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Abstract—Reconstructing the environment by sensory data is a fundamental operation for understanding the physical world in
depth. A lot of basic scientific work (e.g., nature discovery, organic evolution) heavily relies on the accuracy of environment
reconstruction. However, data loss in wireless sensor networks is common and has its special patterns due to noise, collision,
unreliable link, and unexpected damage, which greatly reduces the reconstruction accuracy. Existing interpolation methods do not
consider these patterns and thus fail to provide a satisfactory accuracy when the missing data rate becomes large. To address
this problem, this paper proposes a novel approach based on compressive sensing to reconstruct the massive missing data. Firstly,
we analyze the real sensory data from Intel Indoor, GreenOrbs, and Ocean Sense projects. They all exhibit the features of low-rank
structure, spatial similarity, temporal stability and multi-attribute correlation. Motivated by these observations, we then develop
an environmental space time improved compressive sensing (ESTI-CS) algorithm with a multi-attribute assistant (MAA) component
for data reconstruction. Finally, extensive simulation results on real sensory datasets show that the proposed approach significantly
outperforms existing solutions in terms of reconstruction accuracy.

Index Terms—Wireless sensor networks, data loss and reconstruction, compressive sensing
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1 INTRODUCTION

PEOPLE investigate the environment in order to under-
stand our physical world. Recently, wireless sensor

networks (WSNs) [15], [20] are widely adopted to gather
sensory data and reconstruct the environment in the cyber
space [11]. There are plenty of environment monitoring
applications under the water [30], in the forest [23], and on
the volcano [28]. An environment matrix (EM) is a common
way to represent a dynamic environment. An EM is an
n� t matrix that records data from n sensors over t time
intervals. Environment reconstruction [13] attempts to
obtain the full and accurate EM from raw sensory data.

1.1 Motivation
A great deal of basic scientific work heavily depends on the
accuracy of environment reconstruction. For example,
scientists reveal the nature of ocean currents from accurate
underwater temperature data [30], understand the demand
for plant evolution based on the light condition in the forest
[23], and discover the eruption omen by monitoring the
shake of the volcano [28].

However, since data gathering is largely affected by
hardware and wireless conditions, a raw dataset usually
has notable missing data. Furthermore, missing data be-
come larger as WSNs grow in scale [3]. Consequently, data
loss becomes the key challenge against accurate recon-
struction. It is urgent and important to design effective
methods to recover incomplete EMs.

1.2 Existing Approaches and Limitations
The missing value problem is fundamental in dataset field. Lots
of work has been contributed such as K-Nearest Neighbors
(KNN) [7], Delaunay Triangulation (DT) [13], and Multi-
channel Singular Spectrum Analysis (MSSA) [32]. These
methods are often used when there are only a few missing
values, but cannot be applied when the missing data grow.

Compressive Sensing (CS) [5], [8] is a powerful and
generic technique for estimating missing data. CS can re-
cover an entire dataset from only a small fraction of data as
long as these data contain sparse/low-rank features. So far,
CS has been utilized to reconstruct network traffic [31],
refine localization [24] and improve urban traffic sensing
[19]. However, since a WSN has unique data loss patterns,
directly applying CS on EM interpolation cannot gain
satisfactory accuracy.

1.3 Our Work and Contribution
Our work is fourfold: Firstly, we analyze real environmental
data from Intel Indoor [1], GreenOrbs [23], and OceanSense
[30] projects. We confirm the massive data loss in general
applications and mine the specific data loss patterns in WSNs.
Then we reveal four features in environmental datasets:

1. Low-rank structure. A complete EM can be repre-
sented by a few principle data, which underpins the
applicability of CS.
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2. Time stability. The sensory values of one certain node
are usually similar at adjacent time slots.

3. Space similarity. The sensory values of neighbor
nodes are similar.

4. Multi-attribute correlation. Multiple environmental
attributes have strong correlation in some cases. For
example, the change tendency of temperature and
light are similar in the OceanSense project [30].

Secondly, motivated by the these observations, we
design a novel environmental space time improved compressive
sensing (ESTI-CS) algorithm for estimating the missing
data. ESTI-CS embeds customized features into the base-
line CS to deal with the specific data loss patterns, which
computes the minimal low-rank approximations of the
incomplete EM and refines the interpolation with spatio-
temporal features.

Thirdly, when multiple attributes from the same dataset
have strong correlation, we design a multi-attribute assistant
MAA component to leverage this feature for better
reconstruction accuracy.

Fourthly, we evaluate the effectiveness of our approach
based on trace-driven simulations. We demonstrate that
ESTI-CS can outperform existing approaches such as
CS, KNN, DT, and MSSA when the raw data contain
diverse real loss patterns. Typically, ESTI-CS can achieve
an effective environment reconstruction with less than
20 percent error when there are 90 percent missing data in
the collected data. In addition, MAA further enhances the
performance of ESTI-CS in extensive simulations.

2 RELATED WORK

The missing value problem is common in datasets [3].
A great deal of existing work has devoted to interpolating
the missing data. K-Nearest-Neighbor (KNN) [7] is a
classical local interpolation method. KNN simply utilizes
the values of the nearest K neighbors to estimate the
missing one. It is frequently used in many low-fidelity
estimation cases. Delaunay Triangulation (DT) [13] is a
typical global refinement method, which treats the gath-
ered data as vertices. DT takes advantage of these vertices
and their global errors to build virtual triangles for data
interpolation. It is widely adopted in computer vision for
surface rendering. Multi-channel Singular Spectrum Anal-
ysis (MSSA) [32] is a data adaptive and nonparametric
method based on the embedded lag-covariance matrix.
MSSA is often used in geographic data recovery.

