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Abstract—Location based services have experienced an explo-
sive growth and evolved from utilizing a single location to the
whole trajectory. Due to the hardware and energy constraints,
there are usually many missing data within a trajectory. In order
to accurately recover the complete trajectory, crowdsensing pro-
vides a promising method. This method resorts to the correlation
among multiple users’ trajectories and the advanced compressive
sensing technique, which significantly outperforms conventional
interpolation methods on accuracy. However, as trajectories
exposes users’ daily activities, the privacy issue is a major
concern in crowdsensing. While existing solutions independently
tackle the accurate trajectory recovery and privacy issues, yet
no single design is able to address these two challenges simul-
taneously. Therefore in this paper, we propose a novel Privacy
Preserving Compressive Sensing (PPCS) scheme, which encrypts
a trajectory with several other trajectories while maintaining
the homomorphic obfuscation property for compressive sensing.
Under PPCS, adversaries can only capture the encrypted data,
so the user privacy is preserved. Furthermore, the homomorphic
obfuscation property guarantees that the recovery accuracy of
PPCS is comparable to the state-of-the-art compressive sensing
design. Based on two publicly available traces with numerous
users and long durations, we conduct extensive simulations to
evaluate PPCS. The results demonstrate that PPCS achieves a
high accuracy of <53 m and a large distortion between the
encrypted and the original trajectories (a commonly adopted
metric of privacy strength) of >9,000 m even when up to 50%
original data are missing.

I. INTRODUCTION

Location based services (LBSs) [18, 37] have experienced

an explosive growth recently, which are evolving from utilizing

a single location [7] to harness the complete trajectory of a

mobile user [23, 26, 40]. For example, the Moves application,

which automatically tracks both activities and trajectories of

users, has been downloaded over 4 million times since its

launch in Jan. 2013 and has been acquired by Facebook [1].

Although GPS is universally available on modern devices,

the trajectory of a mobile user may always be incomplete due

to none-line-of-sight to satellites [29]. In addition, since GPS

consumes a significant amount of energy, it is only activated

periodically to conserve energy [22]. Consequently, the trajec-

tory recovery [30] is one of the fundamental components of

LBSs to estimate the missing data in a incomplete trajectory.

For instance, trippermap [4] in Flickr can automatically repro-

duce a user’s travelling path based on her geotagged photos.

Considerable interpolation methods have been devoted to

trajectory recovery. With a single user’s incomplete trajectory

data, the methods such as nearest neighbors [31] and linear

interpolation [34] can attain only coarse-grained accuracy.

More recently, Rallapalli et al. [29] reveal that the trajectories

of multiple users within the same geographic area are strongly

correlated. For instance, students in the same campus have

similar time tables; vehicles in the same segment of freeway

moves with similar velocities. Leveraging such correlations,

the crowdsensing technology [10, 11, 16, 17, 28, 35] provides

a promising recovery method, which collectively recovers all

users’ trajectories together using compressive sensing (CS).

This crowdsensing recovery method is proved to be superior

to interpolation methods with only single user data [29].

While the crowdsensing recovery method accomplishes the

better accuracy, the major drawback for applying it in practice

is its requirement to collect all users’ location data, which

poses great concerns for potential privacy leakage [32, 36].

Especially in crowdsensing, the users are willing to contribute

their personal data only when their privacies are preserved.

Currently, the most commonly adopted privacy-preserving ap-

proach is anonymization [24]. Nevertheless, latest studies [12,

38] reveal that the anonymization mechanism alone is inade-

quate. To further improve the privacy, dummification [19] and

obfuscation [13, 15, 27] methods are introduced, which inject

fake trajectories and perturb original trajectories, respectively.

Although dummification and obfuscation methods reasonably

protect user privacies, they also pollute the original data, which

decreases the recovery accuracy with current crowdsensing

recovery method.

To tackle the challenges of accurate trajectory recovery

and privacy-preserving simultaneously, we design a novel

encryption method named K-vector perturbation (KVP) to

attain both objectives. The main idea of KVP is to use a private

key to perturb a user’s trajectory with K other trajectories

while maintaining the homomorphic obfuscation property for

compressive sensing. Based on KVP, we propose the privacy-

preserving compressive sensing (PPCS) scheme including

three major steps. First, every user encrypts her incomplete

location data by KVP and transmits the data in encrypted form

to the crowdsensing server. Second, the server does not need to

decrypt the data but directly recovers all users’ encrypted data

together with CS. Third, a user downloads her corresponding

recovered data and decrypts her own trajectory by inverse

KVP. Under PPCS, adversaries are possible to capture the



encrypted data but do not know the private key, so that the

users’ privacies are preserved. Furthermore, PPCS guarantees

the recovery accuracy is the same by operating CS on the

encrypted data and the original data, which is named by the

homomorphic obfuscation property.

The contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work

to jointly optimize the data recovery accuracy and user

privacy preservation in crowdsensing.

• We propose a systematic PPCS scheme for crowdsensing

based trajectory recovery, which combines the novel

homomorphic obfuscation method KVP into compressive

sensing framework to accomplish the recovery accuracy

and the privacy preservation simultaneously. Since the de-

sign of KVP is simple, PPCS is easy to be implemented.

• We theoretically prove that PPCS achieves the same

recovery error bound as CS. Moreover, we prove that

the expectation of distortion between encrypted data and

original data is relatively large compared with the size of

the area, which indicates the effective data perturbation

for privacy preservation. We also prove that PPCS can

protect the user privacy as long as there are no more than

K actual data being exposed, where K can be proactively

controlled according to the user requirement on privacy.

