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Abstract The resource utilization of servers (such as CPU,
memory) is an important performance metric in data cen-
ter networks (DCNs). The cloud platform supported by
DCNs aims to achieve high average resource utilization
while guaranteeing the quality of cloud services. Previous
papers designed various efficient virtual machine placement
schemes to increase the average resource utilization and
decrease the server overload ratio. Unfortunately, most of
virtual machine placement schemes did not contain the ser-
vice level agreements (SLAs) and statistical methods. In
this paper, we propose a correlation-aware virtual machine
placement scheme that effectively places virtual machines
on physical machines. First, we employ neural networks
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model and factor model to forecast the resource utilization
trend data according to the historical resource utilization
data. Second, we design three correlation-aware virtual
machine placement algorithms to enhance resource utiliza-
tion while meeting the user-defined SLAs. The simulation
results show that the efficiency of our virtual machine place-
ment algorithms outperforms the generic algorithm and
constant variance algorithm by about 15%-30%.

Keywords Virtual machine placement · Prediction ·
Correlation · Data center networks

1 Introduction

Data center networks (DCNs), the essential backbone
infrastructure of cloud services such as cloud computing,
cloud storage, and cloud platforms, attract increasing atten-
tions in both academia and industry. Cloud data centers
aims to provide an integrated platform with a pay-as-you-
go business model to benefit tenants at the same time,
which is gradually adopted by the mainstream IT compa-
nies, such as Amazon EC2, Google Cloud Platform and
Microsoft Azure. The cloud services are provided by the
virtualization on shared resources and utilities in DCNs,
such as CPU, memory, and bandwidth. Various tenants
buy virtual machines (VMs) within a certain period of
time to run their applications [3]. Owing to multi-tenant
demands, all kinds of workloads physically coexist but are
logically isolated in DCNs, including data-intensive and
latency-sensitive services, search engines, business process-
ing, social-media networking, and big-data analytics [18].
Elastic and dynamic resource provisioning is the basis
of DCN performance, which is achieved by virtualization
technique to decrease the cost of leased resources and to
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increase resource utilization in cloud platforms. Therefore,
the effectiveness of virtualization directly determines the
performance of DCNs.

The design goal of a DCN is originally to meet the
peak workloads of tenants. However, at most time, DCNs
are suffering from high energy cost due to low server uti-
lization. A large number of servers are running with low
workloads while consuming almost the same amount of
energy as servers with high workloads. The cloud service
providers have to spend more money on cooling bills to keep
the servers in normal running. Allocating resources in an
energy-effective way while guaranteeing the Service Level
Agreements (SLAs) for tenants is essential for them.

Pervious literatures focused on enhancing the average
utilization without violating SLAs. Some researchers focus
on fair allocation schemes. Bobroff et al. [4] proposed a
virtual machine placement (VMP) scheme to dynamically
manage SLA violations, which forecasts the future resource
demands and calculates the prediction error. Nevertheless,
the VMP scheme takes no correlation between VMs into
consideration, and only predicts demand of a single VM.
In [22], the authors proposed joint-VM-provisioning, which
can achieve 45% improvements in terms of overall resource
utilization compared to VM-by-VM provisioning.

In this paper, we present a correlation-aware VMP
scheme that effectively places virtual machines on phys-
ical machines. First, we employ Neural Networks model
and factor model to forecast the resource utilization trend
according to the historical resource utilization data. Second,
we design three correlation-aware placement algorithms to
enhance resource utilization while meeting the user-defined
service level agreements. The results of extensive simu-
lations showed that the efficiency of our VMP scheme
outperforms the previous work by about 15%-30%.

The rest of the paper is organized as follows. Section 2 intro-
duces the related work about resource demand prediction,
virtual machine placement, virtual machine migration, and
data center networks. Section 3 proposes the correlation-
aware virtual machine placement system. Section 4 con-
cludes this paper.

2 Related work

2.1 Resource demand prediction

It is probable tomitigate hot spots in DCNs by appropriate pre-
diction schemes. Demand prediction methods will provide
us early warnings of hot spots. Hence, we can adopt mea-
sures to ease the congestions in DCNs and allocate resource

in away that guarantee the performance of applications for ten-
ants. The demand prediction methods usually fall into time
series and stochastic process analyzes.

