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Abstract—Reconstructing the environment in cyber space by
sensory data is a fundamental operation for understanding the
physical world in depth. A lot of basic scientific work (e.g., nature
discovery, organic evolution) heavily relies on the accuracy of
environment reconstruction. However, data loss in wireless sensor
networks is common and has its special patterns due to noise,
collision, unreliable link, and unexpected damage, which greatly
reduces the accuracy of reconstruction. Existing interpolation
methods do not consider these patterns and thus fail to provide a
satisfactory accuracy when missing data become large. To address
this problem, this paper proposes a novel approach based on
compressive sensing to reconstruct the massive missing data.
Firstly, we analyze the real sensory data from Intel Indoor,
GreenOrbs, and Ocean Sense projects. They all exhibit the
features of spatial correlation, temporal stability and low-rank
structure. Motivated by these observations, we then develop an
environmental space time improved compressive sensing (ESTI-
CS) algorithm to optimize the missing data estimation. Finally,
the extensive experiments with real-world sensory data shows
that the proposed approach significantly outperforms existing
solutions in terms of reconstruction accuracy. Typically, ESTI-
CS can successfully reconstruct the environment with less than
20% error in face of 90% missing data.

I. INTRODUCTION

For the sake of discovering the physical world, people keep

observing the environment. Recently, wireless sensor networks

(WSNs) [1] are widely adopted to gather various environ-

mental information and then reconstruct them in the cyber

worlds [9]. There are plenty of real environment monitoring

applications under the water [24], in the forest [17], and on

the volcano [22]. Environment Matrix (EM) is a common way

to represent a dynamic environment. EM is typically an n× t
matrix that records data from n sensors over t time intervals.

Environment reconstruction [12] attempts to obtain the full and

accurate EM from raw sensory data, which is the essential step

that precedes any further analysis.

Motivation: A great deal of basic scientific work heavily

depends on the accuracy of environment reconstruction. For

example, scientists reveal the nature of ocean currents from

accurate underwater temperature data [24], understand the

demand for plant evolution based on the light condition in

the forest [17], discover the eruption omen by monitoring the

shake of the volcano [22].

However, since data gathering is largely affected by hard-

ware and wireless conditions, raw EMs usually have notable

missing data. Furthermore, missing data becomes larger as

deployed WSNs grow in scale [3]. Consequently, data loss in

WSN becomes the key challenge against accurate environment

reconstruction. Therefore, it is urgent and important to design

effective methods to recover incomplete EMs.

Existing approaches and limitations: Missing value prob-

lem is fundamental in datasets. Lots of work has contributed

in this field such as local interpolation method K-Nearest

Neighbors (KNN) [6], global refinement method Delaunay

Triangulation (DT) [12], and principal component analysis

method Multi-channel Singular Spectrum Analysis (MSSA)

[26]. These methods are often used when there are only a few

missing values, but cannot scale when the missing data grow.

Compressive Sensing (CS) [5], [7] is a powerful and generic

technique for estimating missing data. CS can recover an entire

dataset from only a small fraction of data as long as these

data contain certain structures or features. So far, CS has been

applied to reconstruct network traffic [25], refine localization

[18] and improve urban traffic sensing [14]. However, since

WSN has unique data loss patterns, CS cannot be directly

applied to gain notable accuracy improvement for EM inter-

polation.

Our contributions: In this paper, our work is threefold.

Firstly, we analyze real-world environmental data from Intel

Indoor [10], GreenOrbs [17], and Ocean Sense [24] projects.

We confirm the massive data loss in general applications and

mine the specific data loss patterns in WSN. And then we

reveal three features in real environmental datasets: 1) Time
stability. The sensory values of one certain node are usually

similar at adjacent time slots. 2) Space correlation. The sen-

sory values of neighbor nodes are similar for a particular time

instant. 3) Low-rank structure. The major energy concentrates

on just a few principle data in EM, which underpins the

applicability of CS.

