572

1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.2, FEBRUARY 2017

Traffic Load Balancing Schemes for Devolved
Controllers in Mega Data Centers

Xiaofeng Gao, Member, IEEE, Linghe Kong, Weichen Li, Wanchao Liang,
Yuxiang Chen, and Guihai Chen, Senior Member, IEEE

Abstract—In most existing cloud services, a centralized controller is used for resource management and coordination. However, such
infrastructure is gradually not sufficient to meet the rapid growth of mega data centers. In recent literature, a new approach named
devolved controller was proposed for scalability concern. This approach splits the whole network into several regions, each with one
controller to monitor and reroute a portion of the flows. This technique alleviates the problem of an overloaded single controller, but
brings other problems such as unbalanced work load among controllers and reconfiguration complexities. In this paper, we make an
exploration on the usage of devolved controllers for mega data centers, and design some new schemes to overcome these
shortcomings and improve the performance of the system. We first formulate Load Balancing problem for Devolved Controllers (LBDC)
in data centers, and prove that it is NP-complete. We then design an f-approximation for LBDC, where f is the largest number of
potential controllers for a switch in the network. Furthermore, we propose both centralized and distributed greedy approaches to solve
the LBDC problem effectively. The numerical results validate the efficiency of our schemes, which can become a solution to monitoring,
managing, and coordinating mega data centers with multiple controllers working together.

4

INTRODUCTION

N recent years, data center has emerged as a common

infrastructure that holds thousands of servers and sup-
ports many cloud applications and services such as scien-
tific computing, group collaboration, storage, financial
applications, etc. This fast proliferation of cloud computing
has promoted a rapid growth of mega data centers used for
commercial purposes. Companies such as Amazon, Cisco,
Google, and Microsoft have made huge investments to
improve Data Center Networks (DCNs).

Typically, a DCN uses a centralized controller to monitor
the global network status, manage resources and update
routing information. For instance, Hedera [1] and SPAIN [2]
both adopt such a centralized controller to aggregate the traf-
fic statistics and reroute the flows for better load balancing,.

However, for large-scale DCN with thousands of racks
(usually in a mega data center), the utilization of a centralized
controller suffers from many problems such as the issues of
scalability[3] and availability. Driven by the unprecedent
objectives of improving the performance and scale of DCNSs,
researchers try to deploy multiple controllers in such net-
works [4], [5], [6], [7], [8]. The concept of devolved controllers is
thereby introduced for the first time in [4], in which they used
dynamic flow [5] to illustrate the detailed configuration.
Devolved controllers are a set of controllers that collaborate as

e X.Gao, L. Kong, W. Li, and G. Chen are with the Department of Computer
Science and Engineering, Shanghai Key Laboratory of Scalable Computing
and Systems, Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail: {gao-xf, linghe.kong, eizo.lee, gchen @cs.sjtu.edu.cn.

o W. Liang and Y. Chen are with the School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15289. E-mail: {wanchaol, yuxiang1}
@cs.sjtu.edu.cn.

Manuscript received 2 July 2015; revised 1 June 2016; accepted 1 June 2016.
Date of publication 9 June 2016; date of current version 18 Jan. 2017.
Recommended for acceptance by X. Wang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2016.2579622

an single omniscient controller, as a similar scheme in [9].
However, none of the controllers has the complete informa-
tion of the whole network. Instead, every controller only
maintains a portion of the pairwise multipath information
beforehand, thus reducing the workload significantly.

Recently, software-defined networking (SDN) as pro-
posed by OpenFlow [10] has been touted as one of the most
promising solutions for future Internet. SDN is character-
ized by two distinguished features: decoupling the control
plane from the data plane and providing programmability
for network application development [11]. From these fea-
tures we can divide the DCN flow control schemes into two
layers: the lower layer focuses on traffic management and
virtual machine (VM) migrations, which could relieve the
intensive traffic in hot spots; the upper layer coordinates the
control rights of switches among controllers, which deals
with the load imbalance problem in a hierarchical manner.
Combining the two layers together, we could better
improve the system performance and reduce the load
imbalance problem greatly.

For the lower layer control, there are mature and well-
developed methods to handle the flow control and VM
migration at present [12], [13], [14], [15]. While for the upper
layer control, managing the DCNs by devolved controllers
gradually becomes a hot topic in recent years due to the
expansion of the scale of DCNs. Similarly, if switches are
relatively busy regionally, then the controller monitoring
this region becomes a hot spot, which could be harmful for
the system. Many relevant studies emphasis on the imbal-
anced load problem for devolved controllers [4], [11], [16],
but none of them give a clear formulation of controller
imbalance problem and analyze the performance of their
solutions. This leads to our concern on the imbalanced load
issue for devolved controllers to better control the traffic
and manage the network.

1045-9219 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

GAO ET AL.: TRAFFIC LOAD BALANCING SCHEMES FOR DEVOLVED CONTROLLERS IN MEGA DATA CENTERS 573

Motivated by these concerns, in this paper we propose
a novel scheme to manage devolved controllers. In our
scheme, each controller monitors the traffics of a part of
the switches locally. When traffic load imbalance occurs,
some of them will migrate a portion of their monitored
work to other controllers so that the workload can be
kept balanced dynamically. We define this problem as
Load Balancing problem for Devolved Controllers (LBDC).
We prove that LBDC is NP-complete, which might not
be easily solved within polynomial time. Then we design
multiple solutions for LBDC, including a linear program-
ming with rounding approximation, three centralized
greedy algorithms, and one distributed greedy algo-
rithm. Using these solutions, we can dynamically balance
the traffic load among controllers. Such methods can
reduce the occurrence of traffic hot spots significantly,
which will degrade network performance. These schemes
can also improve the availability and throughput of
DCN, supporting horizontal scaling and enhancing
responsiveness of clients” requests. In all, the main con-
tributions of this paper are as follows:

1) We design and implement a traffic load balancing
scheme using devolved controllers, which eliminates
the scalability problem and balances the traffic load
among multiple controllers. All these controllers are
configured based on their physical placements,
which is more realistic and makes the whole network
more effective and reliable.

2) We prove the NP-completeness of LBDC, and design
an f-approximation algorithm to obtain the solution.
We also come up with both centralized and distrib-
uted heuristics for workload migration between con-
trollers in dynamic situations. The distributed
algorithm is scalable, stable, and more appropriate
for real-world applications, especially for large-scale
DCNe.

3) We evaluate our algorithms with various experi-
ments. Numerical results validate our design’s effi-
ciency. To the best of our knowledge, we are the first
to discuss workload balancing problem among
multi-controllers in DCNs, which has both theoreti-
cal and practical significance.

This paper is the extended version of our conference ver-
sion [17]. Based on the short conference version, we add a
randomized rounding for the linear programming, as well
as two novel centralize migration algorithms under limited
conditions. Additionally, we develop a new evaluation sec-
tion and obtain more reliable and precise results by various
numerical experiments.

The rest of the paper is organized as follows. Section 2
presents the system architecture and problem statement;
Sections 3 and 4 give our solutions to LBDC. Section 5 exhib-
its our performance evaluation and proves the effectiveness
of our algorithms. Section 6 introduces the related works;
Finally, Section 7 concludes the paper.

2 PROBLEM STATEMENT

Traffic in DCN can be considered as Virtual Machine
communication. VMs in different servers collaborate
with each other to complete designated tasks. In order to

TABLE 1

Definition of Terms
Term Definition
S, 8; switch set with n switches: S={s, ..., s,}
w(s;) weight of s;, as the no. of out-going flows.
PC(s;) potential controllers set of the ith switch.
re(s;) the real controller of the ith switch.
C¢ controller set with m controllers: C = {cy, ..., ¢y}
w(c;) weight of ¢;, as the sum of RS(c;)’s weight.
PS(c;) potential switches set of the ith controller.
RS(¢;) real Switches set of the ith controller.
AN(¢) adjacent node set (1-hop neighbors) of ¢;.

communicate between VMs, communication flow will go
through several switches.

Based on the concept of OpenFlow [10], there is a flow
table in each switch, storing the flow entries to be used in
routing. One responsibility of a controller is to modify these
flow tables when communication occurs. Every controller
has a corresponding routing component and it may be com-
posed of several hierarchical switches, including Top of
Rack (TOR) Switches, Aggregation Switches, and Core
Switches. These switches are used for communication
within the data center. Furthermore, every rack has a server
called designated server [18], which is responsible for aggre-
gating and processing the network statistics for the rack. It
is also in charge of sending the summarized traffic matrices
to the network controller, using a mapping program which
converts the traffic of this rack (server-to-server data) into
ToR-to-ToR messages. Once a controller receives these data,
it will allocate them to a routing component which com-
putes the flow reroute and replies to the new flow messages
sent to the controller. Then the controller installs these route
information to all associated switches by modifying their
flow tables. Since this paper is not concerned with routing,
we omit the details of table computing and flow rerouting.