• Extensive simulations are conducted to evaluate PPCS,

which are based on two publicly available traces from

Beijing and Shanghai with large amount of users, long

durations, and mixed mobility modes including walking,

biking, and driving. The evaluation results show the

effectiveness of PPCS. Typically, using PPCS on Beijing

traces achieves the average accuracy within 53 meters and

the average distortion more than 9, 000 meters even up

to 50% original data are missing.

The remainder of this paper is organized as follows. In

Section II, we formulate the trajectory recovery problem. In

Section III, we investigate the mobility property in real traces.

We describe the design of PPCS in Section IV, and analyze

the theoretical recovery accuracy and privacy in Section V.

In Section VI, we evaluate our scheme based on trace-driven

simulations. In Section VII, we review the related work. And

we conclude this work in Section VIII.

II. PRELIMINARIES

In this section, we introduce the trajectory recovery model,

the adversary model, and the formal definition of our problem.

A. Trajectory Recovery Model

A trajectory is composed of a sequence of locations that

a user traverses, represented by her corresponding longitude

x and latitude y, as shown in Fig. 1(a). The user’s current

location (x, y) can be obtained through the GPS module on her

mobile device. In an N -user system where the total duration

of interests consists of T time slots, the trajectory of the i-th
user is represented by two 1 × T vectors, where xij and yij
are the longitude and latitude at the j-th time slot respectively

(i = 1, 2, · · · , N and j = 1, 2 · · · , T ).
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(a) Two vectors are used to record the longitude x and the latitude
y data of a user’s trajectory, whose ID is 3.
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(b) When some location data are missing, the corresponding
elements in the vectors are null. It is not easy to directly recover
the accurate trajectory due to several possible paths in map.

Fig. 1. Trajectory model.

The location data of a user could be partially missing due

to reasons such as none-line-of-sight to GPS satellites, energy

management of GPS module on mobile devices [22] and so

on. In Fig. 1(b), the null elements in the vectors indicate the

data missing at their corresponding time slots.

The trajectory recovery is not effective if it is performed

for individual users independently. For example, as shown in

Fig. 1(b), the location data for the 5-th to the 7-th time slots

are missing. Even though the map matching [33] method is

utilized to narrow down the field of candidates, there are still

three possible trajectories provided by linear interpolation [31].

To address the weakness of the single user recovery, the

crowdsensing recovery exploits the correlation among users

and recovers all users’ trajectories together using compressive

sensing, which is verified to outperform existing methods [29]

and is referred as the state-of-the-art in this paper.

The notations of the crowdsensing recovery are defined as:

• Trajectory Matrix is a set of N users’ actual trajectories,

which is defined as X = (xij)N×T . We only illustrate

the longitude X related definitions and derivations in

the following sections. All results for the latitude Y are

similar to X , which are omitted for conciseness.

• Binary Index Matrix is used to indicate whether a location

data in X is missing, which is defined as

Φ = (φij)N×T =

{

0 if xij is missing,

1 otherwise.
(1)

• Sensed Matrix consists of the sensed location data from

GPS. Due to the potential data missing, elements in the

sensed matrix S are either xij (i.e., sensed location data)

or 0 (i.e., missing data). Thus, S can be presented by1

S = X ◦ Φ. (2)

• Recovered Matrix is generated by recovering the missing

data in the sensed matrix S to approximate the actual

trajectories X . The recovered matrix is denoted by X̂ .

• Compressive Sensing (CS) is an advanced recovery tech-

nique [6, 9] utilized to recover the missing data in S. We

use fcs to denote the CS operation, thus X̂ = fcs(S).

1In this paper, ‘XΦ’ represents the matrix multiplication of X and Φ, while
‘X ◦ Φ’ represents the element-wise multiplication of X and Φ.
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Fig. 2. Adversary models.

B. User Models and Adversary Models

We consider a system consisting of two types of mobile

users: public and private users. Public users are willing to share

their trajectories and private users want to avoid the exposure

of their trajectories. For example, in an urban traffic scenario,

buses can be treated as public users, and personal vehicles are

good examples of private users.

As leakage of personal trajectories can lead to unauthorized

surveillance and tracking, adversaries are motivated to obtain

private users’ trajectories. In Fig. 2, we illustrate the adversary

models that threaten the privacy in crowdsensing recovery,

which are categorized as eavesdroppers, hackers, and stalkers.

• Eavesdroppers and hackers: An eavesdropper could cap-

ture the data traffic between users and the crowdsensing server

by hijacking the communication channels. A hacker could

access and obtain all data in the server. Because eavesdroppers

and hackers can obtain the same set of information, we do not

differentiate them in the rest of the paper.

• Stalkers: A stalker can track a user for a short while

and obtain k actual location data of that user. Without loss

of generality, we assume that k is a small number compared

with the total number of data in a complete trajectory, because

a stalker cannot always tail after the user.

All adversaries potentially have the following capabilities:

(i) they have the same algorithms as ours to recover the trajec-

tory; (ii) they can exploit existing map matching methods [25,

33] as ours to further improve their estimation accuracy.