Then, motivated by these three observations, we design a

novel environmental space time improved compressive sensing
(ESTI-CS) algorithm for estimating the missing data. ESTI-

CS embeds customized features into baseline CS to deal with

the specific data loss patterns, which computes the minimal

low-rank approximations of the incomplete EM and refines

the interpolation with spatio-temporal features.

Finally, we evaluate the effectiveness of our approach based

on trace-driven simulation. We demonstrate that ESTI-CS can

outperform existing approaches such as CS, KNN, DT, and

MSSA when the raw data contain diverse real loss patterns.

Typically, ESTI-CS can achieve an effective environment

reconstruction with less than 20% error when there are 90%

missing data in the collected data.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first work to

study the data loss and reconstruction in WSN. We model

the environment with EM and discover four data loss

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

1654



patterns.

• We mine several large WSN datasets and reveal the time

stability, space correlation, and low-rank features in real

environment.

• Based on the observed features, we design the ESTI-

CS algorithm to accurately estimate the missing data in

highly incomplete EM.

• The proposed ESTI-CS is simulated based on real data.

The evaluation shows the ESTI-CS is effective for mas-

sively data loss against existing interpolation methods.

Paper organization: Section II presents the related work.

Section III models the problem. Section IV analyzes the data

loss. Section V mines the environmental features. Section VI

proposes the ESTI-CS algorithm. Section VII evaluates the

proposed approach. Section VIII concludes the paper.

II. RELATED WORK

Missing value problem is common in datasets [3]. A great

deal of existing work has been devoted to interpolate missing

data. K-Nearest-Neighbor (KNN) [6] is a classical local inter-

polation method. KNN simply utilizes the values of the nearest

K neighbors to estimate the missing one. It is frequently used

in many low-fidelity estimation cases. Delaunay Triangulation

(DT) [12] is a typical global refinement method, which treats

the gathered data as vertices. DT takes advantage of these

vertices and their global errors to rebuild virtual triangles for

data interpolation. It is widely adopted in computer vision for

surface rendering. Multi-channel Singular Spectrum Analysis

(MSSA) [26] is a data adaptive and nonparametric method

based on the embedded lag-covariance matrix. MSSA is often

used in geographic data and meteorological data recovery.

Despite much progress in the area of data interpolation,

existing methods are suitable for interpolation with only few

missing values, but perform poorly when data loss rate is high,

e.g., for environment reconstruction in WSN.

Compressive sensing (CS) is a generic method to recover

whole condition with just a few sampled data [4], [7]. Its

fundamental theory has been utilized in plenty of fields such

as statistics, image processing, signal recovery, and machine

learning. As for missing value estimation, CS-based inter-

polation methods have been developed for network traffic

estimation [25], road traffic interpolation [14], and localization

in mobile networks [18]. CS also witnesses wide application

in WSN, e.g., recovering signal under noise [2], balancing load

via compressive data gathering [16]. However, the study of CS

for environment reconstruction in WSN is still vacant.

Existing CS-based interpolation methods cannot be directly

applied for accurate environment reconstruction for two rea-

sons 1) CS-based methods require the dataset to have inherent

structure and redundancy. Existing features extracted from

network trace [25] or road traffic [14] are not valid for WSN

sensory data. 2) CS theory performs well when the missing

values follow the Gaussian or pure random distribution [15],

[21]. However, as shown in Section IV-C, the loss patterns of

WSNs do not satisfy these prerequisites.

To address the above challenges, effective environment

reconstruction of WSN data require considering massive data

loss as well as studying WSN-specific loss patterns.

III. PROBLEM FORMULATION

A. Environmental Data Reconstruction

Rebuilding the virtual environment (such as the dynamic

temperature, light, humidity, gas concentration, or magnetic

strength in real world) in cyber space based on the sensory

data is called environment reconstruction.