Now we will define our problem formally. In a typical
DCN, denote s; as the ith switch, with the corresponding
traffic weight w(s;), which is defined precisely as the number
of out-going flows. Note that this weight does not include
the communication within the ToRs. Next, given n switches
S = {s1,---,s,} with their weights w(s;) and m controllers
C=A{c, -, cn}, we want to make a weighted m-partition
for switches such that each controller will monitor a subset
of switches. The weight of a controller w(c;) is the weight
sum of its monitored switches. Due to physical limitations,
assume every s; has a potential controller set PC(s;) and it
can only be monitored by controller in PC(s;). Every ¢; has a
potential switch set PS(¢;) and it can only control switches in
PS(c;). After the partition, the real controller of s; is denoted
by rec(s;) and the real switch subset of ¢; is denoted by RS(c;).
The symbols used in this paper are listed in Table 1.

To keep the performance of network management,
each controller should finally have almost the same
amount of workload. Otherwise, if the hot switches
always require routing information from the same con-
troller, it will become the bottleneck of the network. To
precisely quantify the balancing performance among
devolved controllers, we define Standard Deviation of
the partitions’ weights as the metric, denoted by

574 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.2, FEBRUARY 2017

o = = = = e = = e

~
.~ Controller ¢; . *, Controller ¢ *
! p—/ vy | r—7 y—/ [—/ = 1
1 [—]) [—] [—]) . [—] '
1 1 1 1
! = =y ! = y—/ [/ =/ 1
1 [—] mf [—] =y, == [—] 1
: : migxauon' !

= y—/ = = | a7 =/ !
1 [] -/ ! [] _— 1 . [] 1
1 1] 1
! = y— = =/ [/ = 1
1] o] []) . [] '
1 1 1 1
1 = =y | y—/ p—/ y— y—/ 1
\ [—] [\ [—] [—] , = [—] ,

.] 7’ ’

Fig. 1. An example of regional balancing migration.

w(c))?, where

o= \/%Z:’;l(w(cl) — (c) is the average
weight of all controllers. If the traffic flow varies as the
system running, the weight of controller ¢; may grow
explosively, making it unbalanced comparing with other
controllers. Then in this condition, we must regionally
migrate some switches in RS(¢;) to other available con-
trollers, in order to reduce its workload and keep the
whole network traffic balanced.

Then our problem becomes balancing the traffic load
among m partitions in real time environment, and migrating
switches among controllers when the balance is broken. We
define this problem as Load Balancing problem for Devolved
Controllers. In our scheme, each controller can dynamically
migrate switches to or receive switches from logically adja-
cent controllers to keep the traffic load balanced.

Fig. 1 illustrates the migration pattern. Here Controller c;
dominates 17 switches (as red switches) and Controller c;
dominates 13 switches (as blue switches). Since the traffic
between ¢; and ¢; is unbalanced, ¢; is migrating one of its
switches to ¢;.

1 If ¢; monitors s;
Let i; = {0 otherwise '

can be further formulated as the following programming;:

. Then the LBDC problem

min %i <2”: w(s;) - @;j — m) 1)

=1 \j=1
1 m n
s.t. w(ec) =— w(s;)) - xij (2)
mei= 5=
day=1, VI<j<n 3)
=1
zij =0, if s; € PS(c;) or ¢; & PC(s;),Yi,j 4)

Here, Eqn. (1) is the objective standard deviation. Eqn. (2)
calculates the average weight of all controllers. Eqn. (3)
means that each switch should be monitored by exactly one
controller. Eqn. (4) is the regional constraints, and Eqn. (5)
is the integer constraints.

Theorem 1. LBDC is NP complete.

Proof. We will prove the NP completeness of LBDC by
considering a decision version of the problem, and
showing a reduction from PARTITION problem [19].
An instance of PARTITION is: given a finite set A and

a size(a) € Z* for each a € A4, is there a subset A’ C A
such that 3°, v size(a) = 3, 4\ » size(a)? Now we con-
struct an instance of LBDC. In this instance there are
two controllers ¢;, ¢, and |A] switches. Each switch s,
represents an element acA, with weight
w(s,) = size(a). Both controllers can control every
switch in the network (PS(ci) = PS(c2) = {s.|a € A}).
Then, given a YES solution A’ for PARTITION, we
have a solution RS(c1) ={s.|a € A'}, RS(c2) = {sa|a €
A\A'} with 0 =0. The reverse part is trivial. The
reductions can be done within polynomial time, which
completes the proof. 0

Next we presents our solutions for the LBDC. We
implement the schemes within OpenFlow framework,
which makes the system comparatively easy to configure
and implement. It changes the devolved controllers from
a mathematical model into an implementable prototype.
Furthermore, our schemes are topology free, which is
scalable for any DCN topology such as Fat-Tree, BCube,
Portland, etc.

3 LINEAR PROGRAMMING AND ROUNDING

Given the traffic status of the a current DCN with devolved
controllers, we can solve the LBDC problem using the above
programming. To simplify this programming, we will then
transfer it into a similar integer programming. Firstly, we can
convert the standard deviation to average of absolute values:

min Ez Zw(sj) -xij — w(c)l. (6)

i=1 | j=1

We rewrite Eqn. (6), and obtain an integer programming as

follows:
1 m
. 1 i .
min - ; Y (7
s.t. yi >y w(sj) -z —w(c) ©)
=1
yi > w(c) =) w(s)) - wi)
=
1 m n
w(e) = — w(s;) - @i (10)
mia =
day=1, Vi<j<n (11)

Tijj = O7 if Sj g PS(CL) or ¢; ¢ Pc(é/),VZ,j (12)

Tij € {O, 1} VZJ (13)

In general, integer programmings may not be easily
solved in polynomial time, so we adopt relaxation to transfer
our integer programming into a linear programming (LP).
Then we can acquire a fractional solution and then round it

GAO ET AL.: TRAFFIC LOAD BALANCING SCHEMES FOR DEVOLVED CONTROLLERS IN MEGA DATA CENTERS

to a feasible solution of the original programming. To obtain
the linear programming, we replace Eqn. (13) with

After solving this LP, we can discover a feasible solution
to LBDC by a deterministic rounding [20], which is stated in
Algorithm 1.

Algorithm 1. Deterministic Rounding (LBDC-DR)

1 foreach switch s; do
Search the solution space of LP:
Let ¢ = arg max;{z;; |1 <i <m};
if 3 several maximal x;; then
Let ¢ = arg min;{w(¢;) | each max x;;}
Round zy; = 1;
for ¢; # ¢, do
Round z;; = 0;

O IO T W

For instance, if a switch s; has 21; = 0.2,29; = 0.7, x3; =
0.1 in the solution space of LP, then according to Algo-
rithm 1, we can round z9; = x4 =1, and zy; = x3; = 0.
Next, we prove that this solution is feasible for LBDC.

Theorem 2. LBDC-DR (Algorithm 1) results in a feasible solu-
tion for the integer programming of LBDC.

Proof. According to LBDC-DR, for each s;, we only round
the maximum z;; = 1,V1 <14 < m, and all other z;;’s are
equal to 0. Then each switch is monitored by only one
controller and no switches are in the idle state. Thus
we can get a feasible solution for the integer
programming.]

Now let us analyze the performance of LBDC-DR. We
define 7%, Z'¥, and Z as the solutions of the integer
programming, the solution of the linear programming,
and the solution after the rounding process respectively.
Then define f as the maximum number of controllers in
which any switch potentially appears. More formally,
[=maxi—y _.|PC(s)l.

We claim that LBDC-DR is an f-approximation. To prove
it, we first prove the following two lemmas.

Lemma 1. w(c)*" = w(c)" = w(c)”®

Proof: From the definition of the original w(c), the ideal
weight of each controller is the sum of the weight of all
switches divided by the number of controllers. This defi-
nition is suited for all the solution space, thus we can con-

clude that w(c)™” = w(c)” = w(c)® = L7 w(s)). 0

Lemma 2. z/ <z} -

Proof. We have the constraint Y77, z/" =1(v1 <j <n).
Also according to LBDC-DR, xéLjP is the largest of all
.TLL]P (V1 <i <m), then by the Pigeonhole principle, we
must have z”- f > 1. Because for each switch s;, 2/}

equals to 1 and others equal to zero, which is less than or
equal to the corresponding LP solution times the f factor.

Then for any controller ¢;, we have xf}' < xfjp - f. 0

According to all above lemmas, we can then obtain the
following theorem:

575

Theorem 3. LBDC-DR is an f-approximation algorithm.

Proof. Since the linear programming is a relaxation of the
integer programming, we have Z/' < Z*. Also we have
7 < Z™because the solution of LBDC-DR is feasible accord-
ing to Theorem 2, while Z* denotes the optimal solution.