Despite much progress in the area of data interpolation,
existing methods are suitable for only few missing values,
but perform poorly when the loss rate grows high, which is
common in WSN cases.

Compressive sensing (CS) is an advanced method to
recover the whole condition with just a few sampled data
[6], [8]. CS-based methods have been developed for
network traffic estimation [31], road traffic interpolation
[19], and localization in mobile networks [24]. CS has also
witnessed wide applications in WSNs, e.g., recovering
signals under noisy background [2], balancing load via
compressive data gathering [22]. However, the study of
CS for environment reconstruction in WSNs is still vacant.

Existing CS-based interpolation methods cannot be
directly applied for accurate environment reconstruction
due to two reasons: 1) CS-based methods require the
dataset to have inherent structures. Features that are
extracted from network traces [31] or road traffic [19] are
not applicable for WSN data. 2) CS theory performs well
when the missing values follow the Gaussian or pure
random distribution [18], [27]. However, as shown in
Section 4.2, the loss patterns of WSNs do not satisfy these
prerequisites.

To address the above challenges, an effective environ-
ment reconstruction approach in WSN is required to deal
with the massive data loss problem as well as to study the
WSN-specific loss patterns.

3 PROBLEM FORMULATION

3.1 Environmental Data Reconstruction
Rebuilding the virtual environment (such as the dynamic
temperature) in cyber space based on the sensory data is
called environment reconstruction.

In environment reconstruction systems, sensor nodes
are scattered in the given area. Suppose totally n sensor
nodes are deployed. The monitoring period includes t time
slots. Each sensor node reports its sensory data once per
time slot through wireless transmission. xði; jÞ denotes the
sensory data of node i at time slot j, where i ¼ 1; 2 � � �n and
j ¼ 1; 2 � � � t.
Definition 1 Environment Matrix (EM). Is a mathematical

method to describe the dynamic environment. An EM is
defined by X ¼ ðxði; jÞÞn�t.
A complete EM represents that every data in the matrix

are successfully collected, i.e., no data loss.

Definition 2 Binary Index Matrix (BIM). Is an n� t
matrix, which indicates if the data points at the
corresponding positions in an EM are missing. BIM is
defined as

B ¼ bði; jÞð Þn�t¼
0 if xði; jÞ is missing,
1 otherwise.

�
(1)

Definition 3 Sensory Matrix (SM). Is an n� t matrix,
which records the raw data collected from WSNs. Due to the
presence of missing data, elements of SM are either xði; jÞ
gathered by WSNs or zero (missing data point).

Thereby, an SM is an incomplete EM. An SM is denoted
by S and can be presented by1

S ¼ B �X: (2)

3.2 Problem Statement
Data reconstruction is to rebuild the real environment (EM)
based on the gathered sensory data (SM).

1. In this paper, AB presents the matrix production of A and B.
A � B presents the element-wise production of A and B.
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Definition 4 Reconstructed Matrix (RM). Is generated by
interpolating the missing values in an SM to approximate
EM. RM is denoted by X̂ ¼ ðx̂ði; jÞÞn�t.

3.2.1 Problem: Environment Reconstruction in Sensor
Network (ERSN)

Given an SMS, ERSN problem is to find an optimal RM X̂ that
approximates the original EM X as closely as possible. i.e.,

Objective : min kX � X̂kF ;
Subject to : S; (3)

where k � kF is the Frobenius norm used to measure the
error between matrixX and X̂. For calculating, takeX as an

example, kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jðxði; jÞÞ
2

q
.

In ERSN problem, the objective is to minimize the
absolute error. In order to measure the reconstruction error
in different scenarios among different methods, we further
define the following metric.

Definition 5 Error Ratio (ER). Is the metric for measuring
the reconstruction error after interpolation

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j:bði;jÞ¼0 xði; jÞ � x̂ði; jÞð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j:bði;jÞ¼0 xði; jÞð Þ2
q : (4)

Note that the condition bði; jÞ ¼ 0 in Eq. (4) indicates that
only errors on the missing data are counted.

4 DATA LOSS IN SENSOR NETWORKS

In this section, we analyze the data loss in real WSN
datasets. The three datasets are from Intel indoor [1],
GreenOrbs [23], and OceanSense [30] projects.

4.1 Massive Data Loss
Through statistics analysis, we verify that the significant
data loss exists in all of these original datasets.

We investigate totally 54 nodes and 84,600 time slots
(one month) data from the Intel Indoor dataset, where
23 percent data points are missing. The GreenOrbs dataset
also observes 35 percent data loss. And this loss is even
larger in OceanSense, which is about 64 percent for
20 nodes and 5,040 time slots (one week). We find that
the data loss is common and significant in real WSNs.

4.2 Data Loss Pattern
Traditional work usually assumes that the data loss follows
a random distribution [19], [32]. However, this claim is not
correct in WSN applications. In terms of the nature of
WSNs, we synthesize several typical data loss patterns.

4.2.1 Pattern 1 Element Random Loss (ERL)

This is the simplest loss pattern. Data in the matrix are
dropped independently and randomly. Missing data points
are randomly distributed in a SM. The noise and collision
[12] in WSNs are the root causes of this pattern.

