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Abstract—Mobile crowdsensing has become a novel and
promising paradigm in collecting environmental data. A critical
problem in improving the QoS of crowdsensing is to decide
which users to select to perform sensing tasks, in order to obtain
the most informative data, while maintaining the total sensing
costs below a given budget. The key challenges lie in (i) finding
an effective measure of the informativeness of users’ data, (ii)
learning users’ sensing costs which are unknown a priori, and
(iii) designing efficient user selection algorithms that achieve low-
regret guarantees. In this paper, we build Gaussian Processes (G-
Ps) to model spatial locations, and provide a mutual information-
based criteria to characterize users’ informativeness. To tackle
the second and third challenges, we model the problem as a
budgeted multi-armed bandit (MAB) problem based on stochastic
assumptions, and propose an algorithm with theoretically proven
low-regret guarantee. Our theoretical analysis and evaluation
results both demonstrate that our algorithm can efficiently select
most informative users under stringent constraints.

I. INTRODUCTION

One of the important QoS problems that have not been
carefully addressed in mobile crowdsensing is how to reduce
the redundancy of collected information. Specifically, we
intend to select users whose data are most informative about
the monitored environment. On the one hand, environmental
conditions of two nearby locations tend to be similar [1]. If
the sensing data of some specific locations have already been
collected, it is of less necessity to collect nearby information.
On the other hand, in many cases, environmental conditions
have certain spatial correlations [2], which allow us to model
existing observations and make predictions for unobserved
ones. Thus, it is of great significance to select users who are
most informative about unobserved locations, especially when
there is only limited budget to pay the users.

To motivate users’ participation, the crowdsensing platform
usually needs to pay a certain amount of reward to selected
users. Given a limited budget, a natural idea is to make use
of the budget feasible mechanisms [3], [4]. However, directly
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applying these approaches to crowdsensing scenarios incurs at
least two practical limitations.

First, letting users determine their own deserved payments
has critical drawbacks. Existing works on crowdsensing (e.g.,
[4], [5]) are usually based on a reverse-auction model, where
each user is assumed to be aware of her sensing cost and
submits her cost as a reverse price, or bid, for performing a
requested task. However, this assumption may not be practical
in reality, since users’ contributions in a crowdsensing task
are not purely financial, but involve hardware consumptions
and their data qualities. Quantifying the consumption of users’
hardware resources requires complicated technical skills, and
hence is infeasible for most users. Furthermore, the payment
that each user deserves should be related to her data quality
[6]. Intuitively, users with high data qualities deserve higher
payments, and vice versa. Thus, instead of passively listening
to users’ bids, we prefer a more “aggressive” crowdsensing
platform that actively quantifies users’ contributions and de-
termines their deserved payments in a proper manner.

Second, even though the users’ hardware consumptions can
be quantified, such information is unknown a priori. In other
words, the platform can access to a user’s sensing cost only
after the user has finished the task and submitted her data.
The unavailability of prior knowledge on users’ sensing costs
brings us another challenge in user selection. Suppose we have
already found some cheap and informative users, we need
to decide whether to keep selecting these users to maintain
good performance, or to select other users in hope of finding
even cheaper and more informative ones. This is an instance
of the exploration and exploitation dilemma in reinforcement
learning [7], where an agent needs to decide whether to explore
new information about the effectiveness of an action, or to
exploit the action that is already known to be effective.

In this paper, we address the problem of selecting the most
informative users, while the platform has no prior knowledge
of users’ sensing costs and the total payments are limited by
a fixed budget. We model the spatial environment using the
Gaussian Processes (GPs), and adopt a mutual information-
based criteria to quantify the informativeness of users. Next,
we consider an unrealistic but instructive scenario where the
platform has full knowledge of users’ costs. To tackle the
NP-hardness of the budgeted maximization of submodular
functions, we propose an efficient multi-rounded algorithm
that achieves (1 − 1/e)/2 approximation ratio. Then, we



consider a realistic scenario where the prior knowledge of
users’ costs is not available, and propose an efficient Budgeted
Informativeness Maximization algorithm, namely BIM, to
actively learn users’ costs and decide which users to select.
Our theoretical analysis shows that BIM achieves zero regret in
an asymptotic case. We also evaluate BIM in various settings.
Our evaluation results demonstrate good performance of BIM.