The ARIMA model is often used to predict time series
data. In [4], the researchers forecast the future demand and
propose the prediction error model. Nevertheless, they take
no correlation between VMs into consideration, and only
predict demand of a single VM. Lin et al. accurately pre-
dicts the future VM workloads by seasonal ARIMA models
[21]. Qiu et al. employs SARMA model on Google Clus-
ter workload data to predict future demand consumption
[25]. In [26], the authors use a variant of the exponen-
tially weighted moving average (EWMA) load predictor.
For workloads with repeating patterns, PRESS derives a sig-
nature for the pattern of historic resource utilization, and
uses that signature in its prediction. PRESS uses a discrete-
time Markov chain with a finite number of states to build a
short-term prediction of future metric values for workloads
without repeating pattern, such as CPU utilization or mem-
ory utilization [11]. In [16], Markov chain model is applied
to capture the temporal correlation of VM resource demands
approximately. In [35], an adaptive prediction algorithm
was designed to improve TRE efficiency through dynami-
cally adjusting the prediction window size based on the hit
ratio of historical predictions.

2.2 Virtual machine placement

Virtual Machine Placement (VMP) problem involves map-
ping virtual machines (VMs) to physical machines (PMs).
A proper VM mapping scheme can lead to less number
of PMs required and lower energy cost. A poor resource
allocation scheme may require more PMs and may induce
more service level agreement (SLA) violations. In [4], the
authors proposed a VMP scheme to manage SLA violations.
A method was designed to identify servers which benefit
most from dynamic migration. In [22] the authors proposed
joint-VM-provisioning, which can achieve 45% improve-
ments in terms of overall resource utilization compared to
VM-by-VM provisioning. They first introduced an SLA
model that maps application performance requirements to
resource demand requirement. Kim et al. [19] proposed
a novel correlation-aware virtual machine allocation for
energy-efficient datacenters. Specifically, they take correla-
tion information of core utilization among virtual machines
into consideration. Wang et al. [27] attempt to explore par-
ticle swarm optimization (PSO) to minimizing the energy
consumption. They design an optimal VMP scheme with
the lowest energy consumption. In [20], authors propose a
VMP scheme which minimizes the energy consumption of
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Table 1 Summary of VMP
schemes Schemes Correlation-aware Energy-aware Prediction SLA

Bobroff et al. [4] (2007) �

Meng et al. [22] (2010) � � �

Kim et al. [19] (2013) � � �

Wang et al. [27] (2013) � �

Khalilzad et al. [20] (2015) � �

Chen et al. [8] (2016) � � � �

the data center by consolidating VMs in a minimum number
of PMs while respecting the latency requirement of VMs. In
[8], the authors design correlation-aware algorithms to solve
VMP problem.

We summarize the VMP schemes in Table 1, including
the properties of correlation-aware, energy-aware, predic-
tion, and SLA. If a VMP scheme has a property, the
corresponding cell is filled with a �.

2.3 Virtual machine migration

Virtual Machine Migration, a sort of VM replacement, aims
to satisfy different resource management objectives (e.g.,
load balancing, fault tolerance, power management). Live
migration is the technology that makes VM replacement
realistic with a downtime of only 60ms.

Nelson et al. [23] proposed a fast and transparent appli-
cation migration system. The author claimed that this is
the first system that can migrate unmodified applications
on unmodified mainstream operating systems. They did
experiments and measured that for a variety of workloads,
application downtime caused by migration is less than a
second. Clark et al. [9] presented the design, implemen-
tation and evaluation of high-performance OS migration
built on top of the Xen virtual machine monitor. OSes
continue to run when migrating a large quantities of con-
tents. Downtime can be reduced to as low as 60ms. This
new technology is a powerful tool for server consolidation.
Wood et al. [29] implemented a black-box approach that is
fully OS- and application-agnostic and a gray-box approach
that exploits OS-level and application-level statistics. They
designed a hot spot detection algorithm that determines

Fig. 1 VM Placement system
architecture
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when to migrate virtual machines. They also implemented a
hot spot mitigation algorithm that decides what and where
to migrate and how much to allocate after the migration.