In environment reconstruction systems, sensor nodes are

scattered in the given area. They sense and report data to the

sink periodically over a given time span. Suppose totally n
sensor nodes are deployed. The monitoring period includes t
time slots. Each sensor node is required to report its sensory

data once per time slot through wireless transmission. x(i, j)
denotes the sensory data of node i at time slot j, where

i = 1, 2 · · ·n and j = 1, 2 · · · t.
Definition 1 Environment Matrix (EM): is a mathematical

method to describe the dynamic environment. EM is defined

by X = (x(i, j))n×t.
Thereby, EM is a matrix constituting of n rows and t

columns. A complete EM represents that every data points

in the matrix are validly collected data, i.e., no missing data

points.

Definition 2 Binary Index Matrix (BIM): is an n × t
matrix, which indicates if a data point in an EM is missing.

BIM is defined by:

B = (b(i, j))n×t =
{

0 if x(i, j) is missing,

1 otherwise.
(1)

Definition 3 Sensory Matrix (SM): is an n × t matrix,

which records the raw data collected from WSN. Due to the

presence of missing data, elements of SM are either x(i, j)
gathered by WSN or zero (data loss).

Thereby, SM is an incomplete EM. SM is denoted by S and

can be presented by the element-wise production of X and B,

S = X ·B, (2)

B. Problem Statement

Data reconstruction is to rebuild the real environment (EM)

based on the gathered sensory data (SM).

Definition 4 Reconstructed Matrix (RM): is generated by

interpolating the missing values in an SM to approximate EM.

RM is denoted by X̂ = (x̂(i, j))n×t.
Problem: Environment Reconstruction in Sensor Net-

work (ERSN): Given an SM S, the ERSN problem is to find

an optimal RM X̂ that approximates the original EM X as

closely as possible. i.e.,

Objective: min||X − X̂||F ,
Subject to: S,

(3)

where || · ||F is the Frobenius norm used to measure the error

between matrix X and X̂ . For calculating, take EM X as an

example, ||X||F =
√∑

i,j(x(i, j))
2.
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TABLE I
THE RATIO OF DATA LOSS IN REAL DATASETS

Data Name Nodes Time Interval Data Loss Ratio
Intel Indoor 54 30 seconds 23%
GreenOrbs 450 10 minutes 35%

Ocean Sense 20 2 minutes 64%

In the ERSN problem, the objective is to minimize the

absolute error. In order to measure the error of reconstruction

in different scenarios among different methods, we further

define the following metric.

Definition 5 Error Ratio (ER): is a metric for measuring

the reconstruction error after interpolation:

ε =

√∑
i,j:b(i,j)=0(x(i, j)− x̂(i, j))2√∑

i,j:b(i,j)=0(x(i, j))
2

. (4)

Note that the condition b(i, j) = 0 in Eqn. (4) indicates that

only errors on the missing data are counted.

IV. DATA LOSS IN SENSOR NETWORKS

A. Environmental Datasets

In this section, we analyze the data loss in real WSN

datasets. The analysis is based on three datasets gathered by

Intel indoor experiment, GreenOrbs, and OceanSense projects.

The data of Intel indoor experiment [10] are gathered by

Intel Berkeley Research lab from February 28th to April 5th,

2004. There are 54 Mica2Dot nodes placed in a 40m×30m

room. Every node reports once every 30 seconds. Sensory data

include temperature, light, and humidity.

GreenOrbs project [17] is a real WSN application for forest

surveillance from 2008 to present. More than 450 TelosB

nodes are scattered on the Tianmu Mountain, China and gather

temperature, light, and humidity once every 10 minutes.

Ocean Sense project [24] carried out by Ocean University of

China. This dataset contains 20 TelosB nodes deployed in the

sea of Taipingjiao, China from 2007 to present, monitoring an

area of 300m×100m. Each sensing node reports temperature

and light data every 2 minutes.

B. Massive Data Loss

Through statistics analysis, we verify that the significant

data loss exists in all of these original datasets.