Because w(c) represents the ideal weight of each con-
troller, it must be the same in all the solutions according

to Lemma 1. Therefore we let @ = w(c). From Z'* < Z*

we can derive

Since we already know the inequality
|z] — |yl < |z —y| < |z| +]y, we can get the following
relationship:

1 m n
L3 St | <
mizl 1

1
= =1

Then the approximation ratio can be obtained by the
following inequations:

m

<

3

Zw(sj) 1’;}

J=1

+ 2w.

m

1
>
i=1

n

Zw(,s,) . xﬁ —w
Jj=1

Thus LBDC-DR is an f-approximation. O

Another idea for rounding an optimal fractional solution is
to view the fractions as probabilities, flipping coins with these
biases and rounding accordingly. We will show how this idea
leads to an O(log n) factor randomized approximation for the
LBDC problem. We then present our LBDC-Randomized
Rounding (LBDC-RR) algorithm as described below.

First, we claim that our LBDC problem can be described
in another way as the definition and properties of set cover:
Given a universe U of n switch elements, S is a collection of
subsets of U, and S = {5}, ..., S,}. And there is a cost assign-
ment function ¢ : S — Z*. Find the subcollection of S with
the minimum deviation that covers all the switches of the
universal switch set U.

We will show that each switch element is covered with
constant probability by the controllers with a specific switch
set, which is picked by this process. Repeating this process
O(logn) times, and picking a subset of switches if it is cho-
sen in any of the iterations, we get a set cover with high
probability, by a standard coupon collector argument. The
expected minimum deviation of cover (or say controller-
switch matching) picked in this way is O(logn) - OPTy <
O(logn) - OPT', where OPTy is the cost of an optimal solu-
tion to the LP-relaxation.

Algorithm 2 shows the formal description of LBDC-RR.

576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.2, FEBRUARY 2017

Algorithm 2. Randomized Rounding (LBDC-RR)

1 Let x = p be an optimal solution to the LP;

2 foreach set S; € S do

3 Pick S; with probability xg,

4 repeat > get ¢ log n subcollections
5 Pick a subcollection as a min-cover

6 until execute clogn times

7 Compute the union of subcollections in C.

Next let us compute the probability that a switch element
a € U is covered by C. Suppose that a occurs in k sets of S.
Let the probabilities associated with these sets be py, ..., p;.
Since a is fractionally covered in the optimal solution,
p1 +p2+ - +pr > 1. Using elementary calculus, it is easy
to show that under this condition, the probability that a is
coverd by C is minimized when each of the p;'s is 1/k. Thus,

1\" 1
Pr|a is covered by C] > 1 — (1 f%) >1-—-,
e
where e is the base of natural logarithms. Hence each ele-
ment is covered with constant probability by C.
To get a complete switch set cover, we can independently
pick clogn such subcollections. And then we compute their

union, say C’, where cis a constant such that (%)dogn <t
Then we can obtain the following probability,

clogn
/ 1
[Pr]a is not covered by C'] < (—) <—.
e 4n
Summing up all switch elements a € U, we get
1

Pr[Cl is not a valid switch set cover] < n - ™ <
n

=

Therefore the LBDC-RR algorithm is efficient and we can
solve the LBDC problem using linear programming and
randomized rounding.

4 ALGORITHM DESIGN

Using Linear programming and rounding, we can perfectly
solve LBDC theoretically. However, it is usually time con-
suming and impractical to solve an LP in real-world appli-
cations. Thus, designing efficient and practical heuristics for
real systems is essential. In this section, we will propose a
centralized and a distributed greedy algorithm for switch
migration, when the traffic load becomes unbalanced
among the controllers. We then describe OpenFlow based
migration protocols that we use in this system.

4.1 Centralized Migration

Centralized Migration is split up into two phases. The first
phase is used for configuring and initializing the DCN. As
the traffic load changes due to various applications, we
have to come to the second phase for dynamical migration
among devolved controllers.

Fig. 2 illustrates the general workflow of Centralized
Migration, which includes Centralized Initialization and
Centralized Regional Balanced Migration.

Centralized Initialization. First we need to initialize the cur-
rent DCN, and assign switches to the controllers in its

Traffic Varies

Unbalanced
State

check next controller(—\

Network
nitializatio

Migration

=
Completed L‘L\r;
O
Regional g
Migration L
State

Fig. 2. Dynamic load balancing workflow of LBDC.

potential controller set. We design a centralized initialization
algorithm (LBDC-CI) for the initialization process. In order
to get rid of the dilemma where we have to select from con-
flict switches or controllers, we first present the Break Tie Law.

Break Tie Law. (1) When choosing s; from S, we select the
one with the largest weight. If several switches have the
same weight, the one with the smallest |PC(s;)] is preferred.
If there are still several candidates, we randomly choose
one. (2) When choosing ¢; from C, we select the one with
the minimum weight. If several controllers have the same
weight, the one with the smallest |[RS(¢;)| is preferred. If
there are still several candidates, we choose the closer con-
troller by physical distance. Finally, if we still cannot make
a decision, just randomly choose one.

Then we design LBDC-CI as shown in Algorithm 3.

Algorithm 3. Centralized Initialization (LBDC-CI)

Input : S with w(s;); C with w(¢;);

Output: An m-Partition of S to C'

1 RemList={5s,,59,...,5.};

3 while RemList # () do

4 Pick s; from RemList;

Let £ = arg min {w(c;) | ¢; € PC(s;)};
Assign s; to ¢, (by break Tie Law);
Remove s; from RemList;

N o Q1

LBDC-CI needs to search the RemlList to assign the
switches. This process takes running time O(n). While loop
will be executed once for each switch in RemList, which
takes O(m). Hence in the worst case the running time is
O(mn). If we use a priority heap to store the RemList, we
can improve the performance and reduce the overall run-
ning time to O(m logn).

As the system runs, traffic load may vary frequently and
will influence the balanced status among devolved control-
lers. Correspondingly, we have to begin the second phase
and design the centralized migration algorithm (LBDC-CM)
to alleviate the situation.

Centralized Regional Balanced Migration. During the migra-
tion process, we must assess when the controller needs to
execute a migration. Thus we come up with a threshold and
an effluence to judge the traffic load balancing status of the
controllers. Here we define Thd as the threshold and Efn as
the effluence. If the workload of a controller is lower than or
equal to Thd, it becomes relatively idle and available to

GAO ET AL.: TRAFFIC LOAD BALANCING SCHEMES FOR DEVOLVED CONTROLLERS IN MEGA DATA CENTERS 577

receive more switches migrated from those controllers with
workload overhead. If the workload of a controller is higher
than Efn, it is in an overload status and should assign its
switches to other idle controllers. Some measurement stud-
ies [21] of data center traffic have shown that data center
traffic is expected to be linear. Thus we set the threshold
according to the current traffic sample and the historical
records, by imitating Round-Trip Time (RTT) and Timeout
of TCP [22]. This linear expectation uses two constant
weighting factors o and B, depending on the traffic features
of the data center, where0 < o < land g > 1.

(1) Naive LBDC-CM. We will first raise a naive algorithm
for LBDC-CM. We will run naive LBDC-CM periodically
and divide the running time of the system into several
rounds. We use Avgj,s and Avg,q, to represent the average
workload of the last sample round and the current sample
round. These two parameters are used together to decide
when to start and stop the migration. In each round, we
sample the current weight of each controller, and calculate
Avgnow = Y ieq w(e;)/m. In all, the Linear Expectation can be
computed as follows:

(14)

Thd = & - Avgnow + (1 —) - AvGiast
Efn = B-Thd.

The core principle of LBDC-CM is migrating the heaviest
switch to the lightest controller greedily. Algorithm 4
describes the details. Note that AN(¢;) denotes the neighbor
set of ¢;.

Algorithm 4. Centralized Migration (LBDC-CM)

Input: S with w/(s;); C with v/ (¢;);
PendList = OverList = {0};
Step 1: Add ¢; — OwverList if w'(¢;) > Efn;
Step 2: Find ¢,,, of max weight in OverList;
if 3¢, € AN(¢y) : w'(c,) < Thd then
repeat
Pick s, € RS(c;,) of max weight;
if 3¢y € AN(c) N PC(sm) = w'(¢cy) < Thd
then Send s, — ¢
7 else Ignore the current s,, in ¢,
8 until w'(¢,) < Thdorall w'(cs) > Thd;
9 ifu/'(¢,) > Efnthen move ¢, to PendList
10 else remove c,, from OverList
11 else
12 Move ¢, from QuerList to PendList;
13 Step 3: Repeat Step 2 until OQverList = {0};
14 Let OwerList = PendList, Repeat Step 2 until PendList
becomes stable;
15 Step 4: Now PendList has several connected components
CC; (1< <|CC));
16 foreach CC; € CC do
17 Search the |J “je(,qAN(cj);
W (CCUAN(CC)).

NG W IN -

18 Compute AVGiocal = W,

19 while w/'(¢;) > v - avgiopear : ¢; € CC; do

20 Migrate s, € RS(¢)) t0 ¢ € AN(CCy);
21 remove ¢; € CC; from PendList;

22 Step 5: Repeat Step 4 until PendList is stable.

The naive LBDC-CM consists of five steps. In Step 2,
it searches the OwerList to find ¢, which takes O(m).
Next, it repeatedly migrates switches from the OverList
to corresponding controllers, which takes O(mn). Step 3
invokes Step 2 for several times until the OwverList is
empty and makes the PendList become stable, which
takes O(m?n). Step 4 and Step 5 balance the PendList
locally as Step 2 and 3. In the worst case, the running
time is O(m’n). By using a priority heap to store the
OverList and PendList, we can reduce the time complex-
ity to O(mn logm).

