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ABSTRACT
The increasing market share of electric vehicles (EVs) makes
large-scale charging stations indispensable infrastructure for
integrating EVs into the future smart grid. Thus their op-
eration modes have drawn great attention from researchers.
One promising mode called park-and-charge was recently
proposed. It allows people to park their EVs at a parking lot,
where EVs can get charged during the parking time. This
mode has been experimented and demonstrated in small
scale. However, the missing of an efficient market mecha-
nism is an important gap preventing its large-scale deploy-
ment. Existing pricing policies, e.g., pay-by-use and flat-
rate pricing, would jeopardize the efficiency of electricity
allocation and the corresponding social welfare in the park-
and-charge mode, and thus are inapplicable. To find an
efficient mechanism, this paper explores the feasibility and
benefits of utilizing auction mechanism in the EV park-and-
charge mode. The auction allows EV users to submit and
update bids on their charging demand to the charging sta-
tion, which makes corresponding electricity allocation and
pricing decisions. To this end, we propose Auc2Charge, an
online auction framework. Auc2Charge is truthful and indi-
vidual rational. Running in polynomial time, it provides an
efficient electricity allocation for EV users with a close-form
approximation ratio on system social welfare. Through both
theoretical analysis and numerical simulation, we demon-
strate the efficacy of Auc2Charge in terms of social welfare
and user satisfaction.

Categories and Subject Descriptors
C.4 [Performance of systems]: Modeling techniques; J.7
[Computers in other systems]: Industrial control
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smart grid, electric vehicles, mechanism design, auction

1. INTRODUCTION
The electric vehicle (EV) is visioned as a crucial compo-

nent in the future intelligent transportation systems (ITS)
[4]. Compared with gasoline-powered vehicles, EVs have the
potential benefits of a lower carbon emission, a lower pow-
ering cost and a higher power efficiency. With these promis-
ing benefits, however, EVs also introduce a high penetration
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into the power grid by shifting the energy load from gaso-
line to electricity. As EVs’ market share is increasing, the
integration of EV into the future smart grid has drawn great
interests of both academia and industry. Various charging
facilities have been studied [4, 8, 9, 12,15,17,18].

Among all charging facilities (e.g., home charging point,
workplace charging facility and etc.), charging stations have
become indispensable infrastructure to support the large-
scale development of EVs [9,10]. Thus their operation mode
requires a careful design. Recently, researchers propose a
promising operation mode of charging station, which is called
EV park-and-charge. In this mode, people can park their
EVs at the parking lot equipped with charging points. These
vehicles can then be charged during the period of parking.
Potential application scenarios of this mode include parking-
lot charging at workplace, shopping mall, airport and mili-
tary base. Several field experiments have been done to ex-
plore the feasibility of this operation mode. For instance,
several universities in Europe conduct the V-Charge project,
which aims to design an automated valet parking and charg-
ing system to support autonomous local transportation [3].
General Motors (GM) and TimberRock perform a pioneer-
ing experiment [2], in which TimberRock uses the OnStar ve-
hicle communication system to manage the charging sched-
ule of a fleet of Chevrolet Volts parked in GM’s E-Motor
Plant. Its objective is to balance the stochastic arrival of
charging demand and the intermittency of renewable en-
ergy supply at the park-and-charge station. And the U.S.
Air Force works with the Lawrence Berkeley National Lab-
oratory to conduct a similar experiment at its Los Angeles
Base [19]. Though these experiments provide positive feed-
back on the potential of the park-and-charge mode, one im-
portant gap still exists between small-scale experiments and
the large-scale deployment of this mode. This gap is the
missing of an efficient market mechanism.

An efficient market mechanism for charging station should
achieve two objectives: 1)to avoid overpricing and under-
pricing the electricity by quickly adapting to the change in
demand-supply relation; and 2)to provide an explicit guar-
antee on social welfare by constructing an efficient electric-
ity allocation between EV users. The social welfare is the
monetary sum of the revenue from charging station and the
utility gained by EV users. Regardless the differences on
hardware and charging schedule, current charging stations
mainly adopt either one of the following pricing policies as
their market mechanism: pay-by-use pricing and flat-rate
pricing. Though they are simple and helpful for the mar-
ket expanding of EVs, they are not efficient market mech-
anisms. For instance, overpricing and underpricing could
happen in both policies due to the fluctuation of electricity
price from power distributors, thus harm the benefits of EV
users and charging station, respectively. What is worse, the
long charging time of EV and limited capacity of charging
station would cause inefficient electricity allocation between
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EV users and significantly prolong the total time (waiting
time and actual charging time) spent by EV users. In ex-
treme cases, some EVs would end up getting very little elec-
tricity charged after hours of waiting. And this inefficiency
would become more severe as the market share of EV con-
tinues increasing.

To design an efficient market mechanism, we explore the
feasibility and benefits of utilizing auction in the park-and-
charge operation mode. In particular, we propose to design
an online auction framework for this mode. Finding such an
auction framework for this mode, however, is a non-trivial
task because we need to address a series of challenges. 1)The
proposed auction must be online to cope with the stochastic
nature of system information in the park-and-charge mode.
2)The auction framework should be computationally effi-
cient so that the electricity allocation and pricing decision
can be quickly made in large-scale park-and-charge stations.
3)The auction framework should ensure truthfulness, indi-
vidual rationality and an explicit guarantee on social welfare
simultaneously.

To address these challenges, we propose Auc2Charge, a
computationally efficient online auction framework, which
leverages recent progress in mechanism design [5, 6, 16, 23].
It involves a budget-based bid update process between any
consecutive two time slots [6,23], which transforms the long-
term total social welfare maximization problem(PNC) into
a series of one-shot social welfare maximization problems
PNCone(t). For each PNCone(t) problem, we design a
greedy α-approximation algorithm using the classic primal-
dual method [5], and translate it to a randomized one-shot
auction mechanism, which is truthful and individual ratio-
nal. It ensures an α-approximation ratio on social welfare
of PNCone(t) problem in polynomial time [16]. Different
from auctions in cloud systems, where exists no constraint on
users’ capacity of receiving resources, we adopt a dropping
process to drop bids violating maximal charging-capacity
constraint in one-shot auction, without compromising so-
cial welfare. By integrating this one-shot auction with the
budget-based bid update process, Auc2Charge provides an
explicit approximation ratio on overall social welfare of park-
and-charge while maintaining the property of truthfulness
and individual rationality. Our main contributions are as
follow:

1. We study the novel problem of utilizing auction in
designing an efficient market mechanism for the EV park-
and-charge mode. In particular, we propose Auc2Charge, a
computationally-efficient online auction framework.

2. Through theoretical analysis, we show thatAuc2Charge
ensures the property of truthfulness and individual rational-
ity, and provides a close-form competitive ratio on system
social welfare.

3. Using numerical simulation, we demonstrate its efficacy
under various settings in terms of social welfare and user
satisfaction.

The remaining of this paper is organized as follows. In
Section 2 we illustrate EV park-and-charge, discuss our mo-
tivation and identify the corresponding challenges. We present
system settings and problem formulation in Section 3, and
the design of Auc2Charge in Section 4. We study the per-
formance of Auc2Charge in Section 5. We discuss related
work in Section 6, and conclude our paper in Section 7.

2. PARK-AND-CHARGE: ILLUSTRATION,
MOTIVATION AND CHALLENGES

In this section, we first illustrate the EV park-and-charge
mode in Figure 1. In a large parking lot, every parking
spot is equipped with a charging point. People drive to the
parking lot, park their EVs, connect vehicles to charging
points and leave for their personal arrangements, e.g., work-
ing, shopping and etc. During the parking period, charging

points can charge electricity to the connected EVs. The de-
tailed charging scheduling, e.g., charging speed and charging
amount, is determined by a controller in the park lot.