The rest of this paper is organized as follows. We first
present a system overview in Section II. Then, we address
the budgeted informativeness maximization with and without
prior knowledge in Section III and Section IV, respectively.
In Section V, we evaluate our algorithm and present the
evaluation results. The related works are presented in Section
VI. Finally, we conclude this paper in Section VII.

II. SYSTEM OVERVIEW

A. Problem Statement

A typical crowdsensing architecture consists of three major
components: service requesters, mobile device users, and a
crowdsensing platform. After receiving location-based sensing
requests from the service requesters, the platform releases
specific sensing tasks to the mobile device users (we will
refer as users for simplicity). Without loss of generality, we
focus on one task only, e.g., noise monitoring at a specified
park. We assume that the task consists of T consecutive
rounds and each round has a fixed duration. The specified
sensing area is represented by a set of finite discrete locations
L = {l1, l2, . . . , lm}, e.g., a grid discretization of R2.

Suppose there is a set N = {1, 2, . . . , n} of users interested
in the task. At the beginning of each round t ∈ {1, 2 . . . , T},
the platform selects a subset of users St ⊆ N to sense in
this round. After round t, each selected user i ∈ St submits
her sensing data and receives her payment pi,t of this round.
Users’ real-time locations are measured by the GPS modules
of their smartphone and reported to the platform via WiFi
or celluar network. During each round t, each selected user
i ∈ St is required to stay at a same location, denoted by li,t.

The main objective of the crowdsensing campaign is to
maximize the total informativeness within a given budget B.
We let F (S) denote how informative a set S ⊆ N of users
is. Our problem is formalized as follows:

max
St⊆N

T∑
t=1

F (St), subject to
T∑

t=1

∑
i∈St

pi,t ≤ B. (1)

B. Quantifying Informativeness

We adopt the mutual information criteria [8] to model users’
informativeness. We associate a random variable Xls with
each location ls ∈ L. For a subset S ⊆ N , let LS ⊆ L
denote the set of locations of users S, then XLS is the set of
random variables associated with the locations LS . To simplify
notation, we write ls instead of Xls and LS instead of XLS .

Definition 1 (Mutual Information [8]). The mutual informa-
tion I(X;Y ) between two random variables X and Y are

I(X;Y ) =

∫
Y

∫
X
p(x, y) log

p(x, y)

p(x)p(y)
dx dy. (2)

Intuitively, mutual information measures the information
that X and Y share, i.e., how much knowing one reduces
uncertainty about the other. For example, if X and Y are
independent, then knowing X does not give any information
about Y and vice versa, and thus their mutual information
is zero. In monitoring spatial environment, suppose we have
already deployed users S ⊆ N to perform the sensing task,
then I(LS ;L\LS) represents how much knowledge observing
LS gives about the unobserved locations L\LS . According to
Equation (2) and (3), we have

I(X;Y ) = H(X) +H(Y )−H(X,Y ), (3)

where H(X,Y ) = −E[log p(X,Y )] is the the joint entropy
of X and Y . We define the informativeness function as:

F (S) = I(LS ;L\LS), (4)

so that maximizing the informativeness of selected users is
equivalent to finding the subset S of users such that the mutual
information between LS and L\LS is maximized.