Ye et al. [32] compared the live migration efficiency
with different resource reservation approaches and proposed
corresponding optimization methods. Ghorbani et al. [10]
presented LIME architecture, which can efficiently migrate
a collection of virtual machines and virtual switches,
for any arbitrary Software-Defined Network (SDN) con-
troller and applications. Xu et al. [31] proposed iAware, a
lightweight interference-aware VM live migration strategy,
which jointly estimates and minimizes both migration and
co-location interference among VMs by a multi-resource
demand-supply model. Wood et al. [30] present the Cloud-
Net architecture, which provides optimized support for live
WAN migration of VMs. A set of optimizations that min-
imize the cost of transferring storage and VM memory
during migrations over low bandwidth links are also pro-
posed. In [5], the authors proposed NICE, a network-aware
VM consolidation scheme, to save the energy cost of DCNs.
Yu et al. [34] presented a stochastic load balancing scheme
for virtual machine migration to minimize the migration
cost and guarantee the lower resource overload. In [33], an

optimal allocation algorithm was designed to achieve virtual
machine migration while minimizing the total migration
cost for the virtual cluster scaling.

2.4 Data center networks

In a data center, the data center network (DCN) is an essen-
tial part, which interconnect the physical components (e.g.,
servers, switches) in a specific topology with cables and
optical fibers. In the process of virtual machine placement or
migration, DCNs also determine the period and efficiency.

According to [7], the topologies can be categorized into
switch-centric, server-centric, and enhanced topologies. In
switch-centric topologies, the switches are enhanced to sat-
isfy networking and routing requirements, while the servers
are almost all unmodified, such as Fat-Tree [1], VL2 [12].
In server-centric topologies, servers are modified to be
responsible for networking and routing, while commodity
switches without modification are employed only for for-
warding function, such as DCell [13], BCube [14]. DCNs
can be enhanced by optical devices and wireless antennas,
such as OSA [6], 3D beamforming [36]. More details can
be referred to the survey on DCNs [7].

Fig. 2 An example of the
correlation between three VMs VM1 VM1-capacity

VM2 VM2-capacity

VM3 VM3-capacity

VM1 VM1+VM2 VM1+VM2+VM3 overall-capacity
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Fig. 3 Performance of
NARNET
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3 Correlation-aware virtual machine placement
scheme

3.1 System architecture

We propose a correlation-aware virtual machine placement
(VMP) system for data center networks (DCNs) that pre-
dicts the future resource demand/utilization of requests and
minimize the number of physical machines (PMs). The
VMP system considers the correlations between virtual
machines (VMs), and satisfies a user-defined server level
agreement (SLA) at the same time.

The main modules of our VMP system, i.e., monitor, pre-
dictor and controller, are shown in Fig. 1. Tenants submit
resource requests to the cloud platform. The cloud platform
allocates the resources (VMs) for the requests. VMs are usu-
ally hosted on PMs in DCNs. Monitor module records the
historical utilization data of VMs and transmit it to Pre-
dictor module. The predicted data generated from Predictor
is delivered to Controller modular that makes a strategic
decision for VM placement problem. An new VM place-
ment strategy happens periodically every 100 time slots (a
resource demand data recorded at a time slot).

Traditionally, a VMP scheme placed a VM at a time. In
[22], the authors argued that the anti-correlation between
VMs can be utilized. They placed two VMs at a time and
allocated as less resource as possible for the two VMs. How-
ever, the negative correlation between three VMs also can
be leveraged, as shown in Fig. 2. By analogy, the joint-
provisioning of any number of VMs without SLA violations

can be done. The overall capacity allocated for the three
VMs under joint-provisioning is about 70% of a PM, while
the traditional VM placement needs to allocate about 85%
capacity for the same three VMs.

3.2 Prediction

3.2.1 Neural networks

In [28], the authors applied ARIMA and GARCH model
to forecast the trend and volatility of the future demand.
ARIMA performs well when an initial differencing step can
be applied to remove non-stationarity. However, ARIMA
is a linear time series model and may not work otherwise.

Table 2 A simple data set of factor model

Time 0 1 2 3 4 5 6 7 8 9 10

VM0 10 20 30 20 10 25 20 15 10 5 7

VM1 40 45 39 34 28 15 23 14 7 15 14

VM2 30 33 31 35 32 29 31 33 36 41 33

VM3 50 45 47 54 61 49 36 28 32 40 38

VM4 10 13 16 18 15 13 8 15 20 17 11

VM5 38 31 41 52 42 39 41 43 46 31 34

VM6 20 26 31 25 31 23 28 32 34 30 23

VM7 15 23 11 15 22 25 21 13 26 21 24

VM8 10 21 31 25 13 22 31 23 33 29 33

VM9 33 32 31 34 31 29 25 23 27 31 32
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Neural Networks can be applied to predicted both linear and
non-linear time series. For example, nonlinear autoregres-
sive neural network (NARNET) can be trained to predict a
time series from historical demand data.