The park-and-charge mode works in a dynamic environ-
ment, including fluctuate electricity supply, unpredictable
arrival of EV charging demand and the ever-changing unit-
time charging capacity of different EVs, all of which result
in a stochastic demand-supply relation. To be deployed in
large-scale, therefore, the park-and-charge mode needs an ef-
ficient market mechanism to quickly response to the change
of demand-supply relation. However, existing pricing poli-
cies for charging stations, such as pay-per-use pricing and
flat-rate pricing, fail to adapt to the rapid change of demand-
supply relation in EV park-and-charge mode. For instance,
when the available electricity supply is larger than the charg-
ing demand from parked EVs, both policies are overpricing
electricity, which jeopardizes the benefit of EV users. On
the contrary, when the available electricity supply is smaller
than the charging demand from parked EVs, both policies
are underpricing electricity as it is now a scarce resource.
As a result, the benefit of charging station is jeopardized.

Figure 1: An overview of park-and-charge operation mode
What is worse, these pricing polices may yield an ineffi-

cient electricity allocation between EV users, and thus im-
pair system social welfare, i.e., the monetary sum of rev-
enue made by charging station and the utility gained by EV
users. Take the scenario in Figure 2 as an example, where
the park-and-charge station has an electricity supply of 30
kWh. When arriving at the parking-and-charge lot, EV user
A has an SOC of 20kWh/40kWh=0.5 while user B has an
SOC of 5kWh/25kWh=0.2. Only focusing on station’s rev-
enue, pay-per-use and flat-rate policies do not distinguish
the utility difference under various allocation schemes as
they yield the same revenue. Thus charging A and B by
15kWh each in Figure 2a) appears to be a fair allocation for
these policies. However, the lower SOC of B, i.e., 0.2, im-
plies that a unit amount of electricity would bring a higher
utility to user B than A. To maximize total social welfare,
an efficient electricity allocation should charge B as much
as possible, i.e., charging B by 20kWh and A by 10kWh in
Figure 2b). Thus charging each vehicle by 15kWh is an in-
efficient allocation. The inability to guarantee an efficient
electricity allocation makes neither of these policies efficient
market mechanisms for park-and-charge.

(a) inefficient allocation

(b) efficient allocation
Figure 2: The utility difference between two allocations are

not considered by pay-per-use and flat-rate pricing policies.
To overcome these shortcomings of existing pricing poli-

cies and thus design an efficient market mechanism for the
EV park-and-charge mode, we propose to utilize auction as
the market mechanism for this mode. An efficient auction
can avoid overpricing and underpricing by adapting to the
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change of demand-supply relation, provide an efficient re-
source allocation by assigning resources to users who values
them most, and thus improve system social welfare. To-
wards designing an efficient auction mechanism, we need to
address the following challenges:

Challenge 1 The auction framework must be online. This
is because in the EV park-and-charge mode, system infor-
mation such as the electricity supply, the charging demand
of EV users, and the unit-time charging capacity of every
vehicle, are stochastic and unpredictable.

Challenge 2 The auction framework should be computa-
tionally efficient. A good auction should make allocation
and pricing decisions in polynomial time so that it can be
applied in large-scale facility, e.g., a parking lot with hun-
dreds or thousands charging points.

Challenge 3 The auction framework must be truthful, in-
dividual rational and achieve explicit guarantee on total so-
cial welfare. For an auction, the truthfulness property can
avoid speculative strategic action of EV users. The individ-
ual rationality ensures that participating users will not re-
ceive negative utility. And an explicit guarantees on system
social welfare ensures the market efficiency. Directly apply-
ing existing auctions such as first-price and VCG auctions
into dynamic scenarios of EV charging [13, 14, 24] cannot
maintain these properties at the same time, and sometimes
even lead to infeasible allocation, e.g., fractional VCG in
combinatorial auctions.

To tackle these challenges, we leverage recent progress in
mechanism design [5,6,16,23] and propose our Auc2Charge
online auction framework for park-and-charge in this paper.

3. PROBLEM FORMULATION
We consider an EV park-and-charge station operating in

a discrete-time model. Time is divided into time slots of
equal length, denoted by t = 1, 2, . . . , T . Charging point is
equipped at every parking spot. And we consider a set of M
EV users, denoted by j = 1, 2, . . . ,M , who arrive at the sta-
tion and park their vehicles for one or more time slots. Every
EV user j has a budget limit Bj during her whole parking
period, During their stay, EV users can submit and update
their bids about their charging demand to the station using
mobile devices or computers. For each time slot t, any user
j can submit up to K bids, denoted by k = 1, 2, . . . ,K. We
define the kth bid submitted by EV user j about charging
demand for time slot t as a 2-tuple (ckj (t), b

k
j (t)), in which

ckj (t) represents the electricity demand of this bid, and bkj (t)
represents user j’s reported valuation for getting charged for
an amount of ckj (t) electricity in slot t, in a monetary form.
Other than the reported valuation, every user j also has a
real valuation vkj (t) for every electricity demand ckj (t) sub-

mitted to the station. vkj (t) is private to user j, which can
be affected by many factors, e.g., personal agenda, risk pref-
erence and etc., and is also expressed in monetary form.
For each user j, her reported valuations bkj (t) are correlated

across different t, and so are real valuations vkj (t). These

correlations are private to j. All we know is that bkj (t) and

vkj (t) are monotone increasing functions of ckj (t) in any t.
At the beginning of every time slot t, the charging station

makes electricity allocation and pricing decisions for slot t
based on all the submitted bids of charging demand for t.
The total amount of allocated electricity in time slot t must
not exceed R(t), the available electricity supply at the sta-
tion in slot t. For any EV user j, she can win at most one bid
among all her submitted bids for every time slot t, and the
electricity demand in the winning bids cannot exceed Cj(t),
the unit-time maximal charging capacity for EV j during
time slot t. This capacity depends on the characteristics of
EV battery, e.g., state of charge, lifetime and etc., and hence
is stochastic and unpredictable. We use a set of binary deci-

sion variables ykj (t) ∈ {0, 1} to denote the allocation decision

for each bid (ckj (t), b
k
j (t)). y

k
j (t) = 1 means this bid is a win-

ning bid and user j will receive a charging of ckj (t) electricity

by paying Γj(t) to the station, and ykj (t) = 0 means user j
does not win this bid and will pay nothing, i.e., Γj(t) = 0.
We define uj(t), the utility for user j at slot t as follows:

u
t
j =

K∑
k=1

v
k
j (t)y

k
j (t) − Γj(t)

To avoid overpricing and underpricing, and to allocate
the electricity to EV users who really value it, an good auc-
tion mechanism needs to achieve the following properties: 1)
truthfulness, 2) individual rationally, and 3) social welfare
maximization. An auction mechanism is truthful if report-
ing her real valuation as the reported valuation for any bid
she submits is the dominant strategy for every user j. An
auction ensures individual rationally if every participating
user gets non-negative utility. And an auction achieve so-
cial welfare maximization by maximizing the total real valu-
ation of all winning bids. When the truthfulness property is
achieved, it can be written as

∑
t

∑
j

∑
k b

k
j (t)y

k
j (t) since the

reported valuation for each bid equals to the corresponding
real valuation [16]. Then we can formulate the offline overall
social welfare maximization problem for the park-and-charge
system as the following binary integer programming model.

