),

Spark and the external Python application.

III. FPGA BASED SPARK FRAMEWORK

A. Experimental Environment

In this work, the experimental cluster includes 1

master node and 1 slave node as shown in Fig 3. The

detailed configurations are listed in Table I. The slave

node is equipped with a Xilinx ADM-PCIE-7V3 card. At

present, we only have 1 FPGA board available, which

limits the size of the cluster. Nevertheless, it does not

influence the demonstration of our strategy, which can

be similarly applied to the larger size cluster.

B. Methodology of Integrating FPGA to Spark Frame-
work

In Xilinx development environment SDAccel, it pro-

vides a way of developing FPGA application through

Fig. 3: An Overview of FPGA Based Spark Cluster

TABLE I: Configurations of the Cluster

CPU Memory

Master Node core 2-core i5-6500@3.2GHz 8G

Slave Node 2x Xeon 6-core E5-2620v3@2.40GHz 64G

OS CentOS 7

FPGA ADM-PCIE-7V3 (Virtex 7: XC7VX690T-2)

Host I/F PCIe Gen3 x8

FPGA Tools Xilinx SDAccel-2017.1

Other Softwares Spark-2.1.0, Hadoop-2.7.0, Pyhton-2.7.5

OpenCL model as shown in Fig. 4. In this way, we can

manipulate FPGA (OpenCL kernel) through OpenCL

host code (C/C++). In order to invoke the OpenCL host

in the other programming languages, we compile the host

code into Linux Shared Library (.SO).

Fig. 4: FPGA Accelerator in OpenCL Model

Spark applications can be developed with Scala, Java,

and Python programming language. In our implemen-
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tation, we use Python language to develop the Spark

application. Spark tasks run on JVM (Java Virtual

Machine), however, the JVM does not support FPGA

devices by default. The first step is to connect the Python

code to C/C++ code (OpenCL host code). We use a

foreign function library for Python ctypes to address

this problem. ctypes provides C compatible data types,

and allows calling functions in DLLs or shared libraries,

and can be used to wrap these libraries in pure Python.

The official document of ctypes library can be referred

here [17]. We use ctypes in python function to convert

Python data type to C/C++ data type and call C/C++

function which manipulates the FPGA, and it is shown

in Algorithm 1. In the algorithm, real_Py and imag_Py

are Python List data type, real_C and imag_C are

C/C++ Array data type, libFFT_Shared.so file is the

shared library of compiled OpenCL host code.

Algorithm 1 Data Type Conversion and Call of C/C++

function to Perform the FPGA processing in Python function

1: /∗ Convert input of Python data type to C/C++ data type ∗/
2: real_C = (ctypes.c_float ∗ len(real_Py))(∗real_Py)
3: img_C = (ctypes.c_float ∗ len(img_Py))(∗img_Py)
4:

5: /∗ Define output of C/C++ data type ∗/
6: result_real = (ctypes.c_float ∗ len(real_Py))()
7: result_img = (ctypes.c_float ∗ len(imag_Py))()
8:

9: /∗ Call the C/C++ function to perform the FPGA processing ∗/
10: fft_so = ctypes.CDLL(”/home/.../libFFT_Shared.so”)
11: fft_so.FFT (real_C, img_C,
12: ctypes.byref(result_real), ctypes.byref(result_imag))

Through above steps, we can manipulate FPGA in

Python code. The next important step is to perform map

operation and invoke Python function developed before

in Spark. When Spark program is executed, Spark driver

segments the RDDs and push out to the Spark Worker(s).

The RDD represents an immutable, partitioned collection

of elements that can be operated in parallel [3]. RDDs in

Spark Worker(s) invoke Python subprocesses using pipe

method of RDD, which transfers data of RDD to Python

function. The pipe operation is an RDD method, which

allows the developer to process RDD data using external

applications. In our scenario, the external application

is the python function which invokes the execution of

FPGA. The overall methodology of integrating FPGA

to Spark framework is shown in Fig 5.

IV. CASE STUDY OF 2D-FFT ALGORITHM

ACCELERATION

A. FPGA Implementation of 2D-FFT Algorithm

In the workflow of SKA-SDP (Square Kilometer Ar-

ray Radio Telescope–Scientific Data Processing), 2D-

FFT (Fast Fourier Transform) calculation takes a sig-

nificant proportion of computation overhead. Thus, in

this work, we choose the 2D-FFT acceleration as a case

study.

We implement 2D-FFT algorithm on FPGA with

OpenCL C in Xilinx SDAccel environment. There are

four kinds of algorithms for multidimensional FFT

implementation: row-column, vector-radix, nested and

polynomial transform [18]. We implement the row-

column 2D-FFT in this work, and it is composed of

1D-FFT routines as described in Fig. 6. We compare the

single precision raw performance of FPGA (Virtex 7)

and CPU (Xeon E5-2620v3) implementation in different

scales of 2D-FFT, and the results are presented in Fig.

7. The results showed that the performance of FPGA

is inferior to CPU in scales which is smaller than

128 x 128-point 2D-FFT (a single kernel in FPGA

implementation). The performance of FPGA is superior

to CPU in scales which is larger than or equal to 128

x 128-point. The implementation of 1024 x 1024-point

2D-FFT exceeds the resource limitation of Virtex 7

FPGA. In 512 x 512-point 2D-FFT, the performance

of FPGA obtains a speedup about 2.03x than CPU. In

the following subsection, we will integrate the FPGA

implementation of 2D-FFT to Spark framework and

illustrate the performance.

B. Integrating the FPGA Implementation to Spark
Framework

We integrate the 2D-FFT implementation to spark

framework according to the methodology described be-

fore. We compare the performance between FPGA based

Spark and CPU implementation of 512 x 512-point 2D-

FFT in TABLE II. Compared to the performance of

FPGA implementation alone, the performance of FPGA

based Spark implementation decreases, and this is caused

by RDD generating, computing and collecting operations

in Spark. In the larger cluster, the performance of FPGA

based Spark implementation will be much better. Never-

theless, in our experimental cluster, we still obtain 1.79x

speedup of FPGA based Spark implementation than CPU

implementation.
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Fig. 5: Overall Methodology of Integrating FPGA to Spark Framework

Fig. 6: Algorithm Diagram of Row-Column 2D-FFT

TABLE II: Throughput of FPGA Based Spark and CPU

Implementation of 512 x 512-point 2D-FFT (MS/S)

Speedup
(1.79x)

FPGA Based Spark CPU Implementation

Performance 16.31 9.12

V. CONCLUSIONS

In this work, we proposed the framework to integrate

FPGA accelerator into a Spark cluster. We illustrate the

effectiveness of integrating FPGA into Spark framework

Fig. 7: Raw Performance of FPGA and CPU in Different

Scales of 2D-FFT (A Single Kernel in FPGA Implemen-

tation)

with a 2D-FFT acceleration case. The results showed that

FPGA based Spark implementation of 2D-FFT acquires

1.79x speedup than CPU implementation. In the future

work, we will expand the scale of the cluster, and equip

each slave node with an FPGA accelerator. Besides,

we will optimize the implementation of the other time-

consuming algorithms to achieve a better performance

in FPGA based Spark implementation.
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