(2) Limited LBDC-CM. In our naive version, we simply
suppose that all controllers have unlimited processing abili-
ties. However, in real conditions, the performance of each
controller will vary a lot. Thus, although naive LBDC-CM
balances every controller with almost the same traffic load
after several rounds, some of them will work in an over-
loaded state. For example, consider the following condition:
there are three controllers ci, ¢, ¢3. The maximum capacity
for ¢; is A, for ¢y is 2\ and for c3 is 4. The total weight of all
switches in this system is 6. If our naive LBDC-CM works
perfectly, then each controller will have a load of 2X in the
end. Definitely, ¢; works in an overloaded status, and will
become the bottleneck of the system. Yet c3 only makes use
of 50 percent of its maximum abilities. Thus in fact, the
naive LBDC-CM only balances the value of load among
devolved controllers, instead of balancing the performance
of processing traffic load.

Correspondingly, we design an improved algorithm as
limited LBDC-CM. To reconfigure the system when it is
unbalanced, we still need a threshold parameter and an
effluence parameter for each controller. But now different
controllers will have different parameter values, and we use
two sets to store them: ThdList = {Thd,...,Thd,} and
EfnList = {Efni,...,Efn,}. For controller ¢;, we use
Desi ~ to denote its deserved workload of the current
round, and use Des,, to denote the deserved workload of
the last round. Then these parameters are computed as fol-
lows:

Desi = 2um1W(5).
Z]’:l Wi (c;)
Thd; = a - Des',, + (1 —a) - Desi,,

: wm(ci)
(15)

Here the maximum load that controller ¢; can hold is
denoted as w;,(¢;). Meanwhile, we modify the definition of
standard deviation, and define ¢’ as Relative Weight Devia-

T2
tion: o/ = /L 3", (2?:1 w(s;) - @ — Des?ww) . We believe

this reference index is more appropriate. We use Des! in
Relative Weight Deviation to evaluate limited LBDC-CM
and LBDC-CM with switch priority. We use Avgpe, to
replace Des',, in RWD to evaluate naive LBDC-CM and
LBDC-DM.

According to Eqn. (15), the procedure of the limited
LBDC-CM is very similar as the naive LBDC-CM in
Algorithm 4. The only difference comes from the com-
parison steps, when to judge whether a controller is

overloaded, we need to compare w'(¢;) to its local Efn;

578 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.2, FEBRUARY 2017

and Thd;. Furthermore, in Step 4 (Line 18 of Algo-

. /(CC;UAN(CC;
rithm 4), we need to calculate €0 = %, and
m 3 1

consider candidate controller ¢; if w'(¢;) > ¥ - €ocar
wy, (¢;) instead of y - avgiocar-

Limited LBDC-CM uses the current load ratio of each
controller other than the value of the current weight, to
judge whether the devolved controllers are unbalanced.
Thus, we only need to calculate the average percentage of
resources utilized in the system, and migrating switches
from the controllers that have high percentages to those
with low percentages. The time complexity is the same as
naive LBDC-CM, which takes O(m?n), and can be reduced
to O(mn logm) using priority heap. For space complexity,
we need to use several lists to store the following parame-
ters: the weight of a switch, the current of a controller, the
maximum capacity of a controller, the threshold and efflu-
ence of each controller, as well as the PendList and the
OverList. Each of them requires a linear array to store,
which takes O(n). We also need two matrices to store the
potential mapping and real mapping between controllers
and switches, which takes O(n?). Thus, the space complex-
ity is O(n?).

(3) LBDC-CM with Switch Priority. Our scheme of lim-
ited LBDC-CM can work well in a comparative intense
structure. That is to say, if the distance between a switch
and all its potential controllers are close enough, so that
migrating switch s; from controller ¢; to controller c;
will not influence the processing speed of messages, then
limited LBDC-CM will have a good performance. How-
ever, in some distributed data centers that have a very
sparse structure, it is better to attach a switch to its
nearby controllers. Meanwhile, as we have mentioned,
the performance of controllers in the network system
may be very different. Some of the controllers may have
strong computing capacities, and thus can process mes-
sages in a higher speed. In real network systems, some-
times we hope certain messages or certain areas can
have a higher priority in the whole structure, and we
want to allocate switches in this region to those strong
controllers to increase the value of the system.

Thus, though for a certain switch s;, it can be attached
to any controller ¢; in its potential controller set PC(s;),
the performance, or the value of the whole system may
vary according to the real mapping strategy. If the value
we get for s; monitored by ¢; is 6, and for s; monitored
by ¢y is 26, then its better to distribute s; to ¢y, if the cur-
rent load of both controllers are below their thresholds.
Thus we come up with LBDC-CM with switch priorities.
In this scheme, each switch has a value list, which stores
the value of each mapping between this switch and its
potential controllers. We want to balance the traffic load
of the network and make the whole value as large as
possible. In LBDC-CM, we use v;; to denote the value
we can get by attaching switch s; to controller ¢;. These
values are stored in a matrix Value, and if ¢; is not in the
potential controller set of s;, then v;; = 0. We also con-
sider the maximum capacity of each controller as we did
in the limited LBDC-CM.

The implementation of this algorithm is quite similar to
limited LBDC, except that we changed the migration

scheme used in Step 2 of limited LBDC-CM, which is shown
in Algorithm 5.

Algorithm 5. LBDC-CM with Switch Priority
1 Step 2: Find ¢,, € OverList with max o/ (em),

2 i Fe, € AN(n) : w/(cy) < Thd, then "

3 repeat

4 if 3¢y € AN(cp): W' (¢y) < Thdy then
5 Sort PS(cy,) by vif: s; € PS(cm);

6 Pick s, with max vy in ¢,,,, and pick

max sy to break tie;

7 Send s, — cy;

8 until w'(¢,,) < Thd,, or all w'(cy) > Thdy;

9 if W'(¢,,) > Efn,, then move ¢, to PendList;
10 else remove ¢, from QuerList
11 else

12 Move c,, from OverList to PendList;

In this scheme, we add the process of sorting the
switch list according to the value matrix, which will take
O(logn) if we use heap sorting. Thus the time complexity
is O(nlogm logn) if we use a priority heap to store the
PendList and the OverList. And the space complexity is
still O(n?) since we need some matrices to store the
value and the mapping relations.

4.2 Distributed Migration

The centralized algorithm is sometimes unrealistic for
real-world applications, especially for large data center
with regional controller. It is time consuming and com-
plicated for a devolved controller to get the global infor-
mation of the whole system. Thus it is natural to design
a practical and reliable distributed algorithm [23]. We
assume a synchronous environment to deploy our algo-
rithm. For the distributed algorithm, it is still divided
into two phases.

Distributed Initialization. During this phase, we assign
each switch a corresponding controller randomly. By send-
ing control messages to the controller’s potential switch set,
the controller can determine the correct assignment. Algo-
rithm 6 shows the distributed initialization process.

Algorithm 6. Distributed Initialization (LBDC-DI)

1 Send “CoNTROL” message to my own PS(¢;p,)
2 s; reply the first “CoNTROL” message with “YEs”, all other
messages after that with “No”.
3 Move s; with “YEs” from PS(cpy) to RS(cmy)-
4 Wait until all the switches in PS(c¢y,) reply, and then
terminate.

The correctness of LBDC-DI is easy to check. After ini-
tialization, we then design the distributed migration algo-
rithm (LBDC-DM) to balance the workload of the system
dynamically.

Distributed Regional Balanced Migration. In the second
phase, the controller uses the threshold and the effluence
to judge its status and decide whether it should start the
migration. Since in a distributed system, a controller can
only obtain the information of its neighborhood, the
threshold is not a global one that suits for all the

GAO ET AL.: TRAFFIC LOAD BALANCING SCHEMES FOR DEVOLVED CONTROLLERS IN MEGA DATA CENTERS 579

controllers, but an independent value which is calculated
by each controller locally. Also the algorithm runs peri-
odically for several rounds. In each round, each control-
ler samples AN(¢;) and applies the Linear Expectation
again:

Zc,.eAN(Q)ﬂ; w(cy)
Avg = W "
Thd = o - AvGnow + (1 — @) - Avgiast
Efn =g Thd.

LBDC-DM aims at monitoring the traffic status of itself
by comparing current load with its threshold. When the
traffic degree is larger than Efn, it enters the sending state
and initiates a double-commit transaction to transfer heavy
switches to nearby nodes.

Algorithm 7 shows the distributed migration procedure.