PNC : maximize

T∑
t=1

M∑
j=1

K∑
k=1

b
k
j (t)y

k
j (t) (1)

subject to
K∑

k=1

T∑
t=1

b
k
j (t)y

k
j (t) ≤ Bj , ∀j, (2a)

M∑
j=1

K∑
k=1

c
k
j (t)y

k
j (t) ≤ R(t), ∀t, (2b)

K∑
k=1

y
k
j (t) ≤ 1, ∀j and t, (2c)

K∑
k=1

c
k
j (t)y

k
j (t) ≤ Cj(t), ∀j and t, (2d)

y
k
j (t) ∈ {0, 1}, ∀j, k and t. (2e)

In this model, constraint (2a) is the overall budget limit for
every user j. Constraint (2b) ensures that the total amount
of electricity allocated to the winning bids in time slot t
does not exceed the total available electricity supply at the
station in t. Constraint (2c) ensures that each EV user j can
win at most one bid in every time slot. And constraint (2d)
ensures that the electricity allocated to EV user j in time slot
t does not exceed j’s unit-time charging capacity in t. As we
explained earlier, this unit-time maximal charging capacity
is unpredictable in that it depends on the characteristics of
EV battery, e.g., state of charge, lifetime and etc.

A linear program (LP) relaxation of problem PNC can
be achieved by replacing the 0-1 integer constraint (2e) with
yk
j (t) ∈ [0, 1], for any j, k and t. And the upper bound of 1

for each yk
j (t) can then be omitted because the lower bound

0 and constraint (2c) constitute a sufficient condition of this
upper bound. We introduce dual variables xj , z(t), sj(t)
and qj(t), for any j and t, to constraints (2a)-(2d) and get
the dual problem of the LP relaxation of PNC as:

D-PNClp :

minimize
M∑
j=1

Bjxj +
T∑

t=1

R(t)z(t) +
M∑
j=1

T∑
t=1

Cj(t)qj(t) +
M∑
j=1

T∑
t=1

sj(t),

(3)

subject to
b
k
j (t)xj + c

k
j (t)z(t) + sj(t) + c

k
j (t)qj(t) ≥ b

k
j (t),∀j, k and t, (4a)

xj , z(t), sj(t), qj(t) ≥ 0,∀j and t. (4b)
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Solving the PNC problem requires the complete knowledge
about the whole system over all time slots, which is practi-
cally impossible. In the park-and-charge mode, system infor-
mation including the electricity supply of charging station,
the arrival and leaving time of EV users, the bids submitted
by EV users and the unit-time charging capacity of different
EVs are all stochastic, and thus not known a priori. In addi-
tion, the overall budget constraint for every EV user makes
the bidding decisions at different time slots all coupling to-
gether, which further complicates the problem. In addition,
the objective function of PNC problem in Equation (1)
is only valid when the truthfulness property is ensured in
the auction mechanism. In the next section, therefore, we
propose Auc2Charge, an online auction framework for the
park-and-charge mode, which ensures the truthfulness and
individual rationality and makes electricity allocation and
pricing decisions with an explicit competitive ratio on the
total system social welfare in polynomial time.

4. AUC2CHARGE: AN ONLINE AUCTION
FRAMEWORK

In this section, we present our Auc2Charge online auc-
tion framework for the park-and-charge mode. This frame-
work utilize the randomized mechanism design technique
[5, 6, 16, 23]. Its basic idea is to first transform the offline
PNC problem into a series of one-shot social welfare max-
imization problems PNCone(t), one for each time slot t.
During the transformation, the reported valuation bkj (t) for
the kth bid of EV user j for time slot t is adjusted to a
reduced value wk

j (t) based on the budget limit Bj and the
auction result for user j in last time slot t − 1. In this
way, bidding decisions at different time slots are success-
fully decoupled. For each PNCone(t) problem, a one-shot
randomized auction mechanism, Aucone, is designed to pro-
vide a close-form approximation ratio on social welfare of
the current time slot, while maintaining the truthfulness
and individual rationality. In the following subsections, we
first present the transformation from PNC to PNCone(t),
which is the basic structure of Auc2Charge. We then present
the construction of one-shot randomized auction mechanism
Aucone. In each subsection, we also analyze the performance
of the Auc2Charge framework and the Aucone one-shot auc-
tion, respectively.

4.1 Basic Structure of Auc2Charge
Assuming all the bids from EV users are truthful bids, as

discussed in Section 3, social welfare maximization for EV
park-and-charge can be achieved by solving the offline PNC
problem. To cope with the stochastic and unpredictable na-
ture of system information in PNC problem, we propose
to transform it into a series of social welfare maximization
problem in single time-slot. At a first glance, directly de-
composing PNC into smaller problems for each time slot
seems a nature transformation. However, it is an inappro-
priate transformation method due to the existence of bud-
get limit across all time slots for every EV user. In direct
decomposing, EV users may deplete their budget in early
time slots without getting fully charged. Without sufficient
budget remaining, EV users will lose the chance to partici-
pate the auction in future time slots to get more electricity.
This would result in inefficient electricity allocation and thus
jeopardizing total social welfare. To avoid this situation, we
adopt a budget-based bid updating approach, which was first
proposed for budget-constraint Adwords auction [6], to per-
form our transformation. Based on auction results in time
slot t − 1 and the remaining budget of every user, this ap-
proach adjusts the reported valuation of each bid in the one-
shot social welfare maximization problem in time slot t to
a reduced value. In this way, users will not deplete their
budget as early as they do in direct decomposing.

Algorithm 1 Auc2Charge: the Online Auction Framework
for EV Park-and-Charge

1: ηj(0) = 0, ∀j = 1, 2, . . . ,M
2: for t → 1, 2, . . . , T do
3: for all j, k do
4: if ηj(t − 1) ≥ 1 then

5: ωk
j (t) = 0

6: else

7: ωk
j (t) = bkj (t)

(
1 − ηj(t − 1)

)
8: end if
9: end for
10: Run a randomized one-shot auction Aucone. Let Mwin(t) be

the set of winning EVs and kj be the index of corresponding
winning bids for each EV j ∈ Mwin(t).

11: for j → 1, 2, . . . ,M do
12: if j ∈ Mwin(t) then

13: ηj(t) = ηj(t − 1)

(
1 +

b
kj
j

(t)

Bj

)
+

b
kj
j

(t)

Bj(ϕ−1)

14: else
15: ηj(t) = ηj(t − 1)
16: end if
17: end for
18: end for

Using this bid updating approach, we are able to construct
the Auc2Charge online auction framework as Algorithm 1.
In Algorithm 1, we introduce auxiliary variables ηj(t) for
every EV user j with ηj(0) = 0. ηj(t) is an indicator of the
remaining budget of EV user j in time slot t. The more
budget is used by user j, the higher value ηj(t) becomes.
When ηj(t) reaches 1, it means user j has used up all her
budget Bj . At the beginning of every time slot t, Algo-
rithm 1 adjusts the reported valuation bkj (t) to a reduced

value wk
j (t) based on ηj(t − 1), i.e., Line 3-9. Then it exe-

cutes a one-shot randomized auction Aucone, which ensures
truthfulness, individual rationality and provides an explicit
approximation ratio on the one-shot problem PNCone(t),
i.e., Line 10. To not affect the integrity of our discussion on
Auc2Charge, we leave the design of Aucone auction in next
subsection. After getting the result of Aucone in time slot
t, Auc2Charge accordingly adjusts ηj(t), i.e., Line 11-17. If
EV user j wins a bid in the auction at time slot t, then
ηj(t) is updated using the equation in Line 13. In this equa-

tion, the parameter ϕ is defined as ϕ = (1 + Rmax)
1

Rmax ,
where Rmax is the maximal per-timeslot bid-to-budget ra-

tio, i.e., Rmax = max{ bkj (t)

Bj
}∀j, k and t. If user j does not

win any bid, ηj(t) stays unchanged. Note that the way how
ϕ is defined was first proposed by Buchbinder for revenue
maximization in budget-constrained Adwords auction [6].
It is later extended for designing auctions in broader ar-
eas [11,23]. And ϕ approaches to e when Rmax → 0.
In Algorithm 1, the one-shot social welfare maximization

problem PNCone(t) for every time slot t is defined as:

