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Abstract—Electric vehicle (EV) is a promising transportation
with plenty of advantages, e.g., low carbon emission, high energy
efficiency. However, it requires frequent and long time charging.
In public charging stations, EVs spend long time on queuing
especially during peak hours. Hence, it requires an efficient
method to reduce the total charging time for EVs. We study the
Electric Vehicle Charging-Scheduling (EVCS) problem in this
paper. First we prove that EVCS is NP-Complete, which can be
reduced from one Parallel Machine Scheduling (PMS) problem.
Then two heuristic algorithms are proposed: the Earliest Start
Time (EST) algorithm, and the Earliest Finish Time (EFT)
algorithm. EST tries to advance the start charging time to get
customers in service as early as possible, while EFT focuses on the
possible finish charging time to get customers served as soon as
possible. Finally simulations show that, the proposed algorithms
outperform the classic greedy nearest scheduling algorithm:
assign each EV to its nearest charging station, then choose the
outlet where the fewest EVs are queuing. Typically, under our
simulation settings, the average finish time and maximum finish
time can be reduced by about one hour, and six hours respectively.

I. INTRODUCTION

Electric vehicles (EVs), e.g., electric motorcycles, electric
boats, and electric cars, spring up in plenty of countries recent
years. They possess several advanced aspects such as low
carbon emission, and high energy efficiency. President Obama
has announced a budget of $2.4 billion to develop the next
generation of EVs [1]. China promotes environment-friendly
EV transportation by subsidizing buyers [2].

The capacity of EV battery is limited, which requires
frequent charging. EV battery swapping is well known and
only takes a few minutes, but unfortunately EV manufacturers
have different standards for battery access, attachment, and
type. Although a great work has been accomplished to reduce
the charging time, it remains still quite long, e.g., six to ten
hours.

Charging stations are one of the most popular charging
places, apart from homes and workplaces. EV manufacturers,
charging station providers, and governments have signed plen-
ty of agreements to promote electric vehicle ad-hoc networks.
If public charging stations are not well deployed, the total time
spent on charging would be dramatic [3]. The limited number
of charging stations together with the long recharging time
require a better EV scheduling in order to reduce the total
amount of time spent on charging.

Recently lots of researches have been conducted regarding
the charging-scheduling problem for EVs. Qin et al. propose
a distributed scheme to minimize the waiting time of EVs
[4]. Li et al. introduce a distributed optimal EV charging
algorithm in cyber-physical systems [5]. It focuses on EV
integration in power grids. To minimize the distribution system
load variance, authors propose a decentralized smart plug-
in electric vehicle (PEV) charging algorithm [6]. Gan et al.
propose an optimal decentralized protocol to schedule EV
charging, which exploits the elasticity of EV loads to fill the
valleys in electric load profiles [7]. In [8], charging stations
decide the charging order by a linear rank function, which is
based on the estimated arrival time, the waiting time bound,
and the amount of demanded electricity. Steen et al. study
an approach to decide when and where plug-in EVs can be
charged, and it is based on demographical statistical data [3].
He et al. propose a globally optimal scheduling scheme and
a locally optimal scheduling scheme for EV charging and
discharging [9]. Kempton et al. introduce a vehicle-to-grid
(V2G) system [10], where EVs deliver electricity into the grid
or throttle their charging rate.

Different from the above studies, our work focuses on
reducing the total time spent on charging when EVs demand
charging on a road network, which includes the travel time
on roads, the queueing time, and the actual charging time.
In this paper, we build a system model for the EV charg-
ing scheduling, and formulate the Electric Vehicle Charging-
Scheduling (EVCS) problem. Then we prove EVCS is NP-
Complete, which can be reduced from one kind of PMS
problems, which is known to be strongly NP-Hard. Then we
propose two heuristic algorithms for EVCS: EST and EFT.
EST tries to advance the start charging time to get customers
in service as early as possible, and it is able to reduce the
idle time between the EVs. EST ignores the actual charging
time, while EFT takes it into account, which focuses on the
possible finish charging time to get customers served as soon
as possible. Through the simulations, the proposed algorithms
outperform one classic greedy nearest scheduling algorithm.