Let NARNET(ni, nh) denotes a nonlinear autoregressive
neural network with ni inputs and nh outputs. Such a model
can be described as

Ui(t) = F(Ui(t − 1), Ui(t − 2), . . .) + ε (1)

where Ut is the variable of interest, and ε is the error term.
We can the use this model to predict the value of Ut+k .

The performance of NARNET(10,20) is shown in Fig. 3.
The simulation results shows that NARNET can predict
future resource demand accurately.

3.2.2 Factor model

Wei et al. [28] used ARIMA model to predict resource
demand series for each VM. However, each VM needs to
train by ARIMA model, and it is not feasible for a large
scale of VMs. For a mega production data center, ARIMA
may not be able to work appropriately. In addition, ARIMA
has poor performance when the resource utilizations of VMs
have no obvious patterns, which may be obscured by various
random factors.

We employ a factor model to solve these problems [24].
The demand series {Ui(t)} of each VM i can be decomposed
to several uncorrelated underlying factors C1(t), . . . , CQ(t)

with a zero mean error term ε(t):

Ui(t) = αi1C1(t) + . . . + αiQCQ(t) + ε(t),∀i. (2)

We first calculate αi1, . . . , αiQ effectively, then predict
future demand at time t by predicting factor movements.
Principal component analysis (PCA) is used to find underly-
ing factors. Given P utilization series {U1(t)}, . . . , {UP (t)},
PCA leverages an orthogonal transformation to the P uti-
lization series to get a relatively small number of uncor-
related time series {C1(t)}, . . . , {CQ(t)}, which are the
principal components.

PCA is executed for all the VMs. Nevertheless, the
dependencies on each factor of VMs are different. To pre-
dict the mean μ(t) and covariance �(t) for utilization series
{Ui(t) : i = 1, . . . , P } at time t , we first forecast the princi-
pal components C1(t), . . . , CQ(t) based on historical data,
and then predict the error series ε(t) to obtain its mean and
error variance. Thus, we can predict μi(t) as

μi(t) = αi1(t)C1(t) + . . . αiQ(t)CQ(t) + ε(t),∀i. (3)

We illustrate the idea of factor analysis by a simple
example. There are a data set as shown in Table 2.

We first do PCA to this simple data set to get eleven
principal components. As the data set proceed, it is shown
that the first three principal component accounts for 92.38%

of the variance. Thus, we can select three principal com-
ponents and just do ARIMA and GARCH for them. After
choosing these three factors, we reconstruct the original data
with errors to some extent. Suppose mu is the mean value of
each attribute of the raw data, pc is the matrix of principal
components and score is the principal components scores,
that is, the representation of the original data in the prin-
cipal components space. We reconstruct the original data
using principal components pc and principal components
score score by adding mu to the combination pc × scoreT .
We use ARIMA and GARCH to forecast their mean and
variance. After getting the mean and variance, we can recon-
struct each VM’s profile. With the profile and the original
data, we can get the error term. As for the error term, we can
use ARIMA to model the mean and use GARCH to model
its variance. The error term in this example is rather small
at the scale of 10−13.

We can use ARIMA and GARCH to predict the future
mean and variance of the first three principal components.
Using the future mean and variance, together with the
principal component scores, we can predict VMs’ future
demand (do not forget to add the error term to the data).

In [28], we have to do ten ARIMA and GARCH analysis
to get the future mean and variance. By factor analysis, we
can reduce the number ten to four. We only have to forecast
the mean and variance of the largest three principal com-
ponents and the mean and variance of the error term. The
factor analysis really reduces the number of computations.

Next, let’s look at a larger example. We generate 100 VM
resource utilization traces and each trace contains 100 data.
The first half are used to train theARIMAmodel, and the other
half are used for the testing. Each trace is generated using
normal distribution with random mean value and variance.

By the traditional method called individual prediction
used in [28], we had to train a separate ARIMA model and
GARCH model for each virtual machine.