PNCone(t) : maximize p(t) =

M∑
j=1

K∑
k=1

ω
k
j (t)y

k
j (t), (5)

subject to
M∑
j=1

K∑
k=1

c
k
j (t)y

k
j (t) ≤ R(t), (6a)

K∑
k=1

y
k
j (t) ≤ 1, ∀j (6b)

K∑
k=1

c
k
j (t)y

k
j (t) ≤ Cj(t), ∀j (6c)

y
k
j (t) ∈ {0, 1}, ∀j and k. (6d)

There are two differences between PNC and PNCone(t).
The first one is that the constraint of total budget limit over
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all time slots, i.e., constraint (2a), is dropped in PNCone(t).
As explained earlier, this constraint is dealt with by the
budget-based bid update process in Algorithm 1. The sec-
ond one is that we use ωk

j (t), a reduced value of bkj (t), in
PNCone(t). Similar as problem PNC, we get the linear
program (LP) relaxation of problem PNCone(t) by replac-
ing the 0-1 integer constraint (6d) with yk

j (t) ∈ [0, 1], for any
j and k, and dropping the upper bound 1. Then we define
the dual problem of the LP relaxation of PNCone(t) as:

D-PNClp
one(t) : minimize d(t) = R(t)z(t) +

M∑
j=1

sj(t) +

M∑
j=1

cj(t)qj(t)

(7)

subject to
c
k
j (t)z(t) + sj(t) + c

k
j (t)qj(t) ≥ ω

k
j (t), ∀j and k, (8a)

z(t), sj(t), qj(t) ≥ 0, ∀j. (8b)

PNCone(t) is NP-hard via a reduction from the 0-1 knap-
sack problem. However, we can design an α-approximation
algorithm for this problem via the greedy primal-dual ap-
proach [5], and translate it into a randomized one-shot auc-
tion mechanism Aucone, which provides the same approxi-
mation ratio for PNCone(t) and ensures truthfulness and
individual rationality [16]. Before discussing how to design
Aucone, we propose and prove the following theorem on the
performance of the Auc2Charge framework.

Theorem 1. If we can find a randomized one-shot auc-
tion Aucone which ensures truthfulness and individual ra-
tionality, provides feasible solutions to both PNCone(t) and
D-PNClp

one(t), and guarantees an approximation ratio of α,
i.e., αp(t) ≥ d(t), in every time slot t, then the Auc2Charge
online auction framework provides a (1 +Rmax)(α+ 1

ϕ−1
)-

competitive ratio for the PNC problem.

Proof. We follow the sketch in [6,23] to prove this theo-
rem. If we can find such a one-shot auction Aucone satisfying
the requirements specified in the theorem, we first prove that
the following claims hold.

Claim 1. Let xj(t) = ηj(t) for any t, Algorithm 1 yields
a feasible solution to the dual problem D-PNClp.

It is straightforward to see that Lines 4-8 in Algorithm 1
ensure that ωk

j (t) ≥ bkj (t)(1 − ηj(t − 1)). And the con-
straint (8a) is guaranteed in the feasible solution provided
by Aucone. Therefore, we have

c
k
j (t)z(t) + sj(t) + c

k
j (t)qj(t) ≥ ω

k
j (t) ≥ b

k
j (t)(1 − ηj(t − 1)),

for j, k and t. Because ηj(t) is non-decreasing with t, we also
have ηj(t) ≤ ηj(T ) = xj . Putting it into the right-hand-side
(RHS) of the above inequality, we can get

c
k
j (t)z(t) + sj(t) + c

k
j (t)qj(t) ≥ b

k
j (t)(1 − xj), ∀j, k, and t

Rearranging its terms and we can see that it is exactly the
constraint (4a). Therefore, Algorithm 1 provides a feasible
solution to problem D-PNClp.
Claim 2. Denote P (t) and D(t) as the values of objective

functions in PNC and D-PNClp, respectively, after the t-
th iteration in Algorithm 1. Let ΔP (t) = P (t) − P (t − 1)
and ΔD(t) = D(t)−D(t−1). Algorithm 1 guarantees that:

ΔD(t)

ΔP (t)
≤ α +

1

ϕ − 1
∀t. (9)

To prove this claim, we first see that in the t-th iteration
of Algorithm 1, the change in the value of problem PNCol

is the sum of winning bids in time slot t, i.e., ΔP (t) =∑
j∈Mwin(t) b

kj

j (t). Meanwhile, D(t) can be transformed as:

ΔD(t) =

Mwin(t)∑
j=1

Bj

(
xj(t) − xj(t − 1)

)
+ d(t)

=

Mwin(t)∑
j=1

(
b
kj
j (t)xj(t − 1) +

b
kj
j (t)

ϕ − 1

)
+ d(t)

≤
Mwin(t)∑

j=1

(
b
kj
j (t)xj(t − 1) +

b
kj
j (t)

ϕ − 1

)
+ αp(t).

Since the only non-zero bids in one-shot auction at t are
from EVs that has xj(t− 1) < 1, we can rewrite p(t) as

p(t) =
∑

j∈Mwin(t)

b
kj
j (t)

(
1 − xj(t − 1)

)
.

Putting the rewritten p(t) in the inequality above, we get:

ΔD(t) ≤
Mwin(t)∑

j=1

[
b
kj
j (t)xj(t − 1) +

b
kj
j (t)

ϕ − 1
+ αb

kj
j (t)

(
1 − xj(t − 1)

)]

=

Mwin(t)∑
j=1

(
α +

1

ϕ − 1
− (α − 1)

)
b
kj
j (t)

≤
Mwin(t)∑

j=1

(
α +

1

ϕ − 1

)
b
kj
j (t) ≤

(
α +

1

ϕ − 1

)
ΔP (t).

Hence we have proved this claim.
Claim 3. Let xj(t) = ηj(t) for any t. In Algorithm 1,

given any EV user j, if time slot toj is the first slot that∑K
k=1

∑toj
t=1 b

k
j (t)y

k
j (t) ≥ Bj , then we have xj(t

o
j ) > 1.

We prove this claim by showing that for any EV user j
and any time slot t′ = 0, 1, 2, . . . , T ,

xj(t
′
) ≥ 1

ϕ − 1

(
ϕ

∑K
k=1

∑t′
t=1 bkj (t)yk

j (t)

Bj − 1

)
. (10)

When t′ = 0, we can easily see that Inequality (10) holds.
Assume it holds for t′ − 1. For time slot t′, if j /∈ Mwin(t),
i.e., j wins no bid in t′, this inequality still holds as both
sides stay the same as in t′ − 1. If j ∈ Mwin(t), i.e., j wins
one bid in slot t′, xj(t

′) will be updated in Algorithm 1 as:

xj(t
′) = xj(t

′ − 1)

(
1 +

b
kj
j

(t′)
Bj

)
+

b
kj
j

(t′)
Bj(ϕ−1)

≥ 1
ϕ−1

(
ϕ

∑K
k=1

∑t′−1
t=1 bkj (t)yk

j (t)

Bj − 1

)(
1 +

b
kj
j

(t′)
Bj

)
+

b
kj
j

(t′)
Bj(ϕ−1)

= 1
ϕ−1

(
ϕ

∑K
k=1

∑t′−1
t=1 bkj (t)yk

j (t)

Bj

(
1 +

b
kj
j

(t′)
Bj

)
− 1

)
.

(11)

Leveraging the inequality ln(1+x)
x

≥ ln(1+y)
y

, ∀0 ≤ x ≤ y ≤ 1

and the definition of Rmax = max
bkj (t)

Bj
, ∀j, k and t, we get

1 +
b
kj
j (t′)

Bj

≥ ϕ

b
kj
j

(t′)
Bj .