C. Multivariate Gaussian Distribution and Gaussian Process

In crowdsensing, it is often desirable not only to predict
the values of environmental conditions, but also to estimate
their probabilistic distributions. Following [2], we assume that
the monitored phenomena follow a joint multivariate Gaussian
distribution. Mathematically, the joint distribution of a set
XL = {Xl1 , Xl2 , . . . , Xlm} of random variables with m
discrete locations is

P (XL = xL) =
1

(2π)m/2|Σ|1/2
e−

1
2 (xL−µ)TΣ−1(xL−µ), (5)

where µ is the mean vector, Σ is the covariance matrix, and |Σ|
the determinant of Σ. We note that the conditional distribution
of a joint Gaussian distribution is still Gaussian. If in some
round t, we have observed the noise of locations Lt ⊆ L, then
for some unobserved location ls ∈ L\Lt, its conditional mean
µls|Lt

and conditional variance σ2
ls|Lt

are given by:

µls|Lt
= µls +ΣlsLtΣ

−1
LtLt

(xLt − µLt), (6)

σ2
ls|Lt

= σ2
ls − ΣlsLtΣ

−1
LtLt

ΣLtls . (7)

The ΣlsLt is a vector of the covariance of ls with all the
variables in Lt, and ΣLtLt is the covariance matrix where the
entry (u, v) is the covariance of u and v.

In some cases, we are not only interested in specified loca-
tions, but also those unspecified locations. Gaussian process
can be utilized to generalize multivariate Gaussian distribution
to scenarios with infinite number of random variables. In
our noise monitoring example, we can have infinite number
of location indexes, e.g., L ⊆ R2, and each location ls is
associated with a random variable Xs. The Gaussian process
is specified by a mean function M(·) and a symmetric positive
definite kernel function K(·, ·). For each random variable Xu,
M(u) represents its mean, and for any two random variables
Xu and Xv , their covariance is represented by K(u, v).

Given a set XLS of k random variables, if they follow
a multivariate normal distribution with mean vector µS and



covariance matrix ΣSS , then their (differential) entropy can
be calculated by [8]:

H(XLS ) =
1

2
log((2πe)k|ΣSS |) (8)

Based on Equation (4) and (8), we are now able to estimate
the mutual information between locations of selected users and
unobserved locations.

D. A Multi-Armed Bandit Problem

The void of prior knowledge of users’ costs brings us
the exploration and exploitation dilemma, originally proposed
by Robbins [9] as a multi-armed bandit (MAB) problem.
In a classical stochastic MAB framework [7], there is a
slot machine with multiple non-identical arms, and pulling
each arm generates a random reward according to some
unknown distribution with unknown mean. A gambler must
decide which arms to pull in sequence, with the objective
of minimizing regret, i.e., the difference between the optimal
payoff with expert knowledge and the actual payoff.

In our problem, we model the set of mobile device users as
n non-identical arms. Selecting user i in round t incurs a cost
ci,t, which follows some unknown distribution with unknown
mean ci. At the beginning of each round t, the crowdsensing
platform (gambler) decides which users St ⊆ N to perform the
sensing task. After round t, the platform obtains each selected
user i’s real cost ci,t in round t, and updates i’s expected cost.
Each selected user i ∈ St will receive a payment pi,t, which
is proportional to her cost ci,t. The exact calculation formula
depends on specific crowdsensing scenarios, and is left for the
platform to decide.

A plenty of MAB algorithms have been proposed based
on different approaches (see a survey in [10]). However, our
problem has key differences from them. First, most of the
existing works assume that one or fixed number of arm(s) can
be pulled at a time, while in our cases, the number of selected
users in each round is uncertain. Though some work considers
a combinatorial MAB approach (e.g., [11]), it never takes the
budget constraint into consideration. Second, the optimization
functions of most previous works are either additive [12]–
[17] or symmetric (the function output only depends on the
cardinality of the input set) [18], but in our cases, the mutual
information-based criteria is a submodular function, which is
more challenging. Third, in contrast to many previous works
on budgeted MAB (e.g., [12], [14], [15]), where they con-
sider maximizing unknown profits (with additive optimization
function) with known costs, we have no prior knowledge of
users’ costs. Although [16]–[18] consider variable costs, their
problem models are quite different from ours (see our technical
report [19] for more detailed comparisons).

III. BUDGETED INFORMATIVENESS MAXIMIZATION
WITH FULL KNOWLEDGE

In this section, we address the budgeted informativeness
maximization problem with full knowledge of users’ sensing
costs. Although the full knowledge assumption is unrealistic,
the algorithms proposed in this section are the building blocks
of our subsequent designs without this assumption.