C. Problem Definition

In this paper, we consider the accurate and privacy-

preserving trajectory recovery problem. This problem is chal-

lenging because the two objectives appear to be conflicted

with each other. On one hand, a highly accurate recovery

can be achieved by the crowdsensing method. However, this

method requires to collect data from all users, which poses

the potential privacy leakage. On the other hand, the privacy

objective is to avoid the exposure of users’ trajectories, which

is contrary to the basic requirement of crowdsensing. Existing

methods cannot satisfy the two objectives simultaneously.

To address this dilemma in crowdsensing based trajectory

recovery, we propose the PPCS scheme, in which a novel ho-

momorphic obfuscation method for CS is designed to preserve

the user privacy and guarantee the recovery accuracy as well.

III. TRACE PREPROCESSING AND VALIDATION

Before describing the design of PPCS scheme, we introduce

two real traces and validate their low-rank properties, which

TABLE I
SELECTED REAL-WORLD MOBILITY TRACES

Name Size Area Mobility Mode

Beijing 116 users × 355 slots 70×85 km2 Walk/Bike/Car

Shanghai 74 users × 399 slots 100×100 km2 Taxi/Bus
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Fig. 3. Low-rank property in the investigated mobility traces.

implies the strong correlation among multiple users’ trajecto-

ries within the same area [29].

A. Preprocessing of Real-World Mobility Traces

The evaluation of our design is based on two publicly

available mobility traces: Geolife [2] and SUVnet [3]. These

two traces have large amount of users, long durations, and

mixed mobility modes. Geolife records the GPS trajectories

of 178 users from April 2007 to October 2011 in Beijing, in

which the major user mobility modes include walking, biking,

and driving. SUVnet records the trajectories of over 2000 taxis

and 300 buses in the urban area of Shanghai.

However, the raw traces from Geolife and SUVnet cannot

be directly utilized for low rank validation, because significant

amount of their data are missing. To guarantee the integrity

of ground truth, we perform trace preprocessing on the raw

data to select their complete subsets and build the trajectory

matrices, which are then utilized in our evaluations. The

description of the two selected traces including their sizes,

areas, mobility modes are shown in Table I, which are denoted

as Beijing and Shanghai, respectively.

B. Validating the Low Rank Property

As CS is a major component of PPCS, we first need to

validate whether the trajectory matrices are low-rank, which

is the requirement for the CS operation [9].

Although the low-rank property has been studied in [29],

each of their traces has only one mobility mode: either

human walking or car driving. The mobility mode mixed with

walking, biking, and driving together in our selected traces is

a more general scenario. In addition, some of their traces [29]

are synthetic. However, our traces are raw data gathered from

real applications, which inherently have noises. Hence, we still

need to verify whether such traces are universally low-rank.

We verify the low-rank property of the selected traces by

Singular Value Decomposition (SVD), which is an effective

non-parametric technique for rank investigation [21]. Accord-

ing to SVD, an N × T matrix X can be decomposed as

X = UΛV ′ =

min(N,T )
∑

i=1

σiuiv
′
i, (3)
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where U and V are two unitary matrices, V ′ is the transpose of

V , and Λ is an N ×T diagonal matrix containing the singular

value σi of X . Typically, the singular values σi are sorted

as σi ≥ σi+1, (i = 1, 2, · · · ,min(N, T )), where min(N, T )
is the number of singular values. The rank of the matrix X ,

denoted by r, is the number of its non-zero singular values.

The matrix is low-rank if r << min(N, T ). If the top-r̂
singular values have a good approximation of the total singular

values, i.e.,
r̂

∑

i=1

σi ≈
min(N,T )

∑

i=1

σi, (4)

this matrix is considered to be near low-rank, and r̂ is treated

as its rank.

The CDF of the singular values obtained from the Beijing

and Shanghai traces are shown in Fig. 3, where the x-axis

presents the i-th largest singular values, and the y-axis is the

ratio between the sum of the top-i singular values and the sum

of all singular values. We find that the total singular values are

well approximated by only a few top singular values in both

traces. For example, the top-7 σi of the Beijing and the top-13
σi of the Shanghai occupy more than 95% of their respective

total values, while the total numbers of σis are 116 and 74
respectively. This observation reveals that both traces are of

the near low-rank property. Hence, CS can be applied on them

to achieve a promising recovery accuracy.

IV. PPCS SCHEME

To address the privacy issue in conventional CS, we present

a simple but efficient trajectory recovery scheme Privacy-

Preserving Compressive Sensing (PPCS) in this section.

A. Scheme Overview

The proposed PPCS consists of three steps. First, users en-

crypt their sensed data and transmit the encrypted trajectories

to the server. Note that the encrypted trajectories may not be

complete because of the data missing issue. Second, the server

performs CS on the collective data to recover the missing part

of the encrypted trajectory for all users. Third, any individual

user downloads the recovered and encrypted trajectory from

the server, and decrypts it to obtain her original trajectory. An

overview of these three steps is shown in Fig. 4. Briefly, the

advantages of PPCS are:

• The design of PPCS is simple, and thus it is easy to be

implemented in practice.

• PPCS tactfully takes advantage of CS to provide signifi-

cant privacy preservation strength while guaranteeing the

accuracy of recovered trajectories.

• The high-complexity CS recovery is computed at the cen-

tralized server side. The distributed computing at the user

side is the low-complexity encryption and decryption.

• The communication overhead of every user is very small.

Analyses of these advantages are provided in Section V-A

to V-D. Moreover, the case of no public vectors in PPCS are

discussed in Section V-E.