Plugging this conclusion into the RHS of Inequality (11),
we have proved Inequality (10) by induction. When t′ = toj ,
the RHS of Inequality (10) is greater than or equal to 1

since
∑K

k=1

∑toj
t=1 b

k
j (t)y

k
j (t) ≥ Bj , hence we have xj(t

o
j ) ≥ 1,

which completes the proof of this claim.
Claim 4. Algorithm 1 provides an almost feasible solu-

tion for the PNClp problem.
For any EV j, Algorithm 1 stops it from getting any elec-

tricity after toj since its budget has been depleted. And we
see that at toj − 1, the budget of j is not used up yet. Thus

K∑
k=1

T∑
t=1

b
k
j (t)y

k
j (t) =

K∑
k=1

toj−1∑
t=1

b
k
j (t)y

k
j (t) +

K∑
k=1

b
k
j (t

o
j )y

k
j (t

o
j )

+

K∑
k=1

T∑
t=to

j
+1

b
k
j (t)y

k
j (t)

155



=

K∑
k=1

toj−1∑
t=1

b
k
j (t)y

k
j (t) +

K∑
k=1

b
k
j (t

o
j )y

k
j (t

o
j )

≤ Bj + max{bkj (toj )} ≤ Bj(1 + Rmax),

for any user j. This indicates that Algorithm 1 ensures a
slightly relaxed budget constraint compared to constraint (2a):

K∑
k=1

T∑
t=1

b
k
j (t)y

k
j (t) ≤ Bj(1 + Rmax), ∀j. (12)

Meanwhile, constraints (2b)(2d)(2e) are strictly guaranteed
by Algorithm 1. Therefore, this algorithm yields an almost
feasible solution to problem PNCol.
Claim 4 implies that the total social welfare Wtotal is the

minimum between the sum of users’ valuation over winning
bids and the sum of their budget. Hence we have:

Wtotal =

M∑
j=1

min{Bj ,

K∑
k=1

T∑
t=1

b
k
j (t)y

k
j (t)}

≥
M∑
j=1

min{
∑K

k=1

∑T
t=1 bkj (t)y

k
j (t)

1 + Rmax

,
K∑

k=1

T∑
t=1

b
k
j (t)y

k
j (t)}

=
M∑
j=1

K∑
k=1

T∑
t=1

bkj (t)y
k
j (t)

1 + Rmax

=
P (T )

1 + Rmax

.

Summing Inequality (9) from Claim 2 over all t and recall

that P (0) = D(0) = 0, we have P (T ) ≥ D(T )

α+ 1
ϕ−1

. Plugging

it into the RHS of the above inequality, we have

Wtotal ≥ D(T )

(1 + Rmax)(α + 1
ϕ−1 )

(13)

Therefore by duality, the approximation ratio of Auc2Charge
is (1 +Rmax)(α+ 1

ϕ−1
).

4.2 Designing Randomized One-Shot Auction
Having built the basic structure of Auc2Charge, we next

study how to design a randomized one-shot mechanismAucone

which ensures truthfulness, individual rationality and pro-
vides an explicit approximation ratio on the social welfare
in t. To this end, we apply the framework proposed in [16]
and design the Aucone auction shown in Algorithm 2.

The first step of Aucone is to perform a fractional VCG
auction (Line 1-4). This fractional auction follows the clas-
sic VCG mechanism to compute the optimal allocation and
pricing decisions, and is truthful and individual rational
[16,23]. Since its result is inapplicable in real-world, we fur-
ther decompose this optimal factional solution into a combi-
nation of feasible integer solutions to PNCone(t) (Line 5-6).
We utilize the decomposition theory in [7,16] to achieve this.
We first define the following linear programming model:

DCP minimize
∑
l∈I

λl (14)

subject to ∑
l∈I

λly
k
j (t)

l
=

yk
j (t)

F

α
, ∀j and k, (15a)

∑
l∈I

λl ≥ 1, (15b)

λl ≥ 0, ∀l ∈ I, (15c)

In this problem, every vector y(t)l = {yk
j (t)

l}, ∀j, k repre-
sents a feasible integer solution to problem PNCone(t), and
α is the approximation ratio provided by the approximation
algorithm for PNCone(t). We notice that there are an ex-
ponential number of decision variables in DCP. Thus we
look at its dual problem:

DCD maximize
1

α

∑
j∈M

K∑
k=1

y
k
j (t)

F
μ
k
j (t) + σ (16)

subject to ∑
j∈M

K∑
k=1

y
k
j (t)

l
μ
k
j (t) + σ ≤ 1 ∀l ∈ I, (17a)

σ ≥ 0, (17b)

and find out that in problem DCD, there are only MK + 1
decision variables but with an exponential number of con-
straints. Applying the decomposition theory in [7, 16], we
have the following lemma:

Lemma 1. If there exists an α-approximation algorithm
for problem PNCone(t), a polynomial number of feasible in-

teger solutions and the decomposition
yk
j (t)F

α
=

∑
l∈I λly(t)

l

can be found within polynomial time by using this approx-
imation algorithm as a separation oracle in the ellipsoid
method, and the decomposition satisfies that

∑
l∈L λl = 1.

Proof. The proof of this lemma follows directly from the
decomposition theory in [7, 16], and thus is omitted due to
the space constraint.

Algorithm 2 Aucone: The Randomized One-Shot Auction
for EV Park-and-Charge

1: Step 1: Simulate a fractional VCG auction
2: Solve problem PNClp

one(t), the linear relaxation of PNCone(t)

and get the optimal fractional allocation decision y(t)F =

yk
j (t)

F , for any j and k.

3: For any user j, solve PNClp
one(t) by setting wk

j (t) = 0 for every

k, and denote the optimal value as Ṽj(t)
F

4: Compute the corresponding payment rule as Γj(t)
F = Ṽj(t)

F −∑
j′ �=j,k wk

j′ (t)y
k
j′ (t)

F

5: Step 2: Decompose the optimal fractional solution
6: Use the ellipsoid method to solve the primal-dual linear program-

ming problems DCP and DCD, in which an α-approximation
algorithm for PNCone(t) is used as a separation oracle, and get
a polynomial number of feasible integer solutions to PNCone(t).

For each solution y(t)l, get the decomposition coefficient λl

7: Step 3: Construct randomized electricity allocation and
pricing decision

8: Allocation decision: select y(t)l with probability λl

9: Pricing decision: Γj(t)
l = Γj(t)

F
∑

k wk
j (t)yk

j (t)l∑
k wk

j
(t)yk

j
(t)F

Lemma 1 indicates that in order to get the decomposi-
tion of the optimal fractional solution, all we need now is
an α-approximation algorithm for problem PNCone(t). To
design such an algorithm, we first drop the constraint (6c)
from PNCone(t) by setting wk

j (t) = 0 for all ckj (t) > Cj(t).
Correspondingly, dual variables qj(t) are also dropped from
the objective function (7) and constraints (8) of problem
D-PNClp

one(t). We see that this dropping will not affect the
optimal solution to PNCone(t) or the proof of Theorem 1
since no bids exceeding EV’s unit-time maximal charging ca-
pacity can win. Combining this dropping process, we resort
a classic primal-dual method [5] to design an approximation
algorithm for PNCone(t), as shown in Algorithm 3.