Algorithm 7. Distributed Migration (LBDC-DM)

Sending Mode: (when w'(cn,) > Efn)
1if 3¢; € AN(C,,y) in receiving or idle then
2 add ¢; — RList (receiving > idle).
3 repeat
4 Pick sy, with max weight, refer PC/(s,,42),
find ¢; € RList with min weight, send
“HELP[Cyny, Smaz)” O ¢j, then check response:
if response="Acc” then
send “MIG[¢ny, Smaz)” tO ¢;
else if response="Rg)”then
remove c¢; from RList, find next c¢;, send
“HELP” again, check response.
9 Check response, delete s,,,, when receiving
“CONFIRM” message, terminate.
10 until w'(¢py) < Efn;
Receiving Mode: (when w'(cp,) < Thd)
11 When receiving “HELP” messages:
12 repeat
13 receive switches for c; and return “Acc”;
14 until w(c;j) + Smaee > Thd;
15 Now all “HELP” messages will reply “Rgj”
16 When receiving “MIG” message:
17 Spmae — ¢j, send back “CONFIRM” message;
Idle Mode: (when Thd < w'(cymy) < Efn)
18 When receiving “HELP” message:
19 repeat
20 receive switches for ¢; and return “Acc”;
21 until w(c;) + spaz > Efn;
22 When receiving “MIG”, migrate as above;

(OB e NNe) |

The main difference between the centralized and the dis-
tributed migration is that the former can get information in
a global view and make better decisions, but it will also
cause more processing times and will become potential bot-
tleneck of the system. On the contrary, for the controllers in
the distributed version, each controller will only collect
information from its neighborhood and can only make
proper migrations within this area. Though the distributed
version cannot obtain a global optimal balancing status, it is
more practical to deploy in real systems. Meanwhile, it can
efficiently avoid the problem in the centralized scheme that
the collapse or mistake of the central processor will affect
problem of the system.

Their difference is also shown in the definition of the
threshold (Thd). In the centralized version, the threshold is
affected by the utilizing ratio of the whole system, which is
the same for each controller in the centralized scheme.
While in the distributed version, the threshold of each con-
troller is calculated by its local information instead of the
global information, and the deserved utilizing ratio of each
controller is actually different from each other.

By using our distributed scheme, for conditions shown in
Fig. 1, controller ¢; and controller c; will get the information
of each other, calculate its Thd and Efn value, and decide
its status. If controller ¢; is in the sending mode and control-
ler ¢; is in the receiving mode, then ¢; will migrate some of
its dominating switches to ¢; according to Algorithm 7.

4.3 OpenFlow Based Migration Protocol

To maintain a well-balanced operating mode when a
peak flow appears, switches should change the roles of
their current controllers while controllers should change
their roles by sending Role-Request messages to the
switches. These operations require the system to perform
a switch migration operation. However, there is no such
mechanism provided in the OpenFlow standard. Open-
Flow 1.3 defines three operational modes for a controller:
master, slave, and equal. Both master and equal control-
lers can modify switch state and receive asynchronous
messages from the switch. Next, we design a specific
protocol to migrate a switch from its initial controller to
a new controller.

It is assumed that we are not able to manipulate the
switch in our migration protocol design, while it is techni-
cally feasible to update the OpenFlow standard to imple-
ment our scheme. However, there are two additional issues.
First, the OpenFlow standard clearly states that a switch
may process messages not necessarily in the same order as
they are received, mainly to allow multi-threaded imple-
mentations. Second, the standard does not specify explicitly
whether the order of messages transmitted by the switch
remains consistent between two controllers that are in mas-
ter or equal mode. We need this assumption for our proto-
col to work, since allowing arbitrary reordering of messages
between two controllers will make an already hard problem
significantly harder.

Our protocol is built on the key idea that we need to
first create a single trigger event to stop message proc-
essing in the first controller and start a same message in
the second one. We can exploit the fact that Flow-
Removed messages are transmitted to all controllers oper-
ating in the equal mode. We therefore simply insert a
dummy flow into the switch from the first controller and
then remove the flow, which will provide a single trigger
event to both the controllers in equal mode to signal
handoff. Our proposed migration protocol for migrating
switch s, from initial controller ¢; to target controller c¢;
works in four phases as shown below.

Phase 1. Change the role of target c; to equal mode.
Here, controller ¢; is first transitioned to the equal mode
for switch s,,. Initially master ¢; initiates this phase by
sending a start migration message to c; on the controller-
to-controller channel. ¢; sends the Role-Request message
to s, informing that it is an equal. After ¢; receives a

580 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.2, FEBRUARY 2017

Role-Reply message from s,,, it informs the initial master
¢; that its role change is completed. Since ¢; changes its
role to equal, it can receive asynchronous messages from
other switches, but will ignore them. During this phase,
¢; remains the only master and processes all messages
from the switch guaranteeing liveness and safety.

Phase 2. Insert and remove a dummy flow. To determine
an exact instant for the migration, ¢; sends a dummy Flow-
Mod command to s,, to add a new flow table entry that does
not match any incoming packets. We assume that all con-
trollers know this dummy flow entry a priori as part of the
protocol. Then, it sends another Flow-Mod command to
delete this entry. In response, the switch sends a Flow-
Removed message to both controllers since ¢; is in the equal
mode. This Flow-Removed event provides a time point to
transfer the ownership of switch s, from ¢; to ¢;, after which
only ¢; will process all messages transmitted by s,. An
additional barrier message is required after the insertion of
the dummy flow and before the dummy flow is deleted to
prevent any chance of processing the delete message before
the insert. Note that we do not assume that the Flow-
Removed message is received by ¢; and ¢; simultaneously,
since we assume that the message order is consistent
between ¢; and c¢; after these controllers enter the equal
mode, meaning that all messages before Flow-Removed will
be processed by ¢; and after this will be processed by c¢;.

Phase 3. Flush pending requests with a barrier. While c;
has assumed the ownership of s, in the previous phase, the
protocol is not complete unless ¢; is detached from s,,. How-
ever, it cannot just be detached immediately from s,, since
there may be pending requests at c; that arrives before the
Flow-Removed message. This appears easily since we assume
the same ordering at ¢; and ¢;. So all ¢; needs to do is proc-
essing all messages arrived before Flow-Removed, and
committing to s,,. However, there is no explicit acknowl-
edgment from the switch that these messages are commit-
ted. Thus, in order to guarantee all these messages are
committed, ¢; transmits a Barrier-Request and waits for the
Barrier-Reply, only after which it signals end migration to
the final master c;.

Phase 4. Assign controller ¢; as the final master of s,,. ¢;
sets its role as the master of s,, by sending a Role-Request
message to s,,. It also updates the distributed data store to
indicate this. The switch sets ¢; to slave when it receives the
Role-Request message from c;. Then ¢; remains active and
processes all messages from s, for this phase.

The above migration protocol requires six round-trip
times to complete the migration. But note that we need to
trigger migration only once in a while when the load condi-
tions change, as we discussed in the algorithm design
subsections.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our cen-
tralized and distributed protocols. We consider the case
where traffic demand changes and examine whether the
metric of balanced workload controllers is minimized.
We also take the number of migrated switches into con-
sideration. Furthermore, we check how different parame-
ters will influence the results.

i . 60

. »
8
7

40
6
5

30
4
2 20
2
1

10

&8 9 10

Fig. 3. Initial state.

5.1 Environment Setup

We construct simulations by Python 2.7 to evaluate the per-
formance of our designs. We place 10,000 switches and 100
controllers in a 100 x 100 m? square. Switches are evenly
distributed in this square, say, each switch is 1 m away
from any of its neighbors. The controllers are also evenly
distributed and each controller is 10 m away from its neigh-
bor. Each controller can control all the switches within
30 m, and can communicate with other controllers within
the range of 40 m. We assume the weight of each switch fol-
lows Pareto distribution with its parameter o, = 3. We build
a small simulation to choose the most appropriate «, g and
v, so that the environment we build can be very close to the
real situation, in terms of the traffic condition, workload of
controllers, and migration frequency, etc. [13], [14], [15],
[24]. Thus we set a=0.7,=15y =13 as default
configuration.

5.2 System Performance Visualization Results

We use the default configuration described above to test the
performance of the system. We first apply initialization and
change the traffic demands dynamically to emulate unpre-
dictable user requests. Then we apply naive LBDC-CM and
other variants to alleviate the spot congestion. We use rela-
tive weight deviation to evaluate the performance of our
algorithms.

We examine the performance of our four algorithms.
Consider a DCN with 10 x 10 controllers locating as an
square array. At the beginning of a time slot, the weights of
switches are updated and then we run the migration algo-
rithms. The weight of switches follows Pareto distribution
with o, = 3. Fig. 3 indicates the system initial traffic states,
Different color scale represents different working state of a
controller. The darker the color is, the busier the controller
works. Figs. 4, 5, 6 and 7 illustrate the performance of the
naive LBDC-CM, limited LBDC-CM, Priori LBDC-CM and
LBDC-DM respectively. We can see that after the migration,
the whole system becomes more balanced.