B. Encrypt the Sensed Trajectories at Individual Users

The core component of PPCS is to encrypt the sensed

trajectories at private users, so that only their encrypted

trajectories are available at the server. Denote fen as the

encryption operation. With a sensed trajectory S(i) of the user

i, the encrypted trajectory can be represented as

S(i) = fen(S(i)), (5)

where S(i) presents the i-th row vector in the matrix S.

In the next, we explain how the encryption operates in detail.

In the system under consideration, public users are willing

to share their trajectories, which are available at the server.

At the first phase of encryption, a private user i randomly

downloads K public vectors D(1), D(2), · · · , D(K) from all

public vectors at the server, which is utilized to generate the

encrypted vector S(i). Only K-vector downloading does not

lead to much communication overhead. In addition, random

downloading brings more uncertainty for privacy preservation.

Then, user i generates a length-(K + 1) random vector

<ψi,0, ψi,1, ψi,2 · · · , ψi,K> as her private key, which is not

shared to any other including the server. Any key satisfies

ψi,j ∈ (0, 1) and
∑K

j=0 ψi,j = 1. With the public vectors and

the private key, user i generates her encrypted vector S(i) as

S(i) = (ψi,0S(i) + ψi,1D(1) + · · ·+ ψi,KD(K)) ◦ Φ(i). (6)

To demonstrate the encryption operation, let us consid-

er the example shown in Fig. 5. Assume a private user

i = 4 has downloaded K = 2 public vectors from the

server (i.e., D(1), D(2)), and has generated the length-3 key

<ψ4,0, ψ4,1, ψ4,2>. The three vectors S(4), D(1), and D(2)

are summed up with weight ψ4,0, ψ4,1, and ψ4,2 respectively.

For each null element in S(4), the corresponding element in

the resultant sum vector is treated as the missing data and the

encrypted vector S(4) is then transmitted to the server.



Private 4:

Public 1:

Public 2:

Encrypted Vector

+

+

ψ4,0 S(4)

D(1)

D(2)

ψ4,1

ψ4,2

Fig. 5. KVP encryption

This encryption method is referred to as K-Vector Perturba-

tion (KVP) in this paper, because 1) from the aspect of matrix

operation, fen is essentially a linear combination of K vectors

in a matrix, and 2) the physical meaning of fen is to perturb

the user trajectory with other K public trajectories.

Intuitively, the length of private key dominates the difficulty

for adversaries to decrypting the original data. Hence, the value

of K determines the privacy preservation strength offered

by KVP. We will further discuss the impact of K on the

performance of PPCS in Section V-C.

C. Recover the Encrypted Trajectories at the Server

After collecting the encrypted trajectories from all private

users and original trajectories of all public users, the server

forms the encrypted matrix S of size N × T . Then, crowd-

sensing recovery method applies CS on S and the completed

encrypted trajectory matrix is obtained as X̂ = fcs(S).
The fcs operation adopted in this paper is the standard CS

recovery. Briefly, the procedures of fcs are as follows:

• Assume that X̂ can be divided into L and R matrices

according to SVD factorization.

X̂ = UΛV ′ = LR′, (7)

where L = UΛ1/2, R = V Λ1/2.

• Estimate L and R matrices by

min((||L||22 + ||R′||22) + λ||B ◦ (LR′)− S||22), (8)

where the Lagrange multiplier λ allows a tunable tradeoff

between rank approximation (due to the real data is near

low-rank but not exact low-rank) and accuracy fitness.

In Eq. (8), 1) B and S are known, 2) any || · ||22 is

non-negative, 3) the optimal values approximate 0 by

minimizing all non-negative parts. Hence, L and R can be

obtained by iterative computing, e.g., genetic algorithm.

In summary, fcs is equal to solve X̂ = LR′ from Eq. (8) with

input S. Please refer to [6] [29] for the detailed CS operation.

D. Decrypting the Recovered Trajectories at Individual Users

After the encrypted trajectories are recovered at the server,

any individual user can download her corresponding encrypted

trajectory and apply the decryption operation. Specifically,

user i downloads X̂(i) from the server, and locally decrypts

it with the public vectors and her private key as

X̂(i) = (X̂(i) − (ψi,1D(1) + · · ·+ ψi,KD(K)))/ψi,0, (9)

where X̂(i) is the approximation of X(i), i.e., the recovered

complete trajectory of user i. Due to the local decryption and

the private key, X̂(i) is only known by user i herself. Then, a

user can exploit map matching methods [33], which normally

adjust the recovered trajectory by matching the nearest roads

in the map, to further improve the accuracy.

At the end of this design, we discuss the impact of ψi,0. In

PPCS, ψi,0 determines the weight of a original vector in the

encrypted vector. On one hand, ψi,0 cannot be too small. When

ψi,0 → 0, the weight of X(i) in the encrypted X(i) is too small,

which will result in a poor recovery accuracy. On the other

hand, ψi,0 cannot be too large. When ψi,0 → 1, X(i) = X(i),

which losses the effect of encryption. Empirically, we find

that setting ψi,0 in the range [0.2, 0.8] can guarantee a high

recovery accuracy and privacy. The other weights still satisfy

ψi,j |j 6=0 ∈ (0, 1) and
∑K

j=0 ψi,j = 1.

V. PPCS ANALYSIS

In this section, we analyze the performance of PPCS in

three metrics: the trajectory recovery accuracy, the privacy p-

reservation against eavesdroppers, and the privacy preservation

against stalkers. Its complexity analysis is also presented.

A. Accuracy Analysis

Although recovering trajectory by CS has been shown to

achieve a promising accuracy [29], we still need to make sure

the KVP encryption operation does not degrades the accuracy.