Fig. 4 Root mean square error of PCA-based method compared with
individual prediction
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Fig. 5 20-step-ahead prediction performance of PCA-based method
and individual prediction

As for PCA-based method, we pick 10 principal com-
ponents, and train ARIMA and GARCH model to predict
mean and variance for the next 10 time units for these 10
principal components respectively. The simulation results
show that 10 principal components accounts for 60% of all
the variance. Figure 4 shows that individual prediction and
PCA-based method has similar performance which really
set our mind at rest. We sort the VM id according to the
average size of each VM. For VMs who have larger size,
PCA-based algorithm has good performance while for small
VMs both individual prediction and PCA-based algorithm
will experience severe performance degradation.

Figure 5 shows us that the performance of PCA-based
method compared with individual prediction method. We
can see that time series analysis is no panacea. The 20-step-
ahead prediction can not provide very accurate prediction,
which only serve as an indicator to the trend.

In summary, PCA-based method can save us a lot of time
instead of doing heavy computation of ARIMA model. The
PCA-based method may work better and 10 principal compo-
nents obtained may accounts for 80% of the total variance.

Table 3 Main symbols and descriptions

Symbol Description

V = {v1, · · · , vn} Set of VMs

S = {s1, · · · , sm} Set of PMs

NPM Number of used PMs for placement

Dm sum of resource demands in PM m

C capacity of a PM

o overload ratio

D average resource demand (utilization)

ε user-defined SLA

E[Dm] sum of expectations of resource demands

of all VMs on PM m

var[Dm] variance of the workload with correlations

between VMs on PM m

3.3 Virtual machine placement algorithms

In this subsection, we propose correlation-aware vir-
tual machine placement (VMP) algorithms. The allocated
resource for VMs should match the future resource demand
to achieve high resource utilization of PMs while meeting
user-defined SLAs. Table 3 summarizes the main symbols
used in this paper.

We use two performance metrics, overload ratio o and
average resource demand D, to evaluate the effectiveness of
our proposed VM placement algorithms. The former is the
ratio of the number of time slots when the actual resource
demand of a PM is higher than its capacity over all the time
slots × NPM . The latter is the average resource utilization
of PMs over all the time slots. The objective of algorithms
is to achieve low overload ratio o and high average resource
utilization D. We monitor resource demand (e.g., CPU or
memory) for each VM and forecast conditional mean μ and
the conditional variance σ . According to resource demand
time series data, the correlation ρ between different VMs
placed on the same PM is also calculated.

The correlation-aware VMP problem is a problem that
minimizing the number of PMs and satisfying the SLAs
in a correlation-aware VM placement way, which can be
formulated as follows:

minNPM (4)

s.t. Pr(Dm > C) < ε, ∀m, (5)∑

m

xmn = 1, ∀n, (6)

xmn ∈ {0, 1}, ∀m, ∀n. (7)

The binary variable xmn indicates VM n is hosted on PM
m or not. Dm denotes the resource demand of VMs on PM
m. C means the capacity of a PM. ε > 0 is a small con-
stant, called user-defined SLA, which means the maximum
value of the overload ratio, that is, the cloud platform should
guarantee the overload ratio under ε for tenants.

Equation 5 can be transformed to:

C � E[Dm] + cε(0, 1)
√

var[Dm]
E[Dm] = μ1xm1 + μ2xm2 + . . . + μnxmn,

var[Dm] =
∑

i,j

ρij σiσj xmixmj .

where cε(0, 1) is the (1 − ε)-percentile of standard normal
distribution with mean 0 and variance 1. For example, when
ε = 2%, cε(0, 1) = 2.06. E[Dm] is the sum of expecta-
tions of resource demands of all VMs placed on PM m, and
var[Dm] is the variance of the workload with correlations
between VMs taken into consideration.

After problem formulation, we propose ourVMPalgorithms.
The first algorithm is Correlation-Aware First-Fit algorithm.
The algorithm is similar to first-fit algorithm in solving the
bin-packing problem, which is shown in Algorithm 1.
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Algorithm 1 is a first-fit algorithm which will place
a certain VM into the first PM that can hold it with a
certain probability less than a user-defined SLA. Since
this problem is very similar to first-fit algorithm of
bin packing problem, we can easily reach the inequal-
ity the number of PMs used by first-fit described above
is no more than 2× optimal number of PMs. If we first
sort the VMs by the size, then this is very similar to first fit
decreasing algorithm in bin packing problem. It has been
shown to use no more than 11

9 OPT + 1 bins (where OPT
is the number of bins given by the optimal solution).

The second algorithm is Correlation-Aware Best-Fit
algorithm, as shown in Algorithm 2. The “best-fit” idea is:
at each time, placing a VM to the PM that has minimal free
capacity and can accommodate it.