Actually, the performance of LBDC-DM is poor when the
number of the controllers is relatively limited. This phenom-
enon is attributed to the system setting that one controller
can only cover switches within 30 m. When the number of
controllers is few, more switches should be controlled by
one particular controller without many choices. As the

GAO ET AL.: TRAFFIC LOAD BALANCING SCHEMES FOR DEVOLVED CONTROLLERS IN MEGA DATA CENTERS 581

60
10
? B so
8
g ‘ 40
6 |
3 30
4
? ‘ -
2 |
1. - ‘ - 10
1 2 3 45 6 7 8 9 10

Fig. 4. Naive LBDC-CM migration.

00
9

.— 60

| 50
8
7
40
6
sk
. | 30
4
3|
20
2
1
1 2 3 4 5 6 7 8 910
Fig. 5. Limited LBDC-CM migration.
60
10
9
50
8
7
40
6
sk
. | 30
4
3
| 20
2. L §
1
o 0

1 2 3 4 5 6 7 8 9 10

Fig. 6. Priori LBDC-CM migration.

number of the controller increases, LBDC-DM can achieve a
better performance and a higher improvement ratio.

Intuitively, increasing the number of controllers may
increase the deviation, but it may lead to less migration fre-
quency. To balance the number of controllers and the migra-
tion frequency, we need to carefully set «, 8, and y values. If
there are sufficient controllers to manage the whole system,
we can adjust the three parameters such that the system
will maintain a stable state longer. While if the number of
controller reduces, we have to raise the migration threshold
to fully utilize controllers. The effect on these parameters
are further discussed in Section 5.4.

30

- 20

— k) W s a1 00 O O

L — 10
1 2 3 45 6 7 8 910

Fig. 7. LBDC-DM migration.

—— [nitial S1ate
300 -4+ Naive LDBC-CM
2 +# Limited LBDC-CM
-% 250 4 Priori LBDC-CM
2 - - LBDC-DM
S 200
=
= *
= 150
2
Z
= 100
o
-5
50 i g g %
i iy
ol b S '"--:‘1f'-'!"."}‘l&l-lou‘ecle::.
30 50 70 90 10 130 150 170 190 210
Controller #

Fig. 8. Relative weight deviation protocol comparison.

%
-
o
— ..
®w o
‘g PEEr el
£
:
£ W . — &
& - @ - Naive LDBC-CM
@ Limited LBDC-CM
= + Priori LBDC-CM
* -4 - LBDC-DM
40
30 50] 50 io 130 140 170 190 210

Controller #

Fig. 9. Performance improvement for different protocols.

5.3 Horizontal Protocol Performance Comparison
We designed three variations of LBDC-CM: naive LBDC-
CM, which is the simplest and applicable to most of the
cases. While if the controllers are heterogeneous or the
switches have a space priority to its closest controller physi-
cally, then we can implement limited LBDC-CM or LDBC-
CM with switch priority respectively. Finally we have a dis-
tributed LBDC-DM protocol. Now let us compare the per-
formance of the four migration protocols.

Comparison on Number of Controllers. First, we vary the
number of controllers from 30 to 210 with a step of 20 and
check the change of relative weight deviation of the system.
The simulation results are shown in Figs. 8 and 9. We com-
pare the relative weight deviation of the initial bursty traffic
state and the state after the migration. We find that after the
migration, the relative weight deviation of all the controllers
decreases. It depicts that our four protocols improve the

582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28,

b - @ - Naive LDBC-CM
1404 <@ Limited LBDC-CM
£ 120 # Priori LBDC-CM
o | -4 LBDC-DM
=
é 100} LT
= - :-‘:,__
= 80 g
3 *a L
= . et T
T @ L : " AL
] L 5 Ttk
5 B .
5 40 el :
TE-..
200
20 - -—em
L] 5 10 15 20 25 30 a5 40 45 30 55

Time slots

Fig. 10. Relative weight deviation without traffic changes.

system performance significantly compared with the initial
state, whether in the relative weight deviation part or in the
improvement part. As the number of controllers increases,
the improvement ratio is also increasing. It is quite intuitive
that more controllers will share jobs to reach a balanced
state. Both figures show that our algorithm has a pretty
good performance when the number of controllers grows,
which indicates that our scheme is suitable for mega data
centers.

The naive LBDC-CM performs the best because it con-
siders all possible migrations from a global prospective.
It is even better than the performance of the LBDC-DM,
but the difference between them is decreasing as the
number of the controllers increases. It is better if we add
more controllers to the network to achieve a balanced
traffic load. In reality we may only run the other proto-
cols such as the LBDC-DM, limited LBDC-CM and
LBDC-CM with switch priority. For the limited LBDC-
CM, the maximum workload of controllers also follows
Pareto distribution with «, = 3, and we amplify it with a
constant to make sure the total traffic load not exceed
the capacity of all controllers. For LBDC-CM with switch
priority, we allocate a value to each mapping of a switch
and a controller, which is inversely proportional to their
distance, we can also see that it has a significant growth
as the number of controller increases. Overall we can
conclude that all of the four protocols performs quite
well in balancing the workload of the entire system.

Run-Time Performance w.r.t Static Traffic Loads. Figs. 10
and 11 show the relative weight deviation and migrated
switch number w.r.t. the four protocols at different time slot
under the condition that the global traffic load is not
changed all the time (the weight of each switch is constant).
We can see that the relative weight deviation is decreasing,
but the values of limited LBDC-CM and LBDC-CM with

1600}

& - Naive LDBC-CM
1400 * # Limited LBDC-CM
: Rt L Sl W # Priori LBDC-CM
1200 D 4 24 - b i . - LBDC-DM
st . n
g .
£ 1000 i P N, L.
] s wh
'?_, BOG - A
8
)
= OO0}
= >
T -
.
200}
0 5 10 15 20 25 30 35 30 g £ 73

Time slots

Fig. 11. Migrated switch without traffic changes.

NO.2, FEBRUARY 2017

160

=4 - Naive LDBC-CM
1404 | li i
i Limited LBDC-CM
£ 120 | 4 Priori LBDC-CM
g |-~ LBDC-DM
100
a
3
2 Aenmaey o
2 60 . e g
3 “u. “m, ey
&2 40 3 ... 3
.- 3 oy
21 e |
- &}
0
] 10 15 20 25 30 35 40 45 50 55

Time slots

Fig. 12. Relative weight deviation as traffic changes.

switch priority are higher than that of the naive LBDC-CM.
This is because through limited LBDC-CM and LBDC-CM
with switch priority, each controller has a different upper
bound, which will influence the migration. For example, if
some switches can only be monitored by a certain controller,
and that controller is overloaded, then it will cause a high
relative weight deviation since we cannot remove the
switches to other controllers. In addition, controllers in
LBDC-CM with switch priority even have a preference
when choosing potential switches. In terms of migrated
switch numbers, we can see that with time goes by, all four
protocols remain stable on the number of migrated
switches. LBDC-DM has the lowest number of migrated
switches because of its controllers can only obtain a local
traffic situation, resulting in the relatively low frequency in
migrating switches.

Run-Time Performance w.r.t. Dynamic Traffic Loads. Figs. 12
and 13 show the relative weight deviation and migrated
switch number w.r.t. the four protocols at different time slot
under the condition that the global traffic load is changed
dynamically (the weight of each switch is dynamic). Even if
the traffic load is changing at different time slots, the
migrated switch number stays in a relatively stable status. If
controller ¢; is overloaded, it will release some dominating
switches to its nearby controllers. However, if in the next
round, the switches that monitored by those controllers
gain higher traffic load and make the nearby controllers
overloaded, then the switches may be sent back to controller
¢1. Thus, to avoid such frequent swapping phenomenon, we
can set an additional parameter for each switch. If its role
has been changed in the previous slot, then it will be stable
at current state.

We may also consider the deviation of load balancing
among switches to better improve the system perfor-
mance. Since we consider the balancing problem among

1600} - & - Naive LDBC-CM
% @ Limited LBDC-CM
1400} N 3 2
- YL IO + Priori LBDC-CM
o BLill o, e ke
= 1200} . - * -. . - LBDC-DM
= ‘ * R 2
B ik o b i
5 1000} ¥ i ST ey e, L
i i ™
B 500 R ”»
E ’
2 600} ,-'
= +
400} .
.
200}
il
o 5 10 15 20 pra 30 35 40 45 50 55
Time slots

Fig. 13. Migrated switch as traffic changes.

GAO ET AL.: TRAFFIC LOAD BALANCING SCHEMES FOR DEVOLVED CONTROLLERS IN MEGA DATA CENTERS 583

TABLE 2
Influence of «, B and y Factor
o B y Initial LBDC-CM Rate Switch #
025 115 115 181.87 14.41 92.08 6,344
025 115 135 18854 16.90 91.04 6,236
025 135 1.15 193.81 11.83 93.90 6,536
025 135 135 18276 16.18 91.15 6,224
075 115 1.15 196.73 12.01 93.90 6,705
075 115 135 187.62 17.29 90.79 6,244
075 135 115 178.77 15.46 91.35 6,305
075 135 135 181.01 14.29 92.11 6,231

controllers, which is like the “higher level” of balancing
problem among switches, we can implement some load
balancing strategies among switches [25], [26], [27], [28]
and combine the two-layers together to achieve a better
solution.