We adopt the same metric in [29] to evaluate the recovery

accuracy, namely, the recovery error ǫ. For user i, its recovery

error ǫ(i) is the geometric mean of the distance between the

actual trajectory and the recovered trajectory, defined as

ǫ(i) =
||X(i) − X̂(i)||2

T
, (10)

where ||X(i) − X̂(i)||2 =
√

∑T
j=1(xij − x̂ij)2, and T is the

total number of time slots along the trajectory.

With this accuracy metric, we have the following theorem

stating that the KVP encryption operation does not degrade

the recovery accuracy.

Theorem 5.1: The proposed KVP is a homomorphic obfus-

cation method for CS. We define the homomorphic obfuscation

property as follows. If a matrix X is near low-rank, the

recovery accuracy of a user i satisfies

sup ||X(i) − X̂(i)||2 = sup ||X(i) − X̃(i)||2, (11)

where sup is the upper bound of || · ||2, X̂ is the trajectories

recovered by CS with KVP (i.e., X̂ = fde(fcs(fen(X ◦Φ)))),
X̃ is trajectories recovered by CS directly (i.e., X̃ = fcs(X ◦
Φ)), and X̂(i) is the recovered trajectory of user i.

Proof: When a matrix is near low-rank and the value of

approximate rank is r, the value
∑min(N,T )

i=1 σi−
∑r

i=1 σi can

be considered as noise [6], which is denoted as ξ.

According to existing work on the CS-based matrix com-

pletion [6] [14], we have the accuracy upper bound as

sup ||X − X̃ ||2 = 4

√

2min(N, T )

(1− α)
ξ1, (12)



where α is the data loss ratio in X , and ξ1 is the noise of X .

Similarly, the accuracy upper bound of ||X||2 can be repre-

sented as

sup ||X− X̂||2 = 4

√

2min(N, T )

(1− α)
ξ2, (13)

where ξ2 is the noise of X.

From Fig. 5, we know that the KVP operation does not

change the number of missing data. Consequently, the loss

ratio α in Eq. (12) and in Eq. (13) has the same value.

Combining Eq. (12) and Eq. (13), we have

sup ||X− X̂||2
sup ||X − X̃||2

=
ξ2
ξ1
. (14)

It is difficult to obtain the exact value of ξ1 and ξ2, which

highly depends on the specific data. However, because KVP

is a basic linear transformation, which can be presented as

X = ΨX and Ψ is the matrix of private keys ψ. Treating

this transformation as a measurement operation in CS, we can

obtain the noise ratio according to CS theory [6],

ξ2
ξ1

=
|µ(Φ,Ψ)|
|µ(Φ, I)| . (15)

Recall that Φ is the binary index matrix indicating the missing

data. The coherence operation µ in Eq. (15) is defined as

µ(Φ, I) = max
1≤i6=j≤T

| < Φ(i), I(j) > |. (16)

where Φ(i) is the i-th column vector of ΦN×T , and <
Φ(i), I(j) > is the inner product of two vectors, i.e., <
Φ(i), I(j) >= (Φ(i))′I(j).

By the design of KVP, we have the Ψ matrix as follows,

which is an example when K = 2 as shown in Fig. 5

Ψ =















1 0 0 0 0
0 1 0 0 0
ψ3,1 ψ3,2 ψ3,0 0 0

...
... 0

. . . 0
ψN,1 ψN,2 0 0 ψN,0















. (17)

Combine Eq. (14), Eq. (15), Eq. (16), and Eq. (17), we can

calculate the recovery error of user i as

sup ||X(i) − X̂(i)||2
sup ||X(i) − X̃(i)||2

=
|µ(Φ,Ψ(i))|
|µ(Φ, I(i))| =

ψi,0

1
. (18)

Because of the reasons that 1) the decryption operation

fde(X(i)) = X̂(i) is also a linear transformation according to

Eq. (9); 2) all other variables such as Ds and ψs are known;

and 3) since
∑K

j=0 ψi,j = 1, we know the error is linearly

amplified according to weights

sup ||X(i) − X̂(i)||2
sup ||X(i) − X̂(i)||2

=
ψi,0 + ψi,1 + · · ·+ ψi,p

ψi,0
=

1

ψi,0
.

Combining the above two equations, we have

sup ||X(i) − X̂(i)||2 = sup ||X(i) − X̃(i)||2, (19)

and the theorem is proved.

B. Privacy Preservation against Eavesdroppers

Privacy preservation is offered by PPCS. We discuss how

PPCS protects privacy leakage against eavesdroppers (in this

subsection) and stalkers (in the next subsection).

The location data are encrypted by individual users before

transmitting them to the server. In this way, only encrypted

data (the encrypted sensed trajectories sent from the users S,

or the complete encrypted trajectories X̂ recovered by CS)

can be captured by eavesdroppers. These eavesdroppers can

only infer the original user trajectory based on the exposed

encrypted data X̂. Therefore, we adopt the distortion δ defined

in [40] to measure the similarity between the encrypted and

the original data of every user

δ(i) =

∑T
j=1 |X̂(i,j) −X(i,j)|

T
. (20)

The value of δ presents the average per-location distortion

between the encrypted and the original trajectories, and a

larger δ indicates a stronger privacy preservation against

eavesdroppers. In practice, the complete trajectory X is not

always available due to the missing data issue. In this case, we

adopt the recovered X̂ to replace X in Eq. (20) for computing.