The rest of this paper is organized as follows: Section II
presents the system models and defines the EVCS problem.
In Section III, we prove it to be an NP-Complete problem.
In Section IV, two heuristic algorithms are proposed. In
Section V, we compare their performance with one classic



Fig. 1. A graph constituted by EVs, charging stations, and road networks.
greedy algorithm, and the simulations show that the proposed
algorithms exhibit better performance. Section VI concludes
this work.

II. SYSTEM MODELS AND PROBLEM FORMULATION

This section presents the system models for the EVCS
problem and formulates it to be an optimization problem.

A. Electric Vehicle Network Model

Assuming that on a road network, there are y charging
stations Y = {1,2,...y} and n EVs I = {1,2,...n} which
require battery charging, where y > 2,n > 2. Each charging
station has ¢ charging outlets. Therefore, there are m = y x q
charging outlets J = {1,2,...m}. So the EVs, charging
stations, and the roads form a graph G =< v,e >, where v
represents a set of EVs and charging stations, and € represents
the set of roads that connect EVs and charging stations. Fig.
1 shows a graph constituted of EVs (denoted by circles),
charging stations (denoted by triangles), and road networks
(denoted by edges). If the EV can reach the charging station,
the edge is denoted using solid line, otherwise, using dotted
line. The weight of each edge is the shortest distance between
the EV and the charging station.

Suppose the charging stations are identical, thus the charg-
ing rate ej (A) of EV 17 are identical for all charging stations.
The shortest distance between EV ¢ and charging outlet j
is denoted by d; ; (Km), which can be calculated from the
graph G through the shortest path algorithm (e.g., Floyd
Warshall Algorithm). For any EV, the distance to the charging
outlets in the same charging station is identical. Therefore, we
only calculate once. All the EVs are equipped with wireless
communication devices, such that all the information (e.g.,
velocity, the rate of electricity consumption, the remained
electricity, location) is known to the central server so as to
improve the scheduling decisions. Each EV only chooses one
charging outlet for charging until it is fully charged, which
cannot be interrupted during the actual charging time. The
queuing sequences of the EVs are determined by their arrival
time in any charging outlet, ie., there is no preemption.
Moreover, we assume that with the remained electricity each
EV is able to reach at least one charging station, i.e., ¢ charging
outlets.

To facilitate the modelling of this system, the following
notations are introduced:

e 7; (Ah): the maximum battery capacity of EV i. In the

market, it is determined by materials, the number of
battery packs, etc.

e e; (A): the rate of electricity consumption per unit time
of EV 4. Generally the rate of electricity consumption
is denoted using the maximum electricity capacity. e.g.,
the battery capacity of an electric car is 54Ah, and it
consumes electricity at a rate of 5.4A, then we get that
it consumes electricity at a rate of 0.17;.

e a;; (h): the time EV ¢ arrives in charging outlet j. From
our assumption, the arrival time of any EV in the charging
outlets of one charging station is identical.

e ¢; (Ah), e;’ j (Ah), b; (Ah): the initially remained elec-
tricity of EV ¢ is e;, and the remained electricity when it
reaches the charging outlet j is 6;7 ;- Both of them have
a lower bound b;, i.e., at any time each EV ensures it
should have at least b; electricity. If the EV runs out of
energy, the battery life would be greatly shortened. Of
course, e; > bi,eg,j > b;. We get eg’j =e; —a;;*e; .

e (; (Km): the maximum distance the EV 1 is able to travel
before the electricity reaches its lower bound, which is
related to the initially remained electricity.

e ¢;; (h): the actual charging time of EV ¢ if it chooses
charging outlet j.

o v; (Km/h): the velocity of EV i. Generally, the rate of
electricity consumption is greater, the velocity is greater.
And it is related to the weight of the EV and driver.

o 7 (h): In certain charging outlets there have been some
EVs waiting for charging in advance. For charging out-
let j, the finish charging time of the last one among
the originally existed EVs is denoted by 7;. Let 7 =
{m1,72,...,7m }. Here, we assume it follows a Possion
process, T ~ P(A).