5.4 Parameter Specification

Next we explore the impact of the threshold parameters
o, p,y. Here « is a parameter to balance conservativeness
and radicalness, g is a crucial parameter which decides
whether to migrate switches or not in four protocols, and y
is used in Step 4 of LBDC-CM. We examine the impact of
changing «, 8 and y altogether. Table 2 lists the statistics for
o ranging between 0.25 and 0.75, B ranging between 1.15
and 1.35, y ranging between 1.15 and 1.35. The improve-
ment rate and the number of migrated switches is mostly
decreasing as p increases, which is actually correct accord-
ing to the definition of the threshold.

6 RELATED WORK

As data center becomes more important in industries, there
have been tremendous interests in designing efficient
DCNs [1], [2], [29], [30], [31], [32]. Also, the effects of traffic
engineering have been proposed as one of the most crucial
issues in the area of cloud computing.

The existing DCN usually adapts a centralized con-
troller for aggregation, coordination and resource man-
agement [1], [2], [10], [31], which can be energy efficient
and can leverage the failure of using a global view of
traffic to make routing decisions. Actually, using a cen-
tralized controller makes the design simpler and suffi-
cient for a fairly large DCN.

However, using a single omniscient controller introduces
scalability concerns when the scale of DCN grows dramati-
cally. To address these issues, researchers installed multiple
controllers across DCN by introducing devolved controllers
[4], [5], [6], [7], [8], [33] and used dynamic flow as an exam-
ple [5] to illustrate the detailed configuration. The introduc-
tion of devolved controllers alleviates the scalability issue,
but still introduce some additional problems.

Meanwhile, several literatures in devising distributed
controllers [6], [7], [8] have been proposed for SDN [34] to
address the issues of scalability and reliability, which a cen-
tralized controller suffers from. Software-Defined Network-
ing is a new network technology that decouples the control
plane logic from the data plane and uses a programmable
software controller to manage network operation and the
state of network components.

The SDN paradigm has emerged over the past few years
through several initiatives and standards. The leading SDN
protocol in the industry is the OpenFlow protocol. It is spec-
ified by the Open Networking Foundation (ONF) [35],
which regroups the major network service providers and
network manufacturers. The majority of current SDN archi-
tectures, OpenFlow-based or vendor-specific, relies on a sin-
gle or master/slave controllers, which is a physically
centralized control plane. Recently, proposals have been
made to physically distribute the SDN control plane, either
with a hierarchical organization [36] or with a flat organiza-
tion [7]. These approaches avoid having a SPOF and enable
to scale up sharing load among several controllers. In [34],
the authors present a distributed NOX-based controllers
interwork through extended GMPLS protocols. Hyper-
flow [7] is, to our best knowledge, the only work so far also
tackling the issue of distributing the OpenFlow control
plane for the sake of scalability. In contrast to our approach
based on designing a traffic load balancing scheme with
well designed migration protocol under the OpenFlow
framework, HyperFlow proposes to push (and passively
synchronize) all state (controller relevant events) to all con-
trollers. This way, each controller thinks to be the only con-
troller at the cost of requiring minor modifications to
applications.

HyperFlow [7], Onix [34], and Devolved Controllers [4]
try to distribute the control plane while maintaining logi-
cally centralized using a distributed file system, a distrib-
uted hash table and a pre-computation of all possible
combinations respectively. These approaches, despite their
ability to distribute the SDN control plane, impose a strong
requirement: a consistent network-wide view in all the con-
trollers. On the contrary, Kandoo [36] proposes a hierarchi-
cal distribution of the controllers based on two layers of
controllers. Meanwhile, DevoFlow [37] and DAIM [38] also
solve these problems by devolving network control to
switches.

In addition, [39] analyzes the trade-off between central-
ized and distributed control states in SDN, while [40] pro-
poses a method to optimally place a single controller in an
SDN network. Authors in [41] also presented a low cost net-
work emulator called Distributed OpenFlow Testbed
(DOT), which can emulate large SDN deployments.
Recently, Google has presented their experience with
B4 [42], a global SDN deployment interconnecting their
data centers. In B4, each site hosts a set of master/slave con-
trollers that are managed by a gateway. The different gate-
ways communicate with a logically centralized Traffic
Engineering (TE) service to decide on path computations.
Authors in [6] implemented migration protocol on current
OpenFlow standard. Thus switch migration become possi-
ble and we are able to balance the workload dynamically by
presenting the following schemes to overcome the short-
comings as well as improve system performance from
many aspects.

7 CONCLUSION

With the evolution of data center networks, the usage of a
centralized controller has become the bottleneck of the
entire system, and the traffic management problem also

584 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.2, FEBRUARY 2017

becomes serious. In this paper, we explored the implemen-
tation of devolved controllers, used it to manage the DCN
effectively and alleviate the imbalanced load issues.

We first defined the Load Balancing problem for Devolved
Controllers and proved its NP-completeness. We then pro-
posed an f-approximation solution, and developed applica-
ble schemes for both centralized and distributed conditions.
The feature of traffic load balancing ensures scaling effi-
ciently. Our performance evaluation validates the efficiency
of our designs, which dynamically balances traffic load
among controllers, thus becoming a solution to monitor,
manage, and coordinate mega data centers.

ACKNOWLEDGMENTS

This work has been supported in part by the China 973 proj-
ect (2014CB340303), the Opening Project of Key Lab of Infor-
mation Network Security of Ministry of Public Security (The
Third Research Institute of Ministry of Public Security)
Grant number C15602, the Opening Project of Baidu (Grant
number 181515P005267), National Natural Science Founda-
tion of China (Nos. 61472252, 61133006, and 61303202), the
Open Project Program of Shanghai Key Laboratory of Data
Science (No. 201609060001) and China Postdoctoral Science
Foundation (Nos. 2014M560334 and 2015T80433).

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks,” in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2010, pp. 19-19.

[2] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. Mogul, “Spain:
Cots data-center ethernet for multipathing over arbitrary top-
ologies,” in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementation,
2010, pp. 265-280.

[3] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” Commun. Mag., pp. 136-141, 2013.

[4] A.-W. Tam, K. Xi, and H. Chao, “Use of devolved controllers in
data center networks,” in Proc. IEEE Conf. Comput. Commun. Work-
shops, 2011, pp. 596-601.

[5] A.-W.Tam, K. Xi, and H. Chao, “Scalability and resilience in data
center networks: Dynamic flow reroute as an example,” in Proc.
Glob. Telecommun. Conf. IEEE GLOBECOM, 2011, pp. 1-6.

[6] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” in Proc. 2nd
ACM SIGCOMM Workshop Hot Top. Softw. Defined Netw. 2013,
pp. 7-12.

[7] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed con-
trol plane for openflow,” in USENIX INM/WREN (NSDI Work-
shop), 2010, pp. 1-6.

[8] C. Macapuna, C. Rothenberg, and M. Magalhaes, “In-packet
bloom filter based data center networking with distributed
openflow controllers,” in IEEE GLOBECOM Workshops, 2010,
pp. 584-588.

[91 J.Lavaeiand A. Aghdam, “Decentralized control design for inter-
connected systems based on a centralized reference controller,” in
Proc. 45th IEEE Conf. Decis. Control, 2006, pp. 1189-1195.

[10] N. McKeown, et al., “Openflow: enabling innovation in campus
networks,” in ACM SIGCOMM Comput. Commun. Rev., 2008,
pp- 69-74.

[11] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on
software-defined networking,” IEEE Commun. surv. Tutorials,
vol. 17, no. 1, pp. 27-51, Jul.-Sep. 2015.

[12] F. P. Tso, K. Oikonomou, E. Kavvadia, and D. P. Pezaros,
“Scalable traffic-aware virtual machine management for cloud
data centers,” in Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst.,
2014, pp. 238-247.

[13] J. Cao, et al., “Per-packet load-balanced, low-latency routing for
clos-based data center networks,” in Proc. 9th ACM Conf. Emerging
Netw. Exp. Technol., 2013, pp. 49-60.

[14] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal
flow routing in datacenters via local link balancing,” in Proc. 9th
ACM Conf. Emerging Netw. Exp. Technol., 2013, pp. 151-162.

[15] L. Wang, F. Zhang, K. Zheng, A. V. Vasilakos, S. Ren, and Z. Liu,
“Energy-efficient flow scheduling and routing with hard dead-
lines in data center networks,” in Proc. IEEE 34th Int. Conf. Distrib.
Comput. Syst., 2014, pp. 248-257.

[16] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann,
“Ubiflow: Mobility management in urban-scale software defined
iot,” in Proc. IEEE Conf. Comput. Commun., 2015, pp. 208-216.