4.2.2 Pattern 2 Block Random Loss (BRL)

Data from adjacent nodes in adjacent time slots are dropped
together. Congestion [10] always leads to data loss on high-
density sensor nodes during a period of time.

4.2.3 Pattern 3 Element Frequent Loss in Row (EFLR)

Unreliable links [29] are common phenomenon in real wire-
less scenarios. When the link quality is not good, sensory
data are prone to loss due to the intermittent transmission.
In EFLR, elements in some particular rows have a higher
missing probability.

4.2.4 Pattern 4 Successive Elements Loss in Row
(SELR)

A certain node starts losing from a particular time slot. This
type of loss occurs when some sensor nodes are damaged
or run out of energy [26].

4.2.5 Pattern 5 Combinational Loss (CL)

In real world, data loss is a combination of loss patterns
above.

5 ENVIRONMENTAL DATA MINING

5.1 Ground Truth
In order to discover the environmental features, the com-
plete datasets are needed as the ground truth. However,
EMs from the three original datasets cannot be directly
utilized since they all have considerate data loss. To gen-
erate applicable EMs, we perform preprocessing on the raw
datasets, which selects the small but complete subsets from
these three datasets. The size and time interval of selected
matrices are shown in Table 1. As a result, six EMs are
generated from preprocessing: indoor temperature, indoor
light, forest temperature, forest light, ocean temperature,
and ocean light.

5.2 Low-Rank Structure Discovery
Environmental data of different locations over different
times are not independent. There exists inherent structure
or redundancy. We mine these features in above selected
datasets by Singular Value Decomposition (SVD), which is
an effective non-parametric technique for revealing the
hidden structure [16].

Any n� t matrix X can be decomposed into three
matrices according to SVD:

X ¼ USV T ¼
Xminðn;tÞ

i¼1

�iuiv
T
i ; (5)

where V T is the transpose of V , U is an n� n unitary matrix
(i.e., UUT ¼UTU ¼ In�n), V is a t� t unitary matrix (i.e.,
VV T ¼ V TV ¼ It�t), and S is an n� t diagonal matrix
constraining the singular values �i of X. Typically, the
singular values in S are sorted, i.e., �i � �iþ1, i ¼ 1; 2; . . . ;

TABLE 1
Selected Datasets for Features Analysis
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minðn; tÞ, where minðn; tÞ is the number of singular values.
The rank of a matrix, denoted by r, is equal to the number
of its non-zero singular values. If r� minðn; tÞ, the matrix
is considered as low-rank.

In Eq. (5), the singular value �i also indicates the energy
of the i-th principal component. The total energy is equal to
the sum of all singular value

Pminðn;tÞ
i¼1 �i. According to PCA,

a low-rank matrix [31] exhibits that its first r singular values
occupy the total or near-total energy

Pr
i¼1 �i �

Pminðn;tÞ
i¼1 �i.

In Fig. 1, we illustrate the distribution of singular
values in 6 EMs. The X-axis presents the i-th singular
values, which is normalized by minðn; tÞ because the scales
of 6 EMs are different. The Y-axis presents the values of the
sum of first i-th singular value, which is normalized by
maxð�iÞ due to the same reason. This figure suggests that
the energy is always contributed by the top several singular
values in real environments. For example, the top 5 percent
singular values contribute all energy in Indoor-Temp. The

universal existence of
Pr

i¼1 �i �
Pminðn;tÞ

i¼1 �i and r� minðn; tÞ
reveals that EMs exhibit obvious low-rank structures. Low-
rank features [19] serve for the prerequisite for using
compressive sensing.

(Refer to the supplemental file which is available in the Com-
puter Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2013.269 for the mining of temporal
stability and spatial similarity features.)

5.3 Multi-Attribute Correlation
We are aware of the following two facts in real WSN
applications. 1) Usually, WSNs gather multiple attributes
simultaneously, e.g., a TelosB node [21] senses three
environmental attributes: temperature, light and humidity.
2) Multiple attributes have correlations in some applica-
tions. For instance, the empirical study [17] reveals that
several attributes do have relationship such as relative
humidity and dewpoint temperature. Therefore, we pro-
pose to mine and exploit such correlations to further
optimize the accuracy of environment reconstruction.

5.3.1 Joint Sparse Decomposition
In order to mine the correlations, a Joint Sparse Decomposition
(JSD) method is proposed to jointly divide multi-attribute
EMs into a public sub-matrix W and multiple private sub-
matrices D. All sub-matrices have the same size of EMs, but
their magnitudes are smaller. Suppose two attributes

X1 ¼ ðxð1Þ1 ; . . . ; x
ðtÞ
1 Þ and X2 ¼ ðxð1Þ2 ; . . . ; x

ðtÞ
2 Þ, where x

ðjÞ
k pre-

sents the j-th column vector of EM Xk, j ¼ 1; 2; . . . ; t. For
both column vector x