The third algorithm is Correlation-Aware Minimum Bin
Slack (MBS) algorithm, as shown in Algorithm 3.

The MBS algorithm is a heuristic algorithm, in which
each packing is determined in a search procedure that tests
all possible subsets of VMs on the list which fit the PM
capacity [15]. For each PM, we choose the subset of VMs
with the minimum PM slack (remaining resource capacity)
when placing them in the PM. If the algorithm finds a subset
of VMs that fills the PM completely, the search is stopped,
for there is no better packing possible.

We compare our VM placement algorithms with the
following benchmark algorithms:

Generic Algorithm (GA) A genetic algorithm is a search
heuristic algorithm that is often used to solve NP problem.
The VMP problem can be reduced to bin packing problem,
and usually we can not find an optimal solution by using
first fit algorithm and minimum bin slack algorithm.

Genetic Algorithm is an algorithm that mimics the pro-
cess of evolution. It is often applied to generate solutions
for optimization and search problems. Usually, a Genetic
Algorithm will use techniques such as inheritance, muta-
tion, selection, and crossover. We introduce the outline of
the Genetic Algorithm algorithm as follows [17]:

1. Generate initial solutions and set g equals 1. The vari-
able g represents the generation number.

2. Select two genotypes p1 and p2 randomly from the old
generation.

3. Generate two offspring o1, o2 using crossover operation.
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4. Do mutation operation to p1, p2 and generate offspring
o3 and o4.

5. Select two best solutions from p1, p2, o1, o2, o3, and
o4. Remove p1 and p2 from the population and add the
solutions selected to the population.

6. if g equals G, terminate the Genetic Algorithm. If not
set g equals g + 1 and return to step 2.

• Individual. In the Genetic Algorithm, a set of VM num-
bers in one PM correspond to a gene. Solutions gener-
ated by crossover operation and mutation operation do
not depend on the sequence of genes.

• Initialization. Although Genetic Algorithm does not
care about the quality of initial solutions, and will con-
verge for almost all kinds of initial solutions. However,
good initialization will reduce the number of iterations
required to reach a optimal solution. Here, we use first
fit to generate the first generation. We randomize the
sequence of VMs to generate different initial solutions.
Diversity is very important for the process of initial
solution generation. One thing to note is that it is unlike
first fit decreasing where VMs are sorted in the order of
non-increasing size.

We use fisher-yates shuffle to randomize the
sequence of VMs. The algorithm is described in Algo-
rithm 4. It is extremely fast, and is unbiased, so that
every permutation is equally likely.

• Crossover Operation. The crossover operation is crucial
to the whole Genetic Algorithm. It should guarantee
that the offspring of two parents preserve or inherit
good traits in VM placement problem. We use mini-
mum bin slack algorithm to help us find better solution
in the phase of crossover.

Two parents p1 and p2 will produce their offspring o1 in
a way as follows:

1. Some PMs in p1 are selected at random, and the VMs
in them are copied directly to o1.

2. In p2, VMs allocation in the PMs where no VM are
assigned in o1 are copied to o1.

3. VMs that are not assigned will be allocated space using
first fit decreasing or minimum bin slack algorithm.
VMs that belongs to the same PM in the past will be
considered as one VM. We will see what it means in the
following example.

Table 4 Number of used PMs, the overload ratio (o), and average resource utilization of PMs (D) in different time slots under different user-
defined SLAs