[17] W. Liang, X. Gao, F. Wu, G. Chen, and W. Wei, “Balancing traffic
load for devolved controllers in data center networks,” in Proc.
IEEE Glob. Commun. Conf., 2014, pp. 2258-2263.

[18] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: fine
grained traffic engineering for data centers,” in Proc. 7th Conf.
Emerging Netw. Exp. Technol., 2011, pp. 1-12.

[19] R. Karp, Reducibility Among Combinatorial Problems. New York,
NY, USA: Springer, 1972.

[20] D. Williamson and D. Shmoys, The Design of Approximation Algo-
rithms. Cambridge, UK: Cambridge Univ. Press, 2011.

[21] T. Benson, A. Akella, and D. Maltz, “Network traffic characteris-
tics of data centers in the wild,” in Proc. 10th ACM SIGCOMM
Conf. Internet Meas., 2010, pp. 267-280.

[22] D. Corner, Internetworking with TCP/IP (Vol.1 Principles, Protocols,
and Architecture), 4th ed., Englewood Cliffs, NJ, USA: Prentice
Hall, 2000.

[23] N. Lynch, Distributed algorithms. San Mateo, CA, USA: Morgan
Kaufmann, 1996.

[24] S. Brandt, K. Foerster, and R. Wattenhofer, “On consistent
migration of flows in SDNs,” in Proc. IEEE Conf. Comput.
Commun., 2016, pp. 1-9.

[25] J. Guo, F. Liu, X. Huang, J. Lui, M. Hu, Q. Gao, and H. Jin, “On effi-
cient bandwidth allocation for traffic variability in datacenters,” in
Proc. IEEE Conf. Comput. Commun., 2014, pp. 1572-1580.

[26] J. Guo, F. Liu, Z. D,]J. Lui, and H. Jin, “A cooperative game based
allocation for sharing data center networks,” in Proc. IEEE Conf.
Comput. Commun., 2013, pp. 2139-2147.

[27]]. Guo, F. Liu, H. Tang, Y. Lian, H. Jin, and]J. C. Lui, “Falloc: Fair
network bandwidth allocation in JaaS datacenters via a bargaining
game approach,” in Proc. 21st IEEE Int. Conf. Netw. Protocols, 2013.

[28] J. Guo, F. Liu, J. Lui, and H. Jin, “Fair network bandwidth alloca-
tion in laaS datacenters via a cooperative game approach,”
in IEEE/ACM Trans. Netw., 2015.

[29] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM SIGCOMM
2008 Conf. Data Commun., 2008, pp. 63-74.

[30] A. Greenberg, J. Hamilton, and N. Jain, “VL2: a scalable and flexi-
ble data center network,” in Proc. ACM SIGCOMM 2009 Conf.
Data Commun., 2009, pp. 51-62.

[31] B. Heller, et al., “Elastictree: Saving energy in data center
networks,” in Proc. 7th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2010, pp. 249-264.

[32] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data
center networks,” in 8th ACM Workshop Hot Top. Netw., 2009,
pp- 1-6.

[33] Y.Li, L. Dong, J. Qu, and H. Zhang, “Multiple controller manage-
ment in software defined networking,” in Proc. IEEE Symp. Com-
put. Appl. Commun., 2014, pp. 70-75.

[34] T. Koponen, M. Casado, N. Gude, J. Stribling, and L. Poutievski,
“Onix: A distributed control platform for large-scale production
networks,” in Proc. 9th USENIX Conf. Oper. Syst. Des. Implementa-
tion, 2010, pp. 1-6.

[35] Open networking foundation (ONF). [Online]. Available: http://
www.opennetworking.org/

[36] S. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proc. 1st Work-
shop Hot Top. Softw. Defined Netw., 2012, pp. 19-24.

[37] A. R. Curtis, J. C. Mogul, J. Tourrilhes, and P. Yalagandula,
“Devoflow: Scaling flow management for high-performance
networks,” in Proc. ACM SIGCOMM Conf., 2011, pp. 254-265.

[38] A. Banjar, P. Pakawat, and B. Robin, “Daim: A mechanism to dis-
tribute control functions within openflow switches,” |. Nefw.,
pp- 1-9, 2014.

[39] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A.
Feldmann, “Logically centralized?: State distribution trade-offs
in software defined networks,” in Proc. 1st Workshop Hot Top.
Softw. Defined Netw., 2012, pp. 1-6.

GAO ET AL.: TRAFFIC LOAD BALANCING SCHEMES FOR DEVOLVED CONTROLLERS IN MEGA DATA CENTERS 585

[40] B. Heller, R. Sherwood, and N. McKeown, “The controller place-
ment problem,” in Proc. 1st Workshop Hot Top. Softw. Defined
Netw., 2012, pp. 7-12.

A. Roy, M. Bari, M. Zhani, R. Ahmed, and R. Boutaba, “Design
and management of dot: A distributed openflow testbed,” in Proc.
ACM SIGCOMM, 2014, pp. 1-2.

S. Jain, et al., “B4: Experience with a globally-deployed software
defined wan,” in Proc. ACM SIGCOMM Conf., 2013.

[41]

[42]

Xiaofeng Gao received the BS degree in infor-
mation and computational science from the Nan-
kai University, China, in 2004; the MS degree in
operations research and control theory from the
Tsinghua University, China, in 2006; and the PhD
degree in computer science from the University
of Texas at Dallas, USA, in 2010. She is currently
an associate professor with the Department of
Computer Science and Engineering, Shanghai
Jiao Tong University, China. Her research inter-
ests include wireless communications, data engi-
neering, and combinatorial optimizations. She has published more than
90 peer-reviewed papers and 7 book chapters in the related area, includ-
ing well-archived international journals such as the IEEE Transactions
on Computers, the IEEE Transactions on Knowledge and Data Engi-
neering, the IEEE Transactions on Parallel and Distributed Systems,
Transactions on Circuits and Systems, and also in well-known confer-
ence proceedings such as INFOCOM, SIGKDD, ICDCS. She has
served on the editorial board of discrete mathematics, algorithms and
applications, and as the PCs and peer reviewers for a number of interna-
tional conferences and journals.

Linghe Kong received the BE degree in automa-
tion from Xidian University, China, in 2005, the
Dipl Ing degree in telecommunication from TELE-
COM SudParis (ex. INT), France, 2007, and the
PhD degree in computer science from Shanghai
Jiao Tong University, China, 2012. He was also a
joint PhD student at University of California, San
Diego, 2011, and a visiting researcher in Micro-
soft Research Asia, 2010. He is an associate pro-
fessor in the Department of Computer Science
and Engineering, Shanghai Jiao Tong University.
Before that, he was a postdoctoral researcher at McGill University from
2014 to 2015 and a postdoctoral researcher at Singapore University of
Technology and Design in 2013. His research interests include wireless
communication, sensor networks, mobile computing, Internet of Things,
and smart energy systems.

Weichen Li is working toward the graduate

degree in the Department of Computer Science

and Engineering, Shanghai Jiao Tong University.

= He has been admitted by School of Computer

8. Science, Carnegie Mellon University, USA. His
~—— research interests include data center engineer-
ing, distributed systems, data broadcasting, and

' /. distributed computing.

Wanchao Liang is currently working toward the
master’s degree at Carnegie Mellon University -
Pittsburgh campus. He is a member of SAILING
Lab at CMU, and his current research areas are
distributed systems, large-scale machine learn-
ing, and cloud computing. He completed this
work when he was an undergraduate student of
Shanghai Jiao Tong University, China.

Yuxiang Chen is working toward the graduate
degree from the School of Computer Science,
Carnegie Mellon University, USA. He completed
this work when he was an undergraduate student
of Shanghai Jiao Tong University, China. His
research interests include data center engineer-
ing and distributed computing, especially in the
area of MapReduce and OpenFlow.

Guihai Chen received the BS degree in com-
puter software from Nanjing University in 1984,
the ME degree in computer applications from
Southeast University in 1987, and the PhD
degree in computer science from the University
of Hong Kong in 1997. He is a distinguished pro-
fessor of Shanghai Jiao Tong University. He had
been invited as a visiting professor by Kyushu
Institute of Technology in Japan, University of
Queensland in Australia, and Wayne State Uni-
versity in USA. He has a wide range of research
interests with focus on parallel computing, wireless networks, data cen-
ters, peer-to-peer computing, high-performance computer architecture,
and data engineering. He has published more than 350 peer-reviewed
papers, and more than 200 of them are in well-archived international
journals such as the IEEE Transactions on Parallel and Distributed Sys-
tems, the IEEE Transactions on Computers, the IEEE Transactions on
Knowledge and Data Engineering, the ACM/IEEE Transactions on Net-
working and the IEEE ACM Transactions on Sensor Networks, and also
in well-known conference proceedings such as HPCA, MOBIHOC,
INFOCOM, ICNP, ICDCS, CoNext, and AAAI. He has won several best
paper awards including ICNP 2015 best paper award. His papers have
been cited for more than 10,000 times according to Google Scholar.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