Algorithm 1: Single-Rounded Budgeted Informativeness
Maximization with Full Knowledge

Input: The total budget B and users’ costs {ci}
Output: Selected user S

1 Calculate each user’s payment pi based on ci;
2 i∗ ← argmax

i∈N ,pi≤B

F ({i});

3 S ′ ← {i∗}, S ′′ ← ∅, N ′ ← N , B′ ← B;
4 while N ′ ̸= ∅ do
5 i∗ ← argmax

i∈N ′

F (S′′∪{i})−F (S′′)
pi

;

6 if B′ ≥ pi∗ then S ′′ ← S ′′ ∪ {i∗}, B′ ← B′ − pi∗ ;
7 N ′ ← N ′\{i∗};
8 return argmax

S∈{S′,S′′}
F (S);

A. Single-Rounded Budgeted Informativeness Maximization
We first present the definition of submodular functions,

which have a natural diminishing return property, i.e., the
marginal gain when adding a single element to a input set
decreases as the size of the input set increases.

Definition 2 (Submodular). The function F : 2N → R is
submodular if ∀A ⊆ B ⊆ N ,∀i ∈ N\B,

F (A ∪ {i})− F (A) ≥ F (B ∪ {i})− F (B). (9)

Although mutual information is not submodular in general,
our informativeness characterization F (LS) = I(LS ;L\LS)
is a non-negative submodular function. The function F , with a
careful discretization over the monitored environmental area,
is non-decreasing over LN [20].

Lemma 1. The function F (S) = I(LS ;L\LS) is non-
negative and submodular.

Proof. Please refer to our technical report [19].

When the crowdsensing task has only a single round, all
we need to do is to select a subset of users that maximize the
informativeness function F under the budget constraint. The
problem is NP-hard even with the full knowledge of users’
costs [21]. A simple greedy algorithm that greedily selects
the next user that maximizes the marginal informativeness
gain/cost ratio before the budget drains out has unbounded
approximation ratio. But with a slight modification [22], it can
achieve (1 − 1/e)/2 approximation to the optimal selection.
The algorithm is presented in Algorithm 1.

B. Multi-Rounded Budgeted Informativeness Maximization
In our cases, the multi-rounded user selection, formalized in

Equation (1), is more challenging, since the total budget over
the entire T rounds is limited. A careful design is required on
how to allocate the total budget among the T rounds.

A simple equally shared scheme can be arbitrarily bad. For
example, consider a two-rounded crowdsensing with only two
users, denoted by n1 and n2. The costs of n1 and n2 are 2
and 1 per round respectively. Suppose these two users have
fixed locations, and their informativeness is characterized as
follows: F ({n1}) = o ≫ 1 and F ({n2}) = 1. If the total
budget is 2, then one optimal solution is to choose n1 for



Algorithm 2: Multi-Rounded Budgeted Informativeness
Maximization with Full Knowledge

Input: Budget B, the total round T , and users’ costs {ci}
Output: User selections {ϕi}, ∀i ∈ N

1 Calculate each user’s payment pi based on ci;
2 ⟨i∗, ϕ∗

i∗⟩ ← argmax
i∈N ,ϕi∈Φ,|ϕi|pi≤B

G({ϕi});

3 V ′ ← {ϕ∗
i∗},V ′′ ← ∅, N ′ ← N , B′ ← B;

4 while N ′ ̸= ∅ do
5 foreach i ∈ N ′ do
6 if B′ ≥ pi then
7 ϕ∗

i ← argmax
ϕi∈Φ,|ϕi|pi≤B′

G(V ′′ ∪ {ϕi})−G(V ′′);

8 else N ′ ← N ′\{i};
9 if N ′ ̸= ∅ then

10 i∗ ← argmax
i∈N ′

G(V′′∪{ϕ∗
i })−G(V′′)

|ϕ∗
i |pi

;

11 V ′′ ← V ′′ ∪ {ϕ∗
i∗}, N ′ ← N ′\{i∗};

12 B′ ← B′ − |ϕ∗
i∗ |pi;

13 return argmax
V∈{V′,V′′}

G(V);

the first round and neither for the second round. The optimal
result is o. However, if we divide the budget equally into these
two rounds, then the user selection ends up with n2 in both
rounds, with the total output being 2. The approximation ratio
is o/2, which is unbounded and can be arbitrarily bad.