Algorithm 3 A Primal-Dual Approximation Algorithm For
PNCone(t)

1: wk
j (t) = 0 for all ckj (t) > Cj(t), drop constraint (6c) and all qj(t)

2: yk
j (t) = 0, sj(t) = 0, ∀j, k

3: z(t) = 1
R(t)

, G(t) = maxj,k{ckj (t)}, θ =
R(t)
G(t)

4: zbase = eθ−1,Mwin = ∅
5: while R(t)z(t) < zbase and Mwin �= M do
6: for all j ∈ M − Mwin do
7: kj = argmaxk{wk

j (t)}
8: end for

9: jwin = argmaxj

{
w

kj
j

(t)

c
kj
j

(t)z(t)

}

10: y
kjwin
jwin

(t) = 1, sjwin
(t) = w

kjwin
jwin

(t)

11: r =
c
kjwin
jwin

(t)

R(t)−G(t)
, z(t) = z(t) · (zbase)

r,Mwin = Mwin ∪{jwin}
12: end while

After the dropping process and the initialization of prime
and dual variables, Algorithm 3 adopts a greedy approach
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to find solutions to PNCone(t). It iteratively selects the bid
with the highest unit-value as a winning bid, one at a time,
from EV users who have not yet won any bid in the current
time slot. The iterative selection stops when every user has
won one bid or the total electricity demand in winning bids
exceeds the electricity supply at the park-and-charge station.

Next we analyze the performance of this approximation
algorithm. Before deriving its approximation ratio, we first
exam the feasibility of solutions computed by this algorithm.
Given a PNCone(t) problem, we assume Algorithm 3 stops
at the L-th iteration. Let sρj (t) and zρ(t) be the value of

sj(t) and z(t) in the ρ-th iteration of Algorithm 3, where
ρ = 1, 2, . . . , L. And we denote the winning EV jwin in the
ρ-th iteration as jρ. We propose the following two lemmas
on the feasibility of this algorithm.

Lemma 2. After the termination of execution, Algorithm 3
yields a feasible solution to problem PNCone(t).

Proof. The proof of this lemma is straightforward and
hence omitted due to the space constraint.

Lemma 3. Define a function

f(z
ρ
(t), kj) �

w
kj
j (t)

c
kj
j (t)zρ(t)

and ε = maxk′,k′′=1,...,K,j∈M
ck

′
j (t)

ck
′′

j (t)
. If {sρj (t), zρ(t)} for

any j is a dual solution computed by Algorithm 3 at the end
of the ρ-th iteration, then a feasible solution to the problem
D-PNClp

one(t) can be computed as {sρj (t), εf(zρ(t), kj)zρ(t)}
for any j.

Proof. By the end of the ρ-th iteration, it is easy to see
that constraint (8a) is satisfied for any EV user j ∈ Mwin,
since the winning bid of j is the highest bid of all its own
bids. For any EV user j ∈ M −Mwin, we have

f(z
ρ
(t), kjρ ) ≥

w
kj
j

c
kj
j (t)zρ(t)

. (18)

From the definition of ε, we can find that for any two bids k1

and k2, we have εck
1

j (t) ≥ ck
2

j (t). Thus the constraint (8a)
can be satisfied for any EV user j ∈ M − Mwin through

substituting c
kj

j (t) by εckj (t) on the RHS of Inequality (18):

f(z
ρ
(t), kjρ ) ≥

w
kj
j

εckj (t)z
ρ(t)

⇔ c
k
j (t)εf(z

ρ
(t), kjρ )z

ρ
(t) ≥ w

kj
j ≥ w

k
j ,

for any j ∈ Mwin−M and k, which proves this lemma.

Using these two lemmas on the feasibility of Algorithm 3,
we then propose the following theorem on the approximation
ratio provided by this algorithm.

Theorem 2. For any slot t, Algorithm 3 provides an ap-
proximation ratio of α and an integrality gap of α to problem
PNCone(t) in polynomial time, where α = 1+ ε(e− 1) θ

θ−1
,

ε is defined in Lemma 3, and θ is defined in Algorithm 3.

Proof. It is straightforward to see that Algorithm 3 ter-
minates in polynomial time since the while loop is executed
for at most M times and the corresponding loop body can
also be finished in polynomial time. Let popt(t) and dopt(t)
be the optimal value of PNCone(t) and D-PNClp

one(t), re-

spectively. We also define dρ1(t) =
∑M

j=1 s
ρ
j (t) and dρ2(t) =

R(t)zρ(t). We follows the sketch in [5] to prove the approx-
imation ratio of α by considering three different cases..

Case 1: When Algorithm 3 stops at the L-th iteration,
Mwin = M and R(t)z(t) < zbase. In this case, every EV
wins one bid. We also see that for each EV user j, only its

highest bid w
kj

j (t) will be considered during the allocation

process. Thus, we observe that 1) p(t) =
∑

j∈M w
kj

j (t), and

2) sj(t) = w
kj

j (t) ≥ wk
j (t) for any EV j and its bid k. The

second observation makes any non-negative z(t) become a
part of feasible solution to problem D-PNClp

one(t). By weak
duality, we have d(t) ≥ p(t). When we let z(t) = 0, d(t)
reaches its optimal value dopt(t) and has the exactly the same

value as p(t), i.e.,
∑

j∈M w
kj

j (t). In this way, Algorithm 3

provides an optimal solution to problem PNCone(t).
Case 2: When Algorithm 3 stops at the L-th iteration,

R(t)z(t) ≥ zbase, and there exists an iteration ρ ≤ L such

that α ≥ dopt(t)

d
ρ−1
1 (t)

. In this case, we have dρ−1
1 (t) = pρ−1(t).

And we also observe that dρ1(t) is non-decreasing as ρ in-
creases. By weak duality, Algorithm 3 provides an approxi-
mation ratio of α in this case.

Case 3: When Algorithm 3 stops at the L-th iteration,

R(t)z(t) ≥ zbase, and for any iteration ρ ≤ L, α <
dopt(t)

d
ρ−1
1 (t)

.

In this case, we first define two auxiliary variables:

δ = (
R(t)

G(t)
− 1)

(
z
1/(

R(t)
G(t)

−1)

base − 1

)
and Δ =

δR(t)

R(t) − G(t)
.

Leveraging the update process of zρ(t) in Algorithm 3 and
the inequality (1 + a)x ≤ 1 + ax, ∀x ∈ [0.1], we have the
following observation on dρ2(t):

dρ
2(t) = R(t)zρ−1(t)z

c
kjρ
jρ

(t)/(R(t)−G(t))

base

= R(t)zρ−1(t)(1 + δ
R(t)
G(t)

−1
)
c
kjρ
jρ

(t)/G(t)

≤ R(t)zρ−1(t)(1 + δ
R(t)
G(t)

−1
·

c
kjρ
jρ

(t)

G(t)
)

= dρ−1
2 (t) + Δc

kjρ
jρ

(t)zρ−1(t).

(19)

From the execution of Algorithm 3, we also observe that

p
ρ
(t) = p

ρ−1
(t) + ω

kjρ
jρ

(t), for any 0 < ρ ≤ L.

Using the definition of function f and Inequality (18), we
continue to transform the RHS of Inequality (19):

d
ρ
2(t) ≤ d

ρ−1
2 (t) +

Δ(pρ(t) − pρ−1(t))

f(zρ−1(t), kjρ )
. (20)

Lemma 3 shows that any set of dual solution {sρ−1
j (t), zρ−1(t)},

∀j during the execution of Algorithm 3 can be transformed
to a feasible dual solution to D-PNCpl

one(t). Thus we have

dopt(t) ≤ d
ρ−1
1 (t) + εf(z

ρ−1
(t), kjρ )d

ρ−1
2 (t),

which implies

f(z
ρ−1

(t), kjρ ) ≥ dopt(t) − dρ−1
1 (t)

εdρ−1
2 (t)

.