Time Slots 100-200 Time Slots 200-300 Time Slots 300-400

ε = 2% NPM o D NPM o D NPM o D

GA 121 11.2% 57.65% 120 11.7% 58.04% 119 10.43% 57.76%

CV 109 0.13% 58.77% 108 0.1% 58.24% 110 0.06% 58.24%

FF 91 1.1% 70.45% 91 1.1% 70.44% 91 0.77% 70.44%

BF 91 1.1% 70.45% 91 1.1% 70.44% 91 0.79% 70.44%

MBS 90 1.3% 71.18% 91 0.7% 70.40% 89 0.95% 71.98%

ε = 5%

GA 118 9.4% 58.63% 120 11.53% 58.14% 119 8.22% 57.75%

CV 97 2.8% 66.04% 97 3.1% 66.04% 97 2.4% 66.05%

FF 86 3.0% 74.49% 86 2.9% 74.49% 87 2.8% 73.63%

BF 86 3.2% 74.49% 86 3.4% 74.49% 87 2.4% 73.63%

MBS 84 4.3% 76.26% 84 3.5% 76.26% 84 3.6% 76.26%

ε = 10%

GA 116 10.5% 59.64% 122 8.5% 57.90% 122 10.39% 57.65%

CV 90 4.5% 71.18% 90 4.7% 71.18% 90 4.1% 71.18%

FF 81 7.6% 79.09% 82 6.9% 78.12% 82 6.6% 78.12%

BF 81 7.7% 79.09% 82 6.8% 78.12% 82 6.7% 78.12%

MBS 80 9.2% 80.08% 80 8.4% 80.08% 80 8.9% 80.08%
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Fig. 6 The CDF of CPU-
Utilization by correlative-aware
FF algorithm under different
user-defined SLAs

• Mutation Operation. Two or three PMs are selected
and the minimum bin slack algorithm will be used to
generate a better solution.

Constant Variance (CV) This algorithm predicts the
future demand of VMs while not taking correlations
between VMs into consideration [28].

3.4 Evaluation

The resource demand (utilization) data is generated by the
method in [2]. We put 384 VMs on 128 PMs, and set the
average resource demand of VMs belongs to (0.165+	), 	
obeys a normal distribution with an average of 0 and a vari-
ance of 0.04. We first generate 384 resource demand traces
with different mean and variation. Each trace contains a list
of 400 historical resource demand data (400 time slots). We
will use the first 100 data to train the neural network model
and the remaining data to compare our correlation-aware
placement algorithms with previous proposed algorithms.
We normalize the capacity of a PM as 100%. In Generic
Algorithm, we crossover to 1000 generations and mutate 4
PMs every generation.

As shown in Table 4, Figs. 6 and 7, when the user-
defined SLA becomes larger (2%-10%), more PMs achieve
higher average resource utilization (about 10%), but the

overload risk increases. There is a trade-off between
resource utilization and user-defined SLA guarantee, and
we should think twice before we make the decision under
different scenarios.

As shown in Fig. 8, the resource utilizations of PMs are
different under the four algorithms with user-defined SLA
5%. The parameter adjustment of Generic Algorithm is a
tricky problem. The results of GA seem to the worst when
we crossover to 1000 generations and mutate 4 PMs every
generation. The constant variance (CV) algorithm makes an
assumption that the variance of VM i is constant, which is
not feasible in the real DC. Correlation-aware first-fit and
best-fit algorithms outperforms the CV algorithm. When
the overload ratios are almost the same, more PMs achieve
higher resource utilizations and the total number of used
PMs is lower by FF and BF algorithms. In spite of almost
the same resource utilizations of PMs, the best-fit algorithm
costs more than the first-fit algorithm due to searching the
PM that can accommodate a VM with minimum free capac-
ity at each time. The best outputs of the five algorithms is
correlation-aware MBS algorithm, which uses the minimum
number of PMs with maximum resource utilization, and the
overload ratio is the nearest to the user-defined SLAs. For
example, about 50% of PMs achieve 80% or more resource
utilization. However, the cost of MBS algorithm is larger
than FF and BF algorithms. For each PM, MBS algorithm

Fig. 7 The CDF of CPU-
Utilization by correlative-aware
MBS algorithm with different
user-defined SLAs
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Fig. 8 Resource utilizations by
different algorithms under
user-defined SLA 5%

needs to search the subset of VMs to minimize the PM’s
slack.

4 Conclusion

In this paper, we proposed a correlation-aware virtual
machine placement system that effectively places virtual
machines on physical machines. First, we employ Neural
Networks model to predict the resource utilization trend
according to the historical resource utilization data. Sec-
ond, we presented three correlation-aware VM placement
algorithms to enhance resource utilization while meeting
the user-defined service level agreements. The simulation
results show that the efficiency of our virtual machine
placement scheme outperforms the previous work by about
15%-30%.
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