If we schedule EVs to charging stations, then we would also
decide which charging outlets they should select. In this paper,
we directly schedule EVs to charging outlets. Considering the
relationships between the EVs and the charging outlets, and
the relationships between the EVs aiming at the same charging
outlet, the following 0-1 variables are defined (Vi,k € I,j €
J):

, 1f EV 7 can reach charging outlet j,

5 = ie.di; <G )
0, otherwise
j 1, if EV ¢ chooses charging outlet j
] = . )
0, otherwise
j 1, if EV i is the first in charging outlet j
2, = , 3)
’ 0, otherwise
1, if EV 7 is immediately after
x?” = EV k in charging outlet j “4)

0, otherwise
Pij = {k € I\{i}| EV k can precede EV ¢ 5)
in charging outlet j }

The maximum distance (;, the arrival time a; j, and the
actual charging time c¢;; of EV 4 (if it can reach and



chooses charging outlet j) can be respectively obtained using
Eqn(6)(7)(8). From our assumption, for any EV ¢ and the
charging outlets in one charging station, the arrival time and
the actual charging time are identical. Therefore, we only

calculate once. e; — b;
G = vi—— (6)
€
d; ;
a;; = —* 0
v
/ _
e . C— e i+ a; e
Cij= i e+ (2N A i 17Je+ 2,74 (8)

B. Problem Formulation

The EVCS problem is to schedule the EVs to appropriate
charging outlets for charging such that the total time spent
on charging is minimized, which includes the travel time
to the charging outlets, the queuing time, and the actual
charging time. Obviously, if we ignore the queuing time of
EVs in charging outlets, the problem is maximum bipartite
matching. While in the real world, there are several constraints
to consider. e.g.the electricity left in the battery prevents an
EV from reaching some charging outlets. If there are plenty
of EVs queuing in advance for charging in certain charging
outlets, then the total time is increased due to the time spent
waiting in the line. The charging rate of a charging outlet
is limited, which leads to long time for actually recharge a
battery. Given all the above constraints, we should develop an
appropriate scheduling decision for each EV.

To clearly describe EVCS, we consider the following s-
cenario: for any single charging outlet j, let V; (V; C I
and N; = |V;|) denote the EVs that choose the charging
outlet 5 for charging. We get n = ij:l Nj;. Let V} ; denote
the Ith EV of V; (I € {1,2,...,N;}). The arrival time
{a1; < ag;... < an,;}; and the actual charging time
{¢14,¢2,4,..-Cn;,j} are deterministic. Let QASM denote the
finish charging time of V; ;, and ¢; denote the sum of the
finish time of each EV in Vj, ie, ¢; = Yyer1a v,y Pl-
Then we obtain Eqn(9).

é max(7y,a1,5) + C1,5, ifil=1
1j = I ~ . ]
! ma$(¢l—1,j,az,j) +¢;,; otherwise

Let ¢; denote the finish charging time of EV 4, and it can
be obtained by Eqn(10).

©))

ti =Y {(max(r;,a; ;) + cij)wh ;+
jedJ
> (maw(ty, aiz) + cig)y ;3
keP]

Our problem can be formulated as (11)(12)(13)(14), which
reduce the scheduling problem to a 0-1 integer programming
(IP) problem, or as an assignment problem. (11) is the
objective function, where ¢; is calculated by Eqn(10), and
(12)(13)(14) are subjection. (12) ensures that each EV is
scheduled once and it is capable to reach the chosen charging
outlet. (13) ensures that any EV at most has one precursor in
any charging outlet. (14) means that if an EV is the first one in

(10)

a charging outlet, it is impossible to appear in other charging
outlets.

Objective: minimize Z t;
icl

1D
Subject to:
> alsl =1
jeJ
2, 2 =l
i€J kep] U{0}

Zw%l <1

icl

(12)
13)

(14)

xﬂxiwxai € {0,1}.
Vi,kel, jelJ.

III. COMPLEXITY ANALYSIS

Section II describes the system models and formulates
the EVCS problem. This section analyzes the complexity of
EVCS, and proves it to be NP-Complete.

A. NP-Completeness

Theorem IIl.1. The Electric Vehicle Charging-Scheduling
(EVCS) problem is NP-Complete, as it can be reduced from
one kind of Parallel Machine Scheduling (PMS) problems:
R|r;j| > w;Cy, which is strongly NP-Hard.

Proof: First, we show that EVCS belongs to NP. Given
any instance of EVCS, we use as a certificate the schedule
S of the EVs. The verification algorithm checks that any EV
1 € I is assigned to one charging outlet 7 € J, then sums
up the finish charging time of each EV and checks whether
the sum is at most 7". Obviously, the process can be done in
polynomial time (O(|I||.J])). So EVCS is NP.