The PPCS scheme exploits KVP to obfuscate the user’s

personal trajectory. Since several trajectories are perturbed into

one trajectory, even if an eavesdropper steals this combined

trajectory, it is not easy to distinguish the original one. In the

next, we derive the distribution of the distortion δ.

The encrypted vector is obtained via linearly combining K
public vectors with weights ψs, and this encryption operation

demonstrates significant randomness in that 1) the K public

vectors are randomly selected from all public vectors and 2)

the weight vector <ψi,0, ψi,1, · · · , ψi,K> is randomly gener-

ated. With these randomness, the original locations are mapped

to other locations but still in the area of interests. As a result,

we can use the random distance distribution to approximate

the distortion of a given location and its encrypted data.

Consider a w × h rectangle area, the distortion distribution

P(δ ≤ d) can be presented by a piecewise function [5]

P(δ ≤ d) =































2
w2h2 (G(d) −G(0)) d ∈ [0, h]

2
w2h2 (G(h) −G(0)) d ∈ (h,w]

2
w2h2 (G(h) −G(

√
d2 − w2))

+Fh(
√
d2 − w2) d ∈ (d, η]

,

(21)
where

G(z) =

∫

(h− z)
√

d2 − z2(2w −
√

d2 − z2)dz,

Fh(z) = 1− (1− z/h)2, and η =
√

w2 + h2.

With this distribution, the average distance between randomly

selected points (i.e., the expectation of distortion δ̄) can be

easily obtained.
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To valid our analysis on the distortion distribution, we

simulate in a rectangle area with w = 4 km and h = 3 km,

and randomly generate a set of trajectories including a total

number of 1 × 106 locations. Then we apply KVP on these

trajectories and record the distances between the original

locations and their corresponding encrypted locations. The

statistic distribution of these distances is shown in Fig. 6,

along with the probability distribution calculated according to

Eq. (21). The average distance of these location pairs is also

shown in the figure (i.e., δ̄ ≈ 1.83 km).

Two observations are obtained from these results. First, the

distortion shows significant randomness over a large distance

range. Second, the average distortion between the original and

encrypted locations is relatively large compared to the area.

These observations verify that there is no obvious pattern to

infer the original locations through the encrypted locations.

C. Privacy Preservation against Stalkers

Another adversary model is the stalker, who can obtain k
actual location data of a user’s trajectory. A stalker has two

alternative methods to recover the trajectory: 1) Crack the

private key based on the k data. 2) Run the crowdsensing

recovery using these k data.

In the first method, to protect the user privacy, it is required

that the trajectory X̂(i) in Eq. (9) is unsolvable, even if the

stalkers know the encrypted data X̂(i), the decryption function

fde, and k (k < K) actual location data of X(i). The PPCS

scheme resorts to the private keys against stalkers. From

Eq. (9), we know

X̂(i) = ψi,0X̂(i) + ψi,1D(1) + · · ·+ ψi,KD(K). (22)

It is possible for a stalker to obtain X̂(i) by hacking the

server, and she may also obtain the public vectors Di (i =
1, 2, · · · ,K). However, because the private keys ψi,j (j =
0, 1, · · · ,K) are only known by the users themselves, a stalker

resolving Eq. (22) needs the knowledge of at least K + 1
elements of X(i) according to the theory of underdetermined

system [8]. As a result, the stalker cannot resolve the original

trajectory as long as the condition k ≤ K holds. As K is the

control parameter adopted in PPCS, we can proactively adjust

the number of public vectors used in the encryption operation

according to the requirement of individual users.

In the second method, a stalk pretends herself as a private

user and joins in the crowdsensing recovery. Many practical

factors significantly affects the privacy-preserving such as the

number of exposed location data k, the mobility model of

users, the map structure, and etc. Some of these practical

factors are not easy to be formulated. Hence, for this method,

we conduct real trace based simulations to verify the privacy

preservation in practice (refer to Section. VI-B).

D. Complexity Analysis

1) Computational Complexity: The KVP operation is lo-

cally run at user side. In KVP, K + 1 vectors with size

1×T need to be processed in encryption and decryption steps,

which requires a computational complexity of O((K + 1)T ).
This complexity costs negligible computing time owe to the

capability of current GHz-level mobile devices.

At the server side, the main task is CS computing, which

requires a computational complexity of O(rNT̺) [29], where

r is the rank of the to-be-recovered matrix and ̺ is the

iteration numbers. Our evaluation experiences with Beijing

and Shanghai traces reveal that ̺ ≤ 5 in most cases. Since

the server always has a strong computational capability, the

CS operation is responsive in real-time.

2) Communication Overhead: In order to execute fen, a

user should download K public vectors D(i) from the server

and then upload a encrypted vector S(i). Hence, the communi-

cation overhead is O((K+1)T ). Moreover, in order to execute

fde, the user should download X̂(i), requiring another com-

munication overhead of O(T ). As an example, with K = 10,

T = 500 and a 16-bit operating system, the total amount of

data exchange is about (10+2)×500×16/8 = 12 KB, which

is a very light overhead for modern mobile applications.

E. Design Discussion

At the end of the analysis, we discuss the interesting design

concern: no public users.

Public users are optional in PPCS. Even there is no public

users, PPCS still works. To replace the roles of public vectors,

the server can provide historical vectors (e.g., any trajectory

with the same time interval yesterday), as long as the low-rank

property is maintained. In addition, when a user has a high

privacy requirement, she will demand a large K public vectors

according to the analysis in Section V-C. This inadequate K
problem could also be solved by historical vectors.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PPCS in

terms of both the data accuracy and the privacy.