To tackle the NP-hardness of the multi-rounded budgeted
informativeness maximization, we extend the single-rounded
approximation algorithm to support multi-rounded user selec-
tion with (1 − 1/e)/2 approximation guarantee, when users’
locations are fixed during the entire T rounds.

The algorithm is presented in Algorithm 2. Instead of trying
to allocate the total budget among the T rounds, we consider
a global coordination of user selections. For each user i ∈ N ,
we define ϕi to be a T -ary vector of user i’s selection instance,
where ϕi,t ∈ {0, 1} denotes if user i has been selected in round
t (“1” denotes selected and “0” otherwise). Let Φ denote the
set of all possible permutations of the T-ary vector. We define
|ϕi| to be how many times user i has been selected among
T rounds, i.e., |ϕi| =

∑T
i=1 ϕi,t. The set {ϕ1, ϕ2, . . . , ϕn}

is denoted by V . The extended informativeness function G :
2V → R is defined as follows:

G(V) =
T∑

i=1

F (St), (10)

where St = {i|ϕi,t = 1, i ∈ N , ϕi ∈ V}. We can see that
G is a nondecreasing submodular function, since the addition
of several monotone submodular functions is still monotone
submodular. Now, our problem can be treated as selecting a set
V ′ of users’ selection instances that maximizes the submodular
function G under the budget constraint B.

Our algorithm follows the similar design rationale of the
single-rounded approximation algorithm. For each user i, we
first calculate her best affordable selection instance ϕ∗

i ∈ Φ
that maximizes the marginal informativeness gain under cur-
rent user selection V ′′ (Line 7), i.e., G(V ′′ ∪ {ϕi})−G(V ′′).

Then, we greedily select the best user i∗ that maximizes
the marginal informativeness gain of her best instance over
the instance’s cost (Line 10). We note that for each user
i, her current best selection instance ϕ∗ (Line 7) can be
calculated efficiently by sequentially activating ϕi,t = 1 for
some round t that maximizes the the marginal informativeness
gain before the budget drains out. Afterwards, the performance
of this greedy policy G(V ′′) is then compared with the best
performance that selecting only one user can achieve, i.e.,
G(V ′), and the better user selection is returned.

Theorem 1. The proposed multi-rounded budgeted informa-
tiveness maximization algorithm can achieve an approximation
ratio of 1−1/e

2 , with polynomial time complexity.

Proof. The proof is similar to the proof of the single-rounded
algorithm [22]. We omit the proof due to space limitation.

IV. BUDGETED INFORMATIVENESS MAXIMIZATION
WITHOUT PRIOR KNOWLEDGE

Under the cases where the knowledge of users’ costs are
unknown in advance, we need to learn users costs. We propose
a simple but effective method to balance the exploration and
the exploitation. The intuitive idea of our algorithm is that we
allocate a portion of the total budget B′ = ϵB, ϵ ∈ (0, 1) to
learn users’ costs, and the remaining budget will be used to
choose the best users.

Our algorithm, namely BIM, is shown in Algorithm 3. It
consists of an exploration phase and an exploitation phase. In
the exploration phase, we select all the users in each round, so
as to collect information about users’ sensing costs. After each
round t, the platform quantifies each user i’s sensing cost ci,t,
and calculate each user’s payment pi,t according to her cost.
Suppose the maximum payment the platform is willing to pay
each user per round is pmax, which is high enough to cover any
user’s sensing cost in a single round. The pmax is only used
to estimate if the remaining budget of B′ can afford another
exploration round (Line 2). After the exploration phase, we
calculate the estimate of each user i’s sensing cost {ĉi} (Line
8), and recycle the remaining budget of the exploration phase
(Line 9). In the exploitation phase, we treat ĉi as each user
i’s true sensing cost, and apply Algorithm 2 to determine the
user selections of the following rounds.