Second, we prove that EVCS is NP-Hard by showing
that it can be reduced from one kind of Parallel Machine
Scheduling (PMS) problems [11], R|r;|> w;C; [12] [13],
which is known to be strongly NP-Hard. There are plenty
of PMS problems, a large number of which are NP-Hard.
For R|r;j| > w;C;, R indicates the unrelated machines, i.e.,
each machine processes different jobs at different speed. r;
indicates the release time of job j, i.e., the earliest time which
can start its processing. Y w;C; is the objective function,
which denotes the sum of completion time of each job.
Where, w; denotes the weight of job j, and C; indicates
the completion time of job j. R|r;|> w,;C; shows such a
scenario: There are n jobs, m machines, and each job has
to be processed on just one of the m unrelated machines.
Each job has a processing time, while the processing speed
of the machines are not identical. The actual processing time
pi,j = P;/Si, where p; denotes the processing time of job j,
and s; denotes the processing speed of machine i. Each job
is assigned once to one machine.

To describe briefly, let PMS substitute PMS-R|r;| >~ w;C;.
Each job in PMS is mapped to an EV in EVCS, and each
machine in PMS is mapped to a charging outlet in EVCS. The



processing time of each job in each machine in PMS is mapped
to the charging time of each EV in each charging outlet of
EVCS. The release time of each job in PMS is mapped to the
arrival time of each EV to charging outlets in EVCS.

In PMS, there are no precedence constraints between the
jobs. While in EVCS, the precedence of the EVs are different
for different charging outlets, which are determined by the
arrival time of the EVs, and the fact that some EVs cannot
reach some charging outlets. The release time of each job
in PMS is deterministic, and is identical to each machine. In
EVCS the earliest start charging time of any EV is determined
by both the arrival time and the queuing time. The arrival time
is calculated by Eqn(7), and the queuing time is determined by
the scheduling decisions, which differs in different charging
outlets.

Therefore, for any instance of PMS, a corresponding in-
stance in EVCS is mapped to it, and the reduction is poly-
nomial. And the solution to the instance in EVCS is also the
solution to PMS. As a result, EVCS is NP-Hard. A problem
is NP-Complete if it is NP and also is NP-Hard. Thus, EVCS
is NP-Complete. [ |

IV. ALGORITHM

This section reformulates the EVCS problem and proposes
two heuristic algorithms.

A. Heuristics

The formulation of the EVCS problem using assignment
variables (i.e., 7, @7, ;, 3 ;) suggests a natural decomposition
of the problem into a set of one single charging outlet
scheduling problems. Therefore, it is convenient to rewrite the
objective function: ) jes ®j» and ¢; can be obtained using
t;(i € I) through Eqn(15).

¢ = tiw] (15)
i€l
A jump function U(a,b) is defined by Eqn(16), through
which the objective function can be described by Eqn(17).

—0b, if b
Ula,b) = a0 1 a>. (16)
0, otherwise
D oti=Y ANj b1+ (N; = 1) % (Ul(as,, b15) + é2,5)
i€l jeJ
+ ...+ U(de,j7¢Nj—17j) + évaj}
(17)
Given any single charging outlet j, for [ € {1,2,..., N;} let

hy,; denote the time period between the finish time of the /th
EV and its predecessor in the same charging outlet j, which
is shown by Eqn(18). Let h; denote {hy j,hoj,...,hn; ;}.
We can reformulate the objective function through Eqn(19).

ifl=1
hl,j _ ¢1,]7 1 . (18)
¢1j — di_1,4, otherwise
Ztlzzqs] Z{N*h’lj *1)*}12]
iel jeJ jeJ (19)

ot 25Nt thyj}

From Eqn (19), we know that the N; coefficients {N;, N
1,...,2,1} would to be assigned to N; EVs. To minimize ¢;,
assign the highest coefficient IN; to the smallest element of h;,
and the second highest coefﬁ01ent N;—1 to the second smallest
element of h;, and so on. Note that hy j is determined by the
arrival time, the actual charging time of EVs, and the idle time
between them. In addition, the sequence is determined by the
arrival time of the EVs aiming to the same charging outlet,
not arbitrarily.

Next, we propose two lemmas which show the relationships
between the actual charging time and the finish charging time
in any single charging outlet.