ðjÞ
1 and x

ðjÞ
2 , the goal is to split them into:

x
ðjÞ
1 ¼wðjÞ þ �

ðjÞ
1 ;

x
ðjÞ
2 ¼wðjÞ þ �

ðjÞ
2 ;

wðjÞ ¼YvðjÞ; (6)

wherewðjÞ is the public sub-vector of x
ðjÞ
1 and x

ðjÞ
2 , which is the

multiplication of a wavelet basis Y[4] and a sparse vector vðjÞ

satisfying wðjÞ ¼ YvðjÞ. The private sub-vectors are repre-
sented by �

ðjÞ
1 and �

ðjÞ
2 respectively. According to Compressive

Sensing theory [8], [5], vðjÞ, �
ðjÞ
1 , and �

ðjÞ
2 are obtained by

solving an l1-norm minimization problem as the following:

#̂ ¼ argmink#k1; s:t: x ¼ A# (7)

where k � k1 is the l1-norm, # ¼ ðvðjÞT ; �ðjÞT1 ; �
ðjÞT
2 Þ

T
, x ¼ ðxðjÞT1 ;

x
ðjÞT
2 ÞT and A ¼ ðY; I;0; Y;0; IÞ. It was proved in [8] that

solving Eq. (7) is NP-hard, so we adopt the least angle
regression method, which was proposed in [9], to obtain #.
Then the public sub-vector wðjÞ, the private sub-vectors �

ðjÞ
1 ,

and �
ðjÞ
2 can be calculated from #.

Applying JSD onto every column vector, X1 and X2 are
decomposed as

X1 ¼W þ D1;

X2 ¼W þ D2: (8)

5.3.2 Correlation
The energy fraction of public sub-matrix W is used to
measure the correlation between two attributes, where the
total energy is the sum of all singular values of three sub-
matrices W , D1, and D2. Fig. 2 shows the energy fraction of
sub-matrices after JSD in diverse groups. Group a shows
the results of JSD on two irrelevant random matrices. The
public sub-matrix W contains only 7 percent of total
energy. Group b shows the results of indoor-temp and
indoor-light. The change of indoor-light has mutations by
manually switching lights on/off, which leads to low
correlation with indoor-temp W ¼ 11%. The results of
forest-temp and forest-light are shown in group c. Both
outdoor light and temperature vary according to the sun.
However, due to the influence of tree shade, the correlation
is not very strong. So W contains 29 percent of total energy,

Fig. 1. Low-rank feature.

Fig. 2. Correlation analysis by JSD.
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while the private sub-matrices D1 and D2 contain 35 percent
and 36 percent respectively. And sensor nodes are fully
exposed under the sun in OceanSense. Hence, high
correlation between ocean-temp and ocean-light is shown
in group d, where W ¼ 46%. Two same matrices have
definitely highest correlation. When JSD is operated on two
same EMs X1 ¼ X2, W contains 100 percent energy and
D1 ¼ D2 ¼ 0 in group e. Fig. 2 validates that JSD can be
utilized to measure the correlation between two matrices.
In addition, the higher correlation between two EMs, the
more energy contains in the public sub-matrix.

5.3.3 Inherited Low-Rank
After decomposed from EMs by applying JSD, the sub-
matrices W , D1 and D2 still exhibit the low-rank features.

All sub-matrices are decomposed respectively by SVD
method. The same method mentioned in Section 5.2 is
adopted to determine the inherited low-rank feature. In
Table 2, we show the percentage of singular values that
contain 90 percent of the total energy. As shown, for all the
dataset, 7 percent to 20 percent of the top singular values
can concentrate 90 percent of the total energy. Hence, the
inherited low-rank features are exhibited in sub-matrices,
which indicates that any of W , D1 and D2 can be recovered
by CS based method.

Correlation and inherited low-rank motivate us to
improve ESTI-CS by multi-attribute correlation.

6 ENVIRONMENTAL SPACE TIME IMPROVED
COMPRESSING SENSING APPROACH

We propose a novel missing data estimation approach to
address ERSN problem. The proposed algorithm, namely
environmental space time improved compressive sensing (ESTI-
CS), takes into consideration the spatio-temporal features
to optimize the estimation accuracy.

6.1 Compressive Sensing Based Approach
Since we have revealed the low-rank structure in most real
environment datasets, we propose to use CS method to
estimate missing data from the SM.

The goal of solving ERSN problem is to estimate X̂.
According to Eq. (5), any matrix can be decomposed by

SVD into
Pminðn;tÞ

i¼1 �iuiv
T
i . Through the inverse process, we

can also create an r-rank approximation X̂ by using only
the r largest singular values and abandoning the others:

Xr
i¼1

�iuiv
T
i ¼ X̂: (9)

This X̂ is known as the best r-rank approximation that
minimizes the error measured by Frobenius norm. Never-
theless, the optimal X̂ cannot be obtained directly by this
way as we do not know matrix X and the proper rank in
advance.