To analyze the performance of BIM, we need to calcu-
late its regret, which is the difference between its obtained
informativeness and the optimum. However, the optimal in-
formativeness cannot be feasibly achieved, due to the NP-
hardness of the submodular maximization problem. To address
this infeasibility in regret analysis, we adopt the concept of α-
approximation regret.

Definition 3 (α-approximation regret [11], [21]). The α-
approximation regret of a sequence of user selection
{S1,S2, . . . ,ST } is

Rα = α ·
T∑

t=1

F (S∗
t )−

T∑
t=1

F (St), (11)

where {S∗
1 ,S∗

2 , . . . ,S∗
T } is the optimal user selection se-

quence. The average α-approximation regret is Rα/T .



Algorithm 3: BIM
Input: The total budget B, payment upper bound pmax, a

constant ϵ
Output: Selected user {S1, . . . ,ST }

1 B′ ← ϵB, B′′ ← (1− ϵ)B, T ′ ← 0;
// Exploration Phase

2 while B′ ≥ npmax and T ′ < T do
3 T ′ ← T ′ + 1;
4 ST ′ ← N ;
5 Collect users data, and calculate ci,T ′ and pi,T ′ , ∀i ∈ N ;
6 B′ ← B′ −

∑
i∈ST ′

pi,T ′ ;

// Exploitation Phase

7 ĉi ←
∑T ′

t=1 ci,t/T
′,∀i ∈ N ;

8 B′′ ← B′′ +B′;
9 V ← Alg2(B

′′, T − T ′, {ĉi});
10 Calculate St,∀t ≥ T ′ + 1 based on V;
11 return {S1, . . . ,ST };

The intuitive meaning of α-approximation regret is that
our regret metric does not compare against the optimal user
selection sequence, but against an α-approximation oracle.
Based on the above definition, we can analyze the 1−1/e

2 -
approximation regret of BIM, i.e., to compare the performance
of BIM against Algorithm 2.

Theorem 2. The 1−1/e
2 -approximation regret of BIM is (T −

⌊ B
npmax

⌋)F (N ).

Proof. Please refer to our technical report [19].

V. EVALUATION

In this section, we evaluate the performance of BIM by
comparing it with two benchmarks. One of the benchmarks is
the full-knowledged greedy algorithm. The other is a random
scheme that randomly selects users until the budget drains out.

A. Simulation Setup
We consider a squared sensing area of 1km × 1km. The

area is discretized into 400 locations, and each location is a
50m∗50m grid. The mean of each user i’s cost ci is uniformly
generated in (5,10), and i’s cost in each round t follows a
Gaussian distribution with mean ci and variance 0.2, i.e., ci,t ∼
N(ci, 0.2). Users’ locations are randomly generated and fixed
during the entire task. The Gaussian process is characterized
by a classic Gaussian Kernel:

K(u, v) = exp(−∥ u, v ∥2

h2
), (12)

where ∥ u, v ∥2 is the squared Euclidean distance of u and v,
and h is a constant parameter. We set h=1000. The range of
user number n and round number T vary from 5 to 100 with
the increment of 5. The budget B varies from 1000 to 11000
with the increment of 1000. The default n, T , and B are 50,
20, and 5000 respectively. The constant ϵ is set to 0.5.

B. Evaluation Results
Fig. 1 varies n from 5 to 100 with fixed T and B. We can

see that the total informativeness increases as n gets larger,
and finally tends to reach a stable state, when the budget has
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been fully used. It can also be observed that when n is small,
e.g., less than 30, all the three algorithms achieve the same
informativeness. This is because the total budget can afford
all the users to perform the sensing task in each round. When
n gets larger, the performance differences of these algorithms
start to reveal, i.e., full-knowledged algorithm beats BIM, and
BIM beats the random scheme.