Lemma IV.1. For any charging outlet j, k,I,N €
{1,2,...,N;}, and k <1 < N, we get:
N ;X N
Zél,j¢l,j > 5{(2 &) Z éy)° 20)
1=1 1=1 =1
Proof: From gZA)lyj > Zi,:l k.5, We get:
l
CLibuy > Gy > Gk 2n

k=1
Summing for all I € {1,2,...,N}, Zz 10173(;517] >
SN e Sk e Clearly, we get the following:

N
(22)

2
S, Yo e+
=1 l

At last, we obtain (20). |

(é15)%}
=1

Lemma IV.2. For any charging outlet j, k,l € {1,2,...,N,}
and k <, we get:
1.
> —1(Crg)?

l
D lny < 20, — A
k=1 > k1 Chij

Proof: From Lemma IV.1, we get the following:

! ! -1
G > 3 Z Cr.j) +Z(ék,j)2} - Zék,j¢k,j (24)
k=1 k=1 k=1

For ¢ j < ¢r.j, we get (23). ]

The total time each EV spent on charging is split into three
parts: the travel time (arrival time), the queuing time, and
the actual charging time. By reducing the arrival time, we
try to find the nearest charging outlet, so the actual charging
time would be shortened. To reduce the queuing time, we
should better choose a charging outlet where few vehicles are
waiting for charging. Through Eqn(19), we know that N; is
not deterministic and that the idle time between the EVs in
the same charging outlet can be reduced.

Let 7rJ denote the predecessor of EV 7 in the same charging
outlet j, i.e., m} = {kl|k € I\{i},x; ; = 1}. Denote y; ; as
the earliest start charging time of EV ¢ in charging outlet j,
which can be obtained through Eqn(25).

e = max(Tj, a; 5),
I max(tﬂ] @)

(23)

otherwise



B. Algorithm

We propose two algorithms, the Earliest Start Time (EST)
algorithm, and the Earliest Finish Time (EFT) algorithm. EST
tries to advance the start charging time to get customers in
service as early as possible, which is able to reduce the
idle time between EVs. EST aligns the currently earliest
start charging time in a nondecreasing order each EV to
each charging outlet, among which EST chooses the earliest
one. Such that one of the EVs is scheduled to one charging
outlet which provides the earliest start charging time. Then
EST inserts idle time as necessary if the arrival time of an
EV is earlier than the finish time of its predecessor in the
same charging outlet. Once an EV is scheduled, EST updates
the earliest start charging time of the EVs which have not
been scheduled. For the just scheduled EV is inserted in the
queuing line, the predicted earliest start charging time of others
should be changed. Then EST updates this scheduling order
repeatedly until all the EVs are scheduled.

EST only focuses on earliest start charging time, thus it
ignores the actual charging time. EFT focuses on the possible
finish charging time to get customers served as soon as
possible, which includes the actual charging time. EFT can
be get through replacing the earliest start charging time of
EST by the earliest finish charging time. EFT schedules the
EVs in a nondecreasing order of the possible earliest finish
charging time each EV to each charging outlet.

1) Algorithm of EST: The pseudo-code of EST is showed
by Algorithm 1. Line 12 need n times, and line 13 need n’m
times. So the complexity is O(n?m).

Lines 1-5 determine the charging outlets that each EV is
capable to reach. Lines 6-10 calculate the earliest start time of
each EV if no EVs are scheduled using Eqn(25). Lines 12-15
find the earliest start charging time of the EVs which have not
been scheduled. Line 16 determines the schedule decision of
one EV. For an EV is scheduled to one charging outlet. The
earliest start charging time of other EVs has to be delayed,
which is functioned through lines 17-21. Line 22 means that
the just scheduled EV should not be scheduled once more.

2) Algorithm of EFT: Let f; ; denote the possible finish
charging time of EV i in charging outlet 5. EFT can be
modified from EST. Replace the start charging time pu;
in EST by the possible finish charging time f;;, and the
equation used in EFT is Eqn(9). The complexity of EFT is
also O(n?m).

V. EVALUATION

In this section, we compare the proposed algorithms EST
and EFT with one classic greedy scheduling algorithm.