Thus we propose to find X̂ as follows:

Objective : min rankðX̂Þ
� �

;

Subject to : B � X̂ ¼ S: (10)

We make this assumption according to two reasons. On
the one hand, since the reconstructed matrix (RM) is
generated from the sensory matrix (SM), it is reasonable to
be as close as SM. On the other hand, like the environmen-
tal matrix (EM), RM should also have a low-rank structure.
Given this, it is still difficult to solve this minimization
problem because it is non-convex. To bypass this difficulty,
we take advantage of the SVD-like factorization, which re-
writes Eq. (5) as

X̂ ¼ USV T ¼ LRT ; (11)

where L ¼ US1=2 and R ¼ V S1=2. Substituting Eq. (11) to
Eq. (10), we can solve the minimization problem according
to the compressive sensing theory in [5], [8]. Specifically, if
the restricted isometry property holds [25], minimizing the
nuclear norm can result to rank minimization exactly for a
low-rank matrix. Hereby, we just need to find matrix L and
R that minimize the summation of their Frobenius norms:

Objective : min kLk2
F þ kRTk2

F

� �
Subject to : B � ðLRT Þ ¼ S: (12)

Looking for L and R that strictly satisfy Eq. (12) is likely
to fail due to two reasons. First, EMs usually approximate
low-rank but not exact low-rank. Second, noises in sensory
data may lead to the over-fitting problem if strict satisfac-
tion is required. Thus, instead of solving Eq. (12) directly,
we solve the following equation using the Lagrange
multiplier method:

min B � ðLRT Þ � S
�� ��2

F
þ� kLk2

F þ kRTk2

F

� �� �
; (13)

where the Lagrange multiplier � allows a tunable tradeoff
between rank minimization and accuracy fitness. This
solution provides the low-rank approximation but not
strict satisfaction.

In Eq. (13), 1) B and S are known, 2) any k � k2
F is non-

negative, 3) the optimal values approximate 0 by minimiz-
ing all non-negative parts. Hence, L and R can be estimated
in this optimization problem.

6.2 Environmental Spatio-Temporal Improvement
ESTI-CS includes two key components: On the other hand,
after exploiting the temporal stability and spatial similarity
features, we complete ESTI-CS approach by developing
Eq. (13) as following:

min B � ðLRT Þ � S
�� ��2

F
þ� kLk2

F þ kRTk2

F

� ��
þ kHLRTk2

F þ kLRTTk2

F

�
; (14)

TABLE 2
Inherited Low-Rank Analysis after JSD
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where H and T are the spatial and temporal constraint
matrices respectively. Three subjects kHLRTk2

F , kLRTTTk2

F ,
and kB � ðLRT Þ � Sk2

F are set to be the same order of mag-
nitude, whose coefficients are 1. Otherwise, they may over-
shadow the others when solving Eq. (14).

6.2.1 Temporal Stability Improvement
The temporal constraint matrix T captures the temporal
stability feature, which outlines that the change between
two consecutive time slots is small. Hence, we set
T ¼ Toeplitzð0; 1;�1Þt�t. The Toeplitz matrix is defined
with central diagonal given by 1, and the first upper
diagonal given by �1, and the others given by 0.

This Toeplitz matrix adds the temporal constraint into
the estimation. Importing kLRTTk2

F into Eq. (14) is equal to
induct an additional constraint into the original optimiza-
tion problem. Since the temporal constraint is an inherent
feature of environment, this additional constraint can filter
more noises and errors in LRT estimation.

6.2.2 Spatial Similarity Improvement
The spatial constraint matrix H captures the spatial
similarity feature, which reveals that values among one-
hop neighbors nodes are usually similar. Hence, we set H
to be a row-normalized H	, where H	 ¼ H þD. The matrix
H is a TM-1H, i.e., the one-hop topology matrix mentioned
before. And D is an n� n diagonal matrix, which is defined
with central diagonal given by diagðd1; d2; . . . dnÞ, and the
others given by 0. In D, di ¼ �

P
HðiÞ.

The spatial similarity constraint is added by the matrix
H. Computing the result of HX is to get the differences
between the elements and the average value of their one-
hop neighbors in X. As the same purpose of time
improvement part, we introduce the part of minimizing
kHLRTk2

F into Eq. (14). It takes advantage of the inherent
environment feature as an additional constraint in optimi-
zation problem, which leads to a more accurate estimation
of LRT , i.e., X̂.

6.3 ESTI-CS Algorithm
We propose an efficient ESTI-CS algorithm to solve the
estimation in the optimization problem Eq. (14).

First, we scale the T and H as all k � kF2 in Eq. (14) having
the same order of magnitude. The scaling method is similar
to [31]. Then ESTI-CS algorithm solves the optimization in
an iterative manner. L is initialized randomly, so R can be
computed by solving the following contradictory equation:

B � ðLRT Þffiffiffi
�
p

RT

	 

¼ S

0

	 

: (15)

This equation can be rewritten as:

Diag BðiÞ
� �

LRT
ðiÞffiffiffi

�
p

RT
ðiÞ

" #
¼ SðiÞ

0

	 

; (16)

where i ranges from 1 to t. This is a combination of multiple
standard linear least squares problems. We then have
RT
ðiÞ ¼ ðPT

i PiÞ n ðPT
i QiÞ, where Pi ¼ ½DiagðBðiÞÞL;

ffiffiffi
�
p

Ir
 and

Qi ¼ ½SðiÞ; 0r
. Similarly, once RT is obtained, L can be re-
computed by fixing RT . This mutual re-computing process
repeats until the optimal value is reached.

We analyze the complexity of the ESTI-CS algorithm.
The key operation is the procedure for computing the
inverse matrix, which provides the best approximate
solution to the contradictory equation. This procedure is
completed by a matrix multiplication [19]. Thus, its time
complexity is OðrntÞ. Since ESTI-CS repeats the procedure
for % times, the total complexity is Oðrnt%Þ. From our
evaluation experience in Section 8, L and RT usually
converge after 5 iterations.