Fig. 2 shows the evaluation result of BIM with varying
T . We observe that all the three algorithms have the same
informativeness when T is small (e.g., less than 15), since the
budget can afford all the users in each round. As T grows, full-
knowledged algorithm achieves the best performance, since
it is exploration-free and thus can utilize the total budget in
the most efficient way. Different to the curves in Fig. 1, the
total achieved informativeness keeps increasing and does not
tend to saturate. This is because that with T increases, the
submodularity of the informativeness function always allows
us to reschedule some selected users to the new rounds without
decreasing the total informativeness.

Fig. 3 shows the influence of the total budget in user
selections. It varies the total budget B with fixed n and fixed
T . We observe that the obtained informativeness first grows as
B increases. That is because that more budget results in more
selected users and thus more obtained sensing information.
As the budget keeps increasing, the saturation will be reached
when all the users are selected in every round.

We also consider scenarios where B varies with the increase
of n or T . In Fig. 4, n ranges from 5 to 100, with B set to
50n. We can see that the achieved informativeness increases
as n grows. This is because that more budget allows more
users to be selected. We also observe that the growth of
informativeness tends to get slow as n increases, e.g., 50 users
can achieve over 300 informativeness by Full, while 100 users
only achieve less than 500. This is due to the submodularity
of the informativeness function. Besides, BIM achieves supe-
rior performance to the random selection scheme, and close
performance to the full-knowledged algorithms.

Fig. 5 varies T from 5 to 100 and sets B to 200T . We can
see that the achieved informativeness is nearly proportional to
T . This is supported by an intuitive observation that under the
varying budget 200T , if we keep selecting the best users in
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the upcoming rounds, the achieved informativeness is linear
to the round number. It can be seen that BIM achieves close
informativeness to the full-knowledged algorithm.

VI. RELATED WORK

Crowdsensing has been extensively studied in recent years.
Yang et al. [5] studied a platform-centric model and a
user-centric model in crowdsensing, and provided incentive
mechanisms for them respectively. Zhao et al. [4] studied
the budgeted online crowdsensing, and proposed two online
budget feasible mechanisms. Jin et al. [23] incorporated a
quality of information metric into the design of truthful com-
binatorial mechanisms for crowdsensing systems. Peng et al.
[6] considered the quality-based pricing in crowdsensing, and
presented an EM algorithm to quantify users’ data qualities.
However, to the best of our knowledge, none of the previous
work in crowdsensing has addressed the problem of selecting
most informative users, nor considered users’ unknown costs.

The Gaussian process and mutual information-based model
have been widely studied in sensor networks. In [2], the
authors built a statistics model for sensor querying, based on
the spatial and temporal correlations of environmental phe-
nomena. Guestrin et al. [20] studied the most informative sen-
sor placement problem, and adopted the mutual information-
based sensor selection scheme. Krause et al. [24] further
studied the problem of maximizing mutual information of
sensors while minimizing the communication costs. However,
the crowdsensing scenarios have clear differences from sensor
networks, not only because users’ costs are influenced by many
factors and unknown a prior, but also due to the fact that
autonomy of users makes us can only select users based on
their current locations, instead of directly deploying users to
sense some specific locations.

Multi-armed bandit problem was originally described by
Robbins [9], after which many researchers have proposed dif-
ferent approaches (e.g., [7], [10], [25]) to solve this problem.
Chen et al. [11] studied a general framework for combinatorial
multi-armed bandit problem. Budgeted MAB problems were
preliminarily studied by [12], [14], [15]. They considered
to optimize an additive objective function, where the costs
are known and under a budget constraint. Different from
the previous works, in this paper, the optimization function
is submodualr, the number of selected users each round is
uncertain, and users’ sensing costs are unknown a priori.

VII. CONCLUSION

In this paper, we have considered the budgeted informa-
tiveness maximization problem in crowdsensing. We have
proposed a mutual information-based criteria to quantify the

informativeness. We have provided a multi-rounded approx-
imation algorithm that achieves (1 − 1/e)/2 approximation
ratio for full-knowledged scenarios. Without prior knowledge
of users’ costs, a MAB algorithm, namely BIM, has been
proposed to efficiently select users. Our evaluation results
have shown that our proposed algorithm achieves desirable
performance in terms of the total obtained informativeness.
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