A. Compared Algorithm and Metrics

From our assumption, each EV is able to reach at least
one charging station. The proper algorithm to compare our
work is the Nearest Algorithm (NA): Schedule each EV to
its nearest charging station, then choose the outlet where the
fewest EVs are queuing. The configurations of the simulator
is listed in Table I. Let ny, denote the number of times the

Algorithm 1 Algorithm of EST

Input:
The arrival time of each EV to each outlet, {a; ;}.
The charging time of each EV to each outlet, {c; ;}.
The maximum distance each EV can travel, {(;}.
Where, i € I,5 € J.

Output:
Scheduling decisions of all the EVs S.

1: foriel,jeJdo

2: if d@j > Cz then

3: i j < null

4:  end if

5: end for

6: foriel,jeJdo

7. if p;; # null then

8: Calculate the earliest start time p; ; by Eqn(25).
9: end if

10: end for

11: repeat

122 foriecl,jeJdo

13: Find the earliest start time fip,in < i 5 -

14: If we find some EVs which have identical earliest

start time, select the EV which has the earliest arrival
time.

15:  end for

16:  Schedule EV 4 to charging outlet 5 .

17:  for j € J do

18: if u;; # null then

19: Update the possible earliest start time p’ of the

EVs which have not been scheduled by Eqn(25).

20: end if

21:  end for

22:  for j € J do py ; < null end for

23: until All the EVs are scheduled

TABLE 1
CONFIGURATIONS OF SIMULATOR

Item  Value Ttem Value

n 100, 150, 200, 250, 300 y 30

q 3 d;,j 4~ 30

i 20 ~ 80 v; 2~ 3e;

€ 30% ~ 45%n; e 25% ~ 30%n;
e; 10% ~ 15%mn); b; 5% ~ 10%mn;
A 5 s 50

simulations run. Assume all the datas in their range follow
a uniform distribution. e.g., the capacity electricity of EVs
is 20 ~ 80 Ah, which follows a uniform distribution. The
distance between each EV to each charging station is 4 ~ 30
Km. We assume the velocity is in direct ratio to the rate of
electricity consumption. Here, we set v; = 2 ~ 3e; .

B. Results

For the three algorithms EFT, EST and NA, we compare the
average finish time, the maximum finish time, and standard
deviation of finish time for the EVs. Table II shows the
simulation results, where the number of EVs is 100. The
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Fig. 2. Average finish time and standard deviation. Fig. 3. The CDF of EST, EFT, and NA (100 EVs). Fig. 4. Number of scheduled EVs in each charging

TABLE 11
RESULTS OF EST, EFT, AND NA (100 EVs)

Algorithm  Average time  Maximum Standard deviation
time

EST 6.95 13.46 1.83

EFT 7.43 18.10 2.32

NA 8.01 20.13 2.61

average time of EST and EFT are 1.06 hour (63.6 minutes) and
0.58 hour (34.8 minutes) shorter than NA, reduced by 13.2%
and 7.2% respectively. The maximum finish time of EST is
6.67 hours shorter than NA.

Fig. 2 shows the average finish charging time and the
standard deviation using EST, EFT and NA. The standard
deviation of the finish time using EST and EFT are smaller
than using NA.

Fig. 3 presents the CDF of the finish charging time using
EST, EFT, and NA. We observe that the finish charging time
using EST and EFT are smaller than using NA. More than
90% of the EVs using EST are capable to finish charging in
ten hours, while if using NA, about 20% of the EVs have to
spend more than ten hours. The maximum finish time of NA is
about a little longer than EFT, but it is much longer than EST.
The performance of EST is better than EFT. Fig. 4 shows the
number of the scheduled EVs in each charging station using
EST.

VI. CONCLUSION

In this paper, we formulate the EVCS problem, and build
the system models. Then we prove that EVCS is NP-
Complete. It can be reduced from one kind of PMS problems:
R|rj| >-w;C;, which is strongly NP-Hard. We reformulate
the objective function and propose two heuristic algorithms,
EST and EFT. We compare the proposed algorithms with one
classic greedy algorithm NA. Through Table II, Fig. 2 and
Fig. 3 we conclude that, the performance of EFT and EST
(especially EFT) are better than NA, and the average finish
time and maximum finish time both can be reduced. The
scheduling algorithms in this paper are offline. In the future,
we plan to research on the online and dynamic charging-
scheduling of EVs. The following optimization requires to be

station using EST (100 EVs).

considered: the maximum lateness with respect to the deadline,
the total tardiness, and the number of tardy EVs.
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