7 MULTI-ATTRIBUTE COMPONENT

7.1 MAA Overview
Multi-attribute assistant component can be utilized to
improve the accuracy of ESTI-CS when correlation exists.
Under such scenario, the proposed ERSN problem is
extended to k-ERSN problem: Given K sensory matrices
(SMs) Sk, where k ¼ 1; 2; . . . ; K, and these SMs have the
same size but different values. The goal is to jointly find the
corresponding optimal reconstructed matrices (RMs) X̂k

that approximate the original environmental matrices
(EMs) Xk.

For simplicity, we study the two-attribute situation as an
example. Formally, when K ¼ 2, ERSN problem is formu-
lated as follows: Given S1 and S2, find an optimal solution
for X̂1 and X̂2, i.e.,

Objective: min kX̂1 �X1kF þ kX̂2 �X2kF
� �

;

Subject to: B1 � X̂1 ¼ S1;

B2 � X̂2 ¼ S2: (17)

7.1.1 Normalization
Since the magnitudes of attributes are different, it may
cause one matrix to overshadow another. In order to
overcome this issue,X1 andX2 are normalized respectively.

7.1.2 Low-Rank Matrix Approximation
Eq. (17) is tied byX1 andX2, so the problem cannot be solved in
closure form. However, due to the inherited low-rank feature,
this problem can be converted to a rank minimization problem.
Thus, the optimal Xk is evaluated by the problem:

min rankðX̂kÞ
� �

; s:t: Sk ¼ X̂k �Bk: (18)

Still two problems are up against us: 1) the rank
calculating operator rankð�Þ is not convex. 2) there is no
connection between X1 and X2.

To conquer the difficulty 1), we still utilize SVD-like
factorization as X̂ ¼ LRT . Thus minðrankðX̂ÞÞ is solvable by
looking for L and R, which satisfy minðkLk2

F þ kRTk2
F Þ.

7.1.3 Compressive Sensing-Based Joint
Matrix Decomposition

To overcome the difficulty (2), we need to find the correlation
between X1 and X2. Through the JSD analysis in Section 5.3,
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we separate the approximation X̂1 and X̂2 by JSD as

X̂1 ¼ Ŵ þ D̂1

X̂2 ¼ Ŵ þ D̂2: (19)

Since Ŵ , D̂1 and D̂2 inherit the low-rank feature, k-ERSN
problem is reformulated as:

Objective: min kŴk	 þ kD̂1k	 þ kD̂2k	
� �

;

Subject to: B1 � ðŴ þ D̂1Þ ¼ B1 �X1;

B2 � ðŴ þ D̂2Þ ¼ B2 �X2 (20)

where k � k	 is the nuclear norm which is defined as the sum
of singular values, e.g., kXk	 ¼

Pr
i¼1 �iðXÞ.

Furthermore, using SVD-like factorization, kŴk	þ
kD̂1k	 þ kD̂2k	 in Eq. (20) is rewritten as:

kLWk2
F þ RT

W

�� ��2

F
þkL1k2

F þ RT
1

�� ��2

F
þkL2k2

F þ RT
2

�� ��2

F
(21)

where LW , L1, L2 are n� r matrices and RW , R1, R2 are r� t
matrices. Moreover, Ŵ ¼ LWRT

W , D̂1 ¼ L1R
T
1 and D̂2 ¼ L2R

T
2 .

For short, Eq. (21) is denoted by
P
kLjk2

F þ
P
kRjk2

F , where
j ¼ 1; 2;W .

To avoid overfitting, k-ERSN problem is rewritten to be
a non-stationary optimization problem using the Lagrange
multiplier method, i.e.,

min �
X
kLjk2

F þ
X
kRjk2

F

� ��
þ B1 � LWR

T
W þ L1R

T
1

� �
� S1

�� ��2

F

þ B2 � LWR
T
W þ L2R

T
2

� �
� S2

�� ��2

F

�
: (22)

Eq. (22) is the core of MAA component, which is solvable
because 1)B1, B2, S1, and S2 are known, 2) each k � k2

F is non-
negative, 3) the optimal value can be reached by minimiz-
ing all non-negative parts to zero. Hence, X̂1 and X̂2 can be
estimated by combining Eq. (22) and Eq. (19).

ESTI-CS with MAA is to reconstruct several (two as
example) environments according to

min �
X
kLjk2

F þ
X

Rj

�� ��2

F

� ��
þ B1 � LWR

T
W þ L1R

T
1

� �
� S1

�� ��2

F

þ B2 � LWR
T
W þ L2R

T
2

� �
� S2

�� ��2

F

þ H1ðL1 þ LW ÞðR1 þRW ÞT
��� ���2

F

þ H2ðL2 þ LW ÞðR2 þRW ÞT
��� ���2

F

þ ðL1 þ LW ÞðR1 þRW ÞTT1

��� ���2

F

þ ðL2 þ LW ÞðR2 þRW ÞTT2

��� ���2

F
Þ: (23)

It can be seen that Eq. (23) is the combination of Eq. (22) and
Eq. (14). The first three items of Eq. (23) utilize the low-rank
feature, which is the fundamental compressive sensing, the
fourth and fifth items incorporate the spatial similarity
improvement, the last two items merge the temporal
stability improvement, and the multi-attribute assistant
component is added a lastly into Eq. (23) by Lj and Rj,
where j ¼ 1; 2;W .