A. Simulation Settings

We evaluate PPCS based on two real-world traces including

walk, bike, and car data in Geolife [2], and taxi and bus data

in SUVnet [3]. Using the same method in Section III, we

preprocess the raw data of Geolife and SUVnet by selecting

complete trajectories as our ground truth to conduct our

simulations. The selected traces are named Beijing traces with

a size of 116 users × 355 slots and Shanghai traces with a

size of 74 users × 399 slots, whose detailed descriptions are

listed in Table I.
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Fig. 7. Recovery accuracy comparison.
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Fig. 9. Distortion against eavesdroppers.

In the trace-driven simulations, we randomly generate a 0-1
matrix Φ with the same size as the original data trace. The

element in Φ takes the value of 0 if its corresponding element

in the data trace is missing and 1 otherwise. The ratio of the

0 elements to the total number of elements in Φ is controlled

by the data loss ratio α, which is set 0.5 by default unless

otherwise specified. Then, we generate the sensed matrix S
according to Eq. (2), i.e., S = X ◦ Φ. The proposed PPCS

is applied on the sensed matrix S with K public vectors, and

the recovered matrix X̂ is obtained. Without loss of generality,

the top-K rows in the original traces are treated as the public

traces, and K = 10 by default. The reported results in the

following are averaged over 100 simulation runs.

We adopt the state-of-the-art CS-based crowdsensing recov-

ery method in [29] as a baseline, which is referred as CS in the

remaining of this section. With respect to the adversary model,

we consider that an eavesdropper can steal all encrypted data

X̂. And the stalker has a part (< 10%) of real trajectory data.

B. Performance Analysis

1) Recovery Accuracy: We first evaluate the recovery ac-

curacy with a default setting of α = 0.5 and K = 10. The

distributions of the recovery accuracies obtained by PPCS and

CS with the two real-world traces are shown in Fig. 7. For

example, Fig. 7(a) shows that the recovery errors of 50%
users’ trajectories are less than 10 meters and the average

recovery error is 53 m when applying PPCS on Beijing traces.

Two observations are obtained from Fig. 7. First, the recovery

accuracy obtained with PPCS and CS are comparable in both

traces, which validates the correctness of Theorem 5.1 that

PPCS can achieve similar recovery accuracy as the state-of-

the-art CS method. Second, the recovery errors are small. For

instance, the recovery errors of 80% users with Beijing and

Shanghai are less than 100 m and 200 m, respectively. These

errors are tolerable in many cases because mechanisms such

as map matching [25, 33] can eliminate their impacts on the

final recovered trajectories.

To gain more insights on the impact of data loss in recovery

accuracy, we apply PPCS on the two traces with varying

α from 0.1 to 0.7, and the results are shown in Fig. 8. A

clear increasing trend of recovery errors with the increase of

α can be observed. For example, with Beijing traces, PPCS

achieves an average recovery error of 20 m when α = 0.2,

and the error is increased to 124 m with an α = 0.7. The

recovery errors with PPCS and CS are comparable in all the

explored cases, which agrees with the observation in Fig. 7.

An interesting observation is that PPCS slightly improves the

accuracy performance of CS. A possible reason is that the

linear transformations in KVP make the low-rank property of

the trajectory matrix even more obvious, and thus improves

the recovery accuracy.

2) Privacy against Eavesdroppers: Keeping α = 0.5 and

K = 10, next we investigate the perturbation distortion

obtained with PPCS. In Fig. 9(a), we can see that the distor-

tion between original and encrypted trajectories is enormous.

For example, the distortion of 50% trajectories are over

4, 000 m and the average distortion is more than 9, 000 m

with Beijing traces. Such distortion distances are quite large

when compared with the road segment length in Beijing city.

As a result, even if the encrypted trajectory is exposed to

adversaries, the information leakage on the original trajectory



TABLE II
RECOVERY ERROR WHEN STALKERS HAVE PARTIAL ORIGINAL DATA.

Recovery error ǫ Stalker (5%) Stalker (10%) User (50%)

ǫ of Beijing 409.36 m 366.47 m 38.99 m
ǫ of Shanghai 2510.48 m 1723.16 m 189.96 m

is small, indicating a strong privacy preservation level. Another

observation is that the distortion distribution shows no clear

patterns. For example, the distortion distribution with Shanghai

traces is nearly linear, but that with Beijing traces is more like

a piecewise function. This patternless feature indicates that

even the adversaries can obtain a large amount of the encrypted

trajectories, the training methods based on these information

would not facilitate them to infer the original trajectories.

As analysis in Section V, PPCS needs a number of public

(or historical) trajectories to perform the encryption. To in-

vestigate the impact of the amount of public trajectories on

the distortion, we apply PPCS on the two traces with the

number of public traces varying from 10 to 60 (the total

number of users in Beijing and Shanghai are 116 and 74
respectively). The results in Fig. 9(b) demonstrate that there

is no clear relation between the distortion and the number of

available public traces. This observation alleviates our concern

on whether the available number of public trajectories will

significantly degrade the distortion performance of PPCS. So

the privacy-preserving level in PPCS is independent to the

number of public vectors.