Since in this case we have α <
dopt(t)

d
ρ−1
1 (t)

, we can further get

f(z
ρ−1

(t), kjρ ) ≥ (α − 1)d

ε · αdρ−1
2 (t)

. (21)

Plugging Inequality (21) into the RHS of Inequality (20) and
utilizing 1 + x ≤ ex, ∀x ≥ 0, we get the following inequality

dρ
2(t) ≤ dρ−1

2 (t)(1 + ε·α·Δ
(α−1)dopt(t)

(pρ(t) − pρ−1(t)))

≤ dρ−1
2 (t)e

ε·α·Δ
(α−1)dopt(t)

(pρ(t)−pρ−1(t))
.

(22)

Summing Inequality (22) over ρ = 1, 2, . . . , L, we reach

d
L
2 (t) ≤ d

0
2(t)e

ε·α·Δ
(α−1)dopt(t)

pL(t)
.

Note that d02(t) = 1, and when the algorithm stops at the
L-th iteration under this case, we have dL2 (t) = R(t)z(t) ≥
zbase. Hence we have

θ−1 =
R(t)

G(t)
−1 ≤ ε · α · Δ

(α − 1)dopt(t)
p
L
(t) ⇔ dopt(t)

pL(t)
≤ ε · α · Δ

(α − 1)(θ − 1)
.

Based on weak duality we know that
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popt(t)

pL(t)
≤ dopt(t)

pL(t)
,

which means
dopt(t)

pL(t)
is an upper bound of the approximation

ratio. Through some simple mathematical transformation,
we can obtain the following approximation ratio

α = 1 + ε(e − 1)
θ

θ − 1
.

Denote the optimal value of the linear relaxation version of
PNCone(t) problem as pLR

opt(t). From the fact that dopt(t) ≥
pLR
opt(t) and popt(t) ≥ pL(t) we can further get

pLR
opt(t)

popt(t)
≤ pLR

opt(t)

pL(t)
≤ dopt(t)

pL(t)
= α

Hence, the integrality gap provided by Algorithm 3 is also
α and we have finished our proof.
Having proved the approximation ratio and the integrality
gap provided by Algorithm 3, we can now plug it into the
Aucone one-shot auction as a separation oracle. In this way,
Aucone can derive a polynomial number of feasible integer
solutions to the PNCone(t) problem and the correspond-
ing decomposition coefficient through ellipsoid method, as
shown in Lemma 1. If the Aucone mechanism is performed
independently, i.e., in a scenario without any budget-based
bid updating, it can achieve an α-approximation ratio on
social welfare. This conclusion was proved in [16]. With the
proposed budget-based bid updating process, however, the
approximation ratio provided by Aucone will be scaled up by
a factor of 1+Rmax. This is because the valuation wk

j (t) in

problem PNCone(t) is a reduced value from bkj (t). There-
fore, we propose the following theorem on the performance
of Aucone in our online auction framework.

Theorem 3. Aucone is computationally efficient, truth-
ful, individual rational, and α(1 +Rmax)-competitive.

Proof. The proof of this theorem follows the sketch in
[16,23], and is omitted due to the space constraint.

Putting the conclusion in Theorem 1 and 3 together, we
then propose the following theorem on the performance of
Auc2Charge online auction framework.

Theorem 4. Integrating Aucone into Algorithm 1, our
Auc2Charge framework is truthful, individual rational, com-
putationally efficient and (1 + Rmax)(α(1 + Rmax) +

1
ϕ−1

)-
competitive.

Proof. The proof of this theorem follows the sketch in
[6, 23] and is omitted due to the space constraint.

5. NUMERICAL SIMULATION
We conduct numerical simulation to demonstrate the ef-

ficacy of the Auc2Charge online auction framework. In our
simulation, we define the length of one time slot as one-hour.
We assume a parking-lot with 500 spots, each of which has
a charging point, and the electricity source of this facility is
from renewable energy. We use the hourly wind power gen-
eration capacity profile of a 24-hour period from a random
location in New York City of the United Sates [1] as the
electricity supply profile of this facility. We assume each EV
has the same battery capacity of 40kWh. In any simulation
with T time slots, we assume all EVs arrive at the charg-
ing stations between time slot 1 and T − 6 in a uniformly
random way. The SOC of each EV when arriving at the
charging facility is uniform randomly chosen between 0 and
0.7. And the length of parking for each EV is uniformly cho-
sen between 2 to 6 hours. The total budget of each EV user
follows a uniform distribution between 8 and 12 dollars. At
the beginning of each time slot, every EV user submits up
to 5 bids in the form of (valuation, charging demand). For
every EV user j, the valuation and charging demand in her
bids for a given time slot t are separately randomly gener-
ated. Then the valuations and charging demands are sorted
respectively and reorganized based on the sorted order to

ensure the monotonicity of valuation over charging demand.
The unit-time maximal charging capacity for each EV at
every time slot is set to be a random value between 6kWh
and 8kWh. We perform simulation of Auc2Charge under
the setting of T = 12, 18, and 24 hours, with 5 different
numbers of EVs, i.e., 100, 200, 300, 400 and 500. simulation
for 5 times and compute the average value.

5.1 Social Welfare
We first investigate the performance of Auc2Charge on

social welfare. To this end, we first simulate OffOptimal,
the offline optimal solution to the PNC problem. We then
repeat the simulation of Auc2Charge framework under each
combination of T and EV numbers for 5 times and derive
its average approximation ratio for each setting.
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Figure 3: Offline/Online Ratio of Social Welfare

Figure 3a) shows the approximation ratio of social welfare
achieved by Auc2Charge under different numbers of partic-
ipating EVs when the simulation period is 12 hours. We
see that our Auc2Charge online auction achieves a stable
offline/online ratio on social welfare under different density
of electric vehicles. In Figure 3b) we plot the approximation
ratio of Auc2Charge under different simulation periods when
the number of EV is fixed at 100 . And we can observe a
similar stable approximation ratio provided by Auc2Charge.
Not only does these two observations indicate the existence
of approximation ratio provided by our Auc2Charge auction,
they also demonstrate the scalability of this online auction
under various numbers of participating vehicles and arbi-
trary time period. It thus sheds some light for large-scale
deployment of Auc2Charge in practice.

5.2 User Satisfaction
Next we study the performance of our Auc2Charge auc-

tion framework from the perspective of EV users. Note that
we do not include results of OffOptimal because it is im-
practical in real world. We focus on the following metrics
regarding the experience of EV users during the parking:

• User Satisfaction Ratio: The ratio between the total
electricity allocated to an EV and the amount of elec-
tricity needed to fully charge this EV.

• Unit Charging Payment : The average payment made
by an EV to charge one unit of electricity, i.e., 1kWh.

• Total Charging Payment : The total charging payment
made by an EV during its parking.

• Budget Utilization Ratio: The ratio between the total
charging payment of EV and its total bidding budget.