7.1.4 Extension
The MAA component is also suitable for the case of more
attributes. For instance, if we obtain k attributes in one
WSN, represented by X1; X2; . . . ; Xk. The utilization of
MAA is to rewrite Eq. (20) into

kŴk	 þ kD̂1k	 þ kD̂2k	 þ � � � þ kD̂kk	: (24)

Then k-ERSN problem can be solved by the similar method
of the above two-attribute case.

7.2 MAA Algorithm
We only present the core of MAA component in this section,
which is to solve Eq. (22). And the realization of spatial-
temporal improvement in Eq. (23) is the same method in
ESTI-CS, we do not repeat it here.

The algorithm solves the problem in an iterative
manner. First, L1, L2, LW ,R1, andR2 matrices are initialized
randomly. Then, RW can be calculated from the initialized
matrices by solving the equation

B1 � LWR
T
W

� �
B2 � LWR

T
W

� �ffiffiffi
�
p

RT
W

2
4

3
5 ¼ S1 � L1R

T
1

S2 � L2R
T
2

0

2
4

3
5: (25)

Eq. (25) is solvable using the linear least square method.
After RW is obtained, LW can be computed using the same
procedure by fixing RW . Similarity, any of L1, L2, R1, and
R2 is computed by fixing the other three. Using the iterative
manner, these four matrices can be obtained one-by-one.
The computational complexity of ESTI-CS-MAA is the
same as ESTI-CS.

8 PERFORMANCE EVALUATION

8.1 Methodology
The proposed ESTI-CS approach is compared with existing
algorithms for missing data interpolation for environmen-
tal reconstruction in WSNs.

8.1.1 Ground Truth
Since the performance evaluation needs complete EMs X
to compute the metric of error ratio (ER), we utilize the datasets
as shown in Table 1. Six EMs are adopted: indoor-temp, indoor-
light, forest-temp, forest-light, ocean-temp and ocean-light.

8.1.2 Methods
To verify the effectiveness of ESTI-CS, four classic inter-
polation methods are selected for comparison. They are
compressive sensing (CS) [19] (computational complexity
Oðrnt%Þ), Delaunay Triangulation (DT) [13] (complexity
Oðnt logntÞ), Multi-channel Singular Spectrum Analysis
(MSSA) [32] (complexity Oðrnt logntþ r2ntÞ), and K-Nearest
Neighbor (KNN) [7] (complexity OðntÞ). The parameter K in
KNN is set to be

Pn
i¼1 HðiÞ=n. The parameterM in MSSA is set

to 32 as suggested by [32].

8.1.3 Procedure
The procedure of simulation is:

1. Generate BIM B according to four loss patterns.
2. Compute SM S according to Definition 3: S ¼ B �X.
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3. All interpolation algorithms being tested take SMs
as input and generate RMs.

4. The accuracy metric ER is computed between EMs
and RMs. And finally, these errors are compared.

8.1.4 Series
Three series of experiments are evaluated. The basic
experiment measures the performance of different algo-
rithms against typical random loss probability. The second
experiment evaluates the performance in diverse data loss
patterns. And the third experiment compares the perfor-
mance of ESTI-CS with MAA and ESTI-CS without MAA.

8.2 Comparison on Random Loss Pattern
In the basic comparison, we test the error ratios under
diverse algorithms on the element random loss (ERL)
pattern only. The data loss rate pERL ranges from 10 percent
to 90 percent. Fig. 3 shows the results. The X-axis presents
the data loss probability, and the Y-axis is the value of ER,
which represents the reconstruction accuracy.

In the indoor-temp Fig. 3a, ESTI-CS shows the best
performance. Even 90 percent data have been lost, ESTI-CS
still can reconstruct the environment with ER � 10%. While
ER of CS is about 19 percent, DT is close to 38 percent, and
ER of KNN and MSSA are more than 60 percent. ESTI-CS is
much better than other algorithms in this scenario. In the
indoor-light Fig. 3b, ESTI-CS still outperforms the others,
but the advantage is less significant than that in indoor-
temp. The reason is that the indoor temperature change has
strong spatio-temporal feature. However, the change of
indoor light is largely influenced by the light switch. So the
indoor light dataset observes more artificial changes than
spatio-temporal stability.

The performance of Forest-Temp and the Forst-Light are
similar. The reason is that both the temperature and the

light are mainly effected by the sun due to an outdoor
application. These two environment attributes have strong
correlation. As shown in Figs. 3c and 3d, ESTI-CS achieves the
best environment reconstruction among the five algorithms.
CS, MSSA and DT fall behind ESTI-CS a little. KNN is not
bad when pERL G 50%, but when pERL 9 50%, ER of KNN
increases quickly.

In the ocean-temp Fig. 3e, ESTI-CS and DT produce the
similar performance. When the data loss is 90 percent, they
achieve ER G 30%. Meanwhile, the ERs of CS, KNN and
MSSA are bigger. In the ocean-light Fig. 3f, the perfor-
mance of ESTI-CS and DT are similar with the range of loss
rate from 10 percent to 80 percent. When the loss rate
increases to 90 percent, ER of DT also increases rapidly, and
ER of ESTI-CS still keeps within 22 percent. These two
figures indicate that ESTI-CS perform better than DT, CS,
KNN and MSSA in this outdoor and small-scale WSN
scenario.