3) Privacy against Stalkers: A stalker can treat the exposed

k data of a user as a (T − k) missing data trajectory and then

utilizes PPCS to recover this trajectory. Next, we evaluate the

privacy preservation offered by PPCS against stalkers, and the

results are shown in Table II. Recall that k is a small number

in the stalker model. We set and evaluate the cases when 5%
and 10% actual location data are captured by the stalks. In

the case of 5%, the recovery error is more than 2, 500 m with

Shanghai traces and more than 400 m with Beijing traces.

It is difficult to obtain the actual trajectory with such large

errors. Even if a stalker has 10% actual trajectories, she cannot

achieve a promising recovery accuracy. On the contrary, when

the data loss ratio is α = 0.5, the private users under PPCS

has an excellent accuracy that always under 40 m with Beijing

traces. In summary, our PPCS solution is able to effectively

protect the privacy even when a few original data are exposed.

C. Illustrative Results

To demonstrate a clear view of the results obtained with

PPCS, we show the recovered trajectory by PPCS/CS/Stalker

and the encrypted trajectory against eavesdropper in Fig. 10,

using a 10-location original trajectory. All trajectories are fitted

to roads by the map match method proposed in [33].

In Fig. 10(a), the recovered trajectories by PPCS and

CS [29] are drawn when 4 locations along the trajectory are

missing. We can see when 40% of original data are missing,

PPCS still recovers the original trajectory with a high accuracy

that is comparable to the result of CS. Moreover, Fig. 10(a)

also shows the recovered trajectory of a stalker who applies

PPCS with 3 stalked actual locations, which is a totally

different trajectory compared with the original one.

N°: 39° 58' 29' ' 

E°: 116° 18' 39' ' 

CS

Original

PPCS

Stalker

(a) The recovered trajectories by P-
PCS and CS are similar to the original
one, but the trajectory recovered by a
stalker is much different.

N°: 39° 58' 55' ' 

E°: 116° 21' 34' ' 

Encrypted

Different area 

(compared with 

the coordinates 

in the left map)

(b) The encrypted trajectory distorts
the original one to a different area (re-
fer to the latitude and the longitude)
against eavesdroppers.

Fig. 10. Illustrative results of PPCS. (The dots are the PPCS / CS / Stalker /
Encrypted results. The lines are the map matching results based on the dots.)

The encrypted trajectory is shown in Fig. 10(b). Comparing

the latitude N◦ and the longitude E◦ in Fig. 10(b) with those

in Fig. 10(a), we find that the distortion between the encrypted

trajectory and the original one is relatively large, indicat-

ing a strong defense against eavesdroppers. Furthermore, the

encrypted results also form a sound trajectory in the map.

This indicates that the eavesdroppers cannot easily determine

whether the hacked trajectories are encrypted or not.

In addition, even an adversary can eavesdrop and stalk

simultaneously, she can only obtain two separate results:

‘encrypted’ as shown in Fig. 10(b) and ‘stalker’ in 10(a), but

no further improvement on inferring the original trajectory.

VII. RELATED WORK

In this section, we discuss the related work in literature.

There are two important research topics involved in this work:

trajectory recovery and trajectory privacy.

A. Trajectory recovery

We classify existing efforts on trajectory recovery into two

categories: single user recovery and crowdsensing recovery.

The single user recovery is to reconstruct a trajectory based

on a user’s own location data. Plenty of classic missing data

estimation methods such as nearest neighbors (NN) [34] and

linear interpolation [31] can be utilized to recover a trajectory

in a user’s own mobile device. These methods avoid the data

leakage issue because no data exchange is required; however,

their recovery accuracy is usually limited [29].

The crowdsensing recovery is to reconstruct all users’

trajectories together based on their trajectory correlations,

and thus significantly improves the recovery accuracy when

compared with the single user recovery. Currently, compres-

sive sensing (CS) [9] is an advanced recovery technique

in diverse applications [20, 39]. For trajectory recovery, CS-

based crowdsensing recovery [29] also produces the near-

optimal approximation for missing data recovery. Although

CS provides high accuracy, it requires data transmission and

a computing server, and thus degrades user privacy.

B. Trajectory privacy

Existing trajectory privacy works have three primary meth-

ods: anonymization, dummification, and obfuscation. First, a



user adopting anonymization method [24] is to transmit her

location data attached with an anonymity instead of her ID.

However, latest studies [12, 38] reveal that the anonymization

mechanism alone is inadequate to preserve the privacy well.

Second, a user adopting dummification method [19] is to

transmit her location data with a set of generated fake data.

Although the dummification increases the privacy, it intro-

duces additional data and influences the original correlations,

which decreases the recovery accuracy. Third, the obfuscation

method either perturbs a user’s location data by mixing other

trajectories [15, 27] or cloaks the data into a spatial region [13].

Existing obfuscation methods blur the original data, and thus

contradict with the consideration of the accurate recovery.

VIII. CONCLUSION

With the increasing popularity of location based services,

it is important to simultaneously consider the quality of

service and user privacy. Focus on the trajectory recovery

service, in this paper, we design a novel PPCS scheme using

crowdsensing to accurately recover the trajectories with the

consideration of privacy. The core design of PPCS leverages

the matrix transformation to include the privacy preserva-

tion into compressive sensing. Through extensive trace-based

simulations, we demonstrate that PPCS not only effectively

preserves the user privacy against eavesdroppers and stalkers,

but also accomplishes comparable accuracy as the state-of-the-

art CS design. Although we focus on the trajectory recovery

in this work, the general PPCS can also be utilized in other

privacy-preserving data recovery applications.
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