In what follows, we discuss the performance of Auc2Charge
on these metrics. Figure 4a) shows the average user sat-
isfaction ratio when executing the Auc2Charge framework.
When the number of EVs are fixed, the average user satis-
faction ratio increases as the number of time slots increases.
Because the arrival of EVs are distributed between time slot
1 and T − 6 in our simulation. When T becomes larger,
there are less EVs staying in the parking lot in a given time
slot, resulting in abundant supply of electricity and a high
user satisfaction ratio. On the contrary, for a fixed length
of simulation time, this ratio decreases as the number of
EVs increases. This is because with more vehicles arriving
at the parking lot, the electricity becomes scarce. We then
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plot the unit charging payment of EV users under differ-
ent simulation settings in Figure 4b). We can see that the
average unit charging payment of EV users shows an oppo-
site monotonicity from user satisfaction ratio, i.e., the unit
charging payment increases as the number of EVs increases,
and decreases as the simulation period T decreases. This
monotonicity is desirable in an efficient market mechanism
as it plays the role of the indicator of electricity scarcity.
As a conclusion, both the monotonicity on user satisfaction
ratio and unit charging payment demonstrate the ability of
Auc2Charge to adapt to various demand-supply relations.
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(b) Unit Charging Payment
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(c) Total Charging Payment
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(d) Budget Utilization Ratio

Figure 4: Metrics of User Satisfaction
Figure 4c)-d) show the average total payment and the

average budget utilization ratio of EV users in different sim-
ulation settings. Some interesting observations in these two
figures are worth noting. The first one is that the total pay-
ment and budget utilization ratio does not show any mono-
tonicity on simulation period or the number of EVs. For
instance, the highest budget utilization ratio occurs when
200 EVs participate in the auction in a 12-hour period. This
is because the expense of EV users is decided by both the
total amount of electricity they received and the unit-price
they pay. As we explained, these two factors have the oppo-
site monotonicity, which leads to the lack of regular pattern
in total payment and budget utilization ratio. The second
observation is that when there are only 100 EVs in the sim-
ulation and the simulation time is large, i.e., 18 or 24 hours,
the total payment of EV users decided by Auc2Charge on-
line auction approaches to zero, and so is the budget uti-
lization ratio. This is because under these two cases, the
small number of EVs and the long simulation period cause
the oversupply and under-demand of electricity, resulting in
a less competition between EV users to get charged. Under
this scenario, Auc2Charge is able to allocate electricity to
fulfill all the charging demand of EV users, i.e., a 100% user
satisfaction ration in Figure 4a), while charging a near-zero
unit price to EV users as shown in Figure 4b). The near-
zero total charging payment and budget utilization ratio are
direct response from Auc2Charge on electricity oversupply
and under-demand, and protects EV users from overpricing.
When the electricity demand is much larger than the supply,
on the contrary, Auc2Charge allocates limited electricity to
EV users who really value the electricity with a higher pric-
ing, which protects the charging station from underpricing.
One example can be found in Figure 4b)-d) when T = 12 and
the number of EVs is 500. Observations on user satisfaction
metrics in these scenarios again demonstrate Auc2Charge’s
ability to adapt to various supply-demand relations. And
as we already showed in Figure 3, Auc2Charge achieves this

adaptiveness with a social welfare guarantee simultaneously.

6. RELATED WORK
EV Charging Facilities. There has been a growing

literature on the operation mode of EV charging facilities
[2–4, 8, 9, 12, 17, 19]. Lopes et al. [17] explored the poten-
tial benefits and impact brought by the integration of EV
into power grid. Chen et al. [9] designed a central controller
to schedule the EV charging using renewable energy. The
authors proposed an online scheduling algorithm that can
achieve the maximum competitive ratio of an offline solu-
tion. Ardakanian et al. [4] designed a distributed charging
algorithm to adjust EV charging rate based on available ca-
pacity of power network and ensure the proportional fairness
between EV chargers. Gan et al. [12] proposed a distributed
controller to capture the uncertainty and elasticity of EV
charging and the intermittency of renewable energy. Chen
et al. [8] studied a joint optimal power flow and EV charging
problem. An online distributed controller was designed to
enable efficient EV charging and maintain grid stability.

Recently, a promising operation mode called park-and-
charge was proposed, and has drawn the interest of both
academia and industry. It allows EVs to get charged dur-
ing staying in a parking lot while the drivers are away for
other agendas. Several experiments have been performed
to explore the potential of this mode in integrating EVs
into smart grid and ITS [2, 3, 19]. The V-charge project [3]
proposed to design an automated valet park-and-charge sys-
tem to support local autonomous transportation. And some
prototypes have been built in several universities in Europe.
GM and TimberRock built an park-and-charge station at
GM’s E-Motor Plant [2], where TimberRock manages the
charging schedule of a fleet of EVs with the aim to balance
the intermittent renewable energy supply and the stochastic
EV charging demand. The U.S. Air Force is conducting an
experiment at its Los Angeles Base [19], where the charging
schedule of an EV fleet is controlled to minimize the total
electricity cost. Though these experiments provide positive
outcome, the missing of an efficient market mechanism pre-
vents it from large-scale deployment. Existing pricing poli-
cies such as pay-per-use and flat-rate fail to adapt to the
dynamic change of demand-supply relation in this mode.
To fill this gap, we propose the Auc2Charge online auction
framework as the market mechanism for park-and-charge

Auction Theory. Being a market mechanism, auction
allocates resources to buyers who value them most, reduces
the chance of overpricing and underpricing, and thus im-
proves social welfare. Auction mechanisms have been widely
used in areas such as online advertisement [6,11], wholesale
electricity market [20, 22] and cloud computing [23, 25, 26].
Recently some studies [13, 14, 21, 24] focus on utilizing auc-
tion mechanisms into different scenarios of EV charging,
with the hope of improving the efficiency of electricity allo-
cation. For instance, Gerding et al. [14] proposed a two-side
market with advanced reservation, in which EV users and
the charging station can exchange their charging preference
and cost. An online mechanism was designed for this market
to ensure the truthfulness of EV users, but it does not pro-
vide any explicit guarantee on system social welfare. Robu et
al. [21] designed an online mechanism, in which EV users bid
for different charging speeds based on their arrival time, and
cancel the charging allocation on departure. The authors an-
alyzed the worst-case competitive ratio of social welfare un-
der such cancellation scenario. Designing an auction with a
close-form approximation ratio on social welfare while ensur-
ing truthfulness and individual rationality has always been
a major challenge in mechanism design. Lavi et al. [16] tack-
les this challenge by proposing a randomized auction frame-
work, which could translate any α-approximation algorithm
into truthful and individual rational mechanisms. In our
paper, we leverage this framework together with techniques
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in Adwords auction [11, 23] and combinatorial auction [5],
and propose the Auc2Charge online auction framework for
electricity allocation in EV park-and-charge station. We
show that Auc2Charge ensures truthfulness and individual
rationality, and provides a close-form approximation ratio
on total social welfare in polynomial time. Auc2Charge was
motivated by the online auction mechanism for resource al-
location in cloud computing [23]. One important difference
is that in cloud systems, users do not have any constraint
on the capacity of receiving resources. In EV charging sys-
tems, however, there exists a stochastic and unpredictable
constraint on the unit-time maximal charging capacity for
every EV due to battery characteristics. To the best of our
knowledge, Auc2Charge is the first online auction mecha-
nism that achieves truthfulness, individual rationality and
explicit guarantee on social welfare for electricity allocation
in EV park-and-charge.

7. CONCLUSION
As a promising operation mode for charging stations, park-

and-charge allows EVs to get charged during their stay in a
parking lot. To find an efficient market mechanism for large-
scale deployment of this mode, we explore the feasibility and
benefits of utilizing auction in EV park-and-charge. In an
auction, every EV user can submit and update bids about
their charging demand to the parking lot, which makes elec-
tricity allocation and pricing decisions based on the collected
bids. We propose Auc2Charge, an online auction framework
for park-and-charge. Our theoretical analysis indicates that
Auc2Charge ensures truthfulness and individual rationality,
computes electricity allocation and pricing solutions in a
polynomial time, and guarantees an explicit approximation
ratio of system social welfare. Results from numerical simu-
lation demonstrate the efficacy of Auc2Charge in terms of so-
cial welfare and user satisfaction. The Auc2Charge auction
framework fills the gap between small-scale experiment and
large-scale real-world deployment of park-and-charge mode.
Though it is designed for park-and-charge, the design ratio-
nale of Auc2Charge also applies to other modes for charging
stations, e.g., the charging-point reservation system. As fu-
ture work, we plan to extend the Auc2Charge framework
by including other realistic constraints in both the elec-
tricity market, e.g., vehicle-to-grid electricity transmission
and ramp-up/ramp-down cost of electricity generation, and
intelligent transportation systems, e.g., the uncertainty of
EV’s mobility.
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