Overall, ESTI-CS obtain lower interpolation error, which
can be used in almost all tested datasets with different loss
ratios. KNN and DT produce similar but the poor ER
performance, because both of them interpolate with only
the space relation among nodes but no time relation
consideration. CS and MSSA are better than KNN and
DT, but still worse than ESTI-CS. Especially, at the high
data loss cases (data loss � 80 percent), ESTI-CS exhibits an
evident advantage over other algorithms. In all dataset,
ESTI-CS can successfully achieve an environment recon-
struction with 20 percent error when there are 90 percent
data are missing.

8.3 Performance on Data Loss Patterns
In Fig. 4, we plot the comparison histograms of five
algorithms for reconstructing the environment with differ-
ent data loss patterns.

Fig. 3. Error ratio performance of five algorithms in the basic data loss pattern: element random loss. (a) Indoor temp. (b) Indoor light. (c) Forest temp.
(d) Forest light. (e) Ocean temp. (f) Ocean light.
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In the simulation for BRL pattern, each of the six EMs is
set to lose data with the block pattern. The scale and the
number of the blocks are random, but the amount of total
data loss is 50 percent in this simulation. In Fig. 4a, most
algorithms in most EMs perform not well. For example, in
forest-light, ER of all algorithms are bigger than 60 percent.
The reasons are 1) in the forest, many shadows disturb the
spatio-temporal stability. 2) if large blocks of data lose,
spatio-temporal optimized estimation is helpless either.
These two reasons lead to the result. However, in indoor-
temp, ocean-temp, and ocean-light, the environment
changes are smoothly, ER of ESTI-CS are less than 5 percent
despite 50 percent BRL data loss. Even indoor-light, forest
environments, ESTI-CS is still a bit better than the others. In
addition, we find that KNN is in big trouble for estimating
the missing data in BRL.

In the simulation of EFLR pattern, the rows are randomly
selected, the loss frequency in these rows is set 9 75 percent,
and the totally lose data in matrix is set 50 percent. We find
that the results in Fig. 4b are close to the basic comparison,
because the data loss in EFLR is similar to ERL pattern.
In EFLR, the temporal optimization can contribute a partial
effect, but the space optimization still works. So our ESTI-CS
still outperforms CS, KNN, DT, and MSSA.

The performance of SELR is similar to EFLR, we show the
SELR result in the supplemental document available online.

In the simulation of Combinational Loss pattern, we set
20%ERLþ 10%BRLþ 10%EFLRþ 10%SELR. The results
of five algorithms are shown in Fig. 4c. The ER of ESTI-CS is
� 20 percent in any dataset in the combinational loss pattern.

In summary, ESTI-CS outperforms CS, KNN, DT and
MSSA in any data loss pattern.

8.4 Performance on ESTI-CS with MAA
In this series, we evaluate the benefit from MAA compo-
nent for ESTI-CS. The data loss pattern and loss rate setting
are the same as the setting in Section 8.2.

In Fig. 5, we illustrate the ER results of ESTI-CS-MAA
algorithm and compare them with ESTI-CS in the case of
two attributes under random loss pattern. In every dataset,
two attributes temperature and light are reconstructed
together by ESTI-CS-MAA. It can be seen that the
reconstruction accuracy of ESTI-CS-MAA is universally
better than that of ESTI-CS in three real WSN datasets.

Figs. 5a and 5b show ESTI-CS-MAA is slightly better
than ESTI-CS in Intel Indoor dataset. In face of 90 percent
data loss, ESTI-CS-MAA improves the ER by 2 percent in
Indoor-Temp shown in Fig. 5a and 3 percent shown in
Indoor-Light in Fig. 5b compared with ESTI-CS.

In GreenOrbs dataset, ESTI-CS-MAA performs better
than ESTI-CS. The MAA-enabled algorithm outperforms

Fig. 5. Error ratio performance of ESTI-CS with MAA in the basic data loss pattern: element random loss. (a) Indoor temp. (b) Indoor light. (c) Forest
temp. (d) Forest light. (e) Ocean temp. (f) Ocean light.

Fig. 4. Error ratio performance in different loss patterns. (a) Block random loss. (b) Element frequent loss in row. (c) Combinational loss.
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baseline ESTI-CS by 7 percent in Forest-Temp shown in
Fig. 5c and 6 percent in Forest-Light shown in Fig. 5d.

The results of ESTI-CS-MAA are significantly better than
those of ESTI-CS in OceanSense dataset. As shown in Figs. 5e
and 5f, 14 percent and 12 percent ER are improved by ESTI-
CS-MAA respectively in Ocean-Temp and in Ocean-Light.

Recall the correlation analysis of Fig. 2, the correlation
between temperature and light in OceanSense is higher
than that in GreenOrbs and even higher than that in Intel
Indoor. We summarize that MAA can further improve the
ESTI-CS on reconstruction accuracy when multi-attribute
correlation exists. Moreover, the higher the correlation is,
the more improvement the MAA provides.

9 CONCLUSION

In this paper, we studied the data loss and reconstruction
problem in WSNs. We verified the massive data loss in real
datasets and modeled the special data loss patterns of
WSNs. Then, we mined the low-rank, spatial, temporal, and
correlation features from WSN datasets. By drawing on
these observations, we designed ESTI-CS with MAA
algorithm to estimate the missing data. The proposed
algorithm combines the benefits of compressive sensing,
environmental space-time, and multi-attribute correlation
features. Trace-driven experiments illustrated that ESTI-CS
outperforms existing interpolation methods.
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