We investigate totally 54 nodes and 84600 time slots (one

month) data from Intel Indoor dataset. 23% data points are

missing. The GreenOrbs dataset also observes 35% data loss.

And this loss is even larger in OceanSense, which is about

64% for 20 nodes and 5040 time slots (one week). The basic

information of three datasets and their data loss ratios are listed

in Table I. We find that the data loss is common and significant

in real WSNs.
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Fig. 1. Data loss patterns in WSN. The tessellations illustrate the sensory
matrix. The black cells represent the elements of missing data.

C. Data Loss Pattern

Traditional work usually assumes that the data loss follows

a random distribution [14], [26]. However, this claim does not

apply to the WSN situation. According to the nature of WSN,

we synthesize several typical data loss patterns.

Pattern 1 Element Random Loss (ERL): This is the

simplest loss pattern. Data elements in the matrix are dropped

independently and randomly. As shown in Fig. 1(a), the

missing data for ERL are randomly distributed in the SM.

The noise and collision [11] in WSN are the root cause of

random element loss.

Pattern 2 Block Random Loss (BRL): Data from adjacent

nodes in adjacent time slots are dropped independently and

randomly. In WSN, congestion [8] always causes data loss on

high-density sensor nodes during a period of time. Fig. 1(b)

visualizes this scenario.

Pattern 3 Element Frequent Loss in Row (EFLR):

Unreliable links [23] are common phenomenon in real wireless

scenarios. When the quality of link state is not good, sensory

data are prone to loss due to the intermittent transmission. As

shown in Fig. 1(c), in EFLR, elements in some particular rows

have a higher missing probability.

Pattern 4 Successive Elements Loss in Row (SELR): This

pattern models that a given node starts losing from a particular

time slot. This type of loss occurs when some sensor nodes

are damaged or run out of energy [20], which is made visible

by Fig. 1(d).

Pattern 5 Combinational Loss (CL): In real world, data

loss always happens as a combination of some loss patterns

above.

V. ENVIRONMENTAL DATA MINING

In order to discover the environmental features, the complete

datasets are always desired. However, we cannot directly

derive EMs from the three original datasets since they all

observe considerate data loss. To generate EMs, we perform
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Fig. 2. Selecting the red parts from the original dataset to consist a small
but completed dataset for environmental features analysis.

TABLE II
SELECTED DATASETS FOR ENVIRONMENTAL FEATURES ANALYSIS

Data Name Matrix Size Time Interval
Intel Indoor 49 nodes × 149 intervals 90 seconds
GreenOrbs 281 nodes × 170 intervals 10 minutes

Ocean Sense 10 nodes × 42 intervals 30 minutes

preprocessing (as demonstrated in Fig. 2) that selects com-

plete subset from these three datasets. As a result, six EMs

are generated from preprocessing: indoor temperature, indoor

light, forest temperature, forest light, ocean temperature, and

ocean light.

A. Low-Rank Structure Discovery

Environmental data of different locations over different

times are not independent. There exists inherent structure or

redundancy. We mine these features in above real dataset

by using Principal Component Analysis (PCA), which is an

effective non-parametric technique for revealing sometimes

hidden, simplified structure that often underlies a dataset [13].

Any n× t matrix X can be decomposed into three matrices

according to Singular Value Decomposition (SVD):

X = UΣV T =

min(n,t)∑
i=1

σiuiv
T
i , (5)

where V T is the transpose of V , U is an n×n unitary matrix

(i.e., UUT = UTU = In×n), V is a t× t unitary matrix (i.e.,
V V T = V TV = It×t), and Σ is an n×t diagonal matrix con-

straining the singular values σi of X . Typically, the singular

values in Σ are sorted, i.e., σi ≥ σi+1, i = 1, 2, · · ·min(n, t),
where min(n, t) is the number of singular values. The rank of

a matrix, denoted by r, is equal to the number of its non-zero

singular values. If r << min(n, t), the matrix is low-rank.

In Eqn. (5) the singular value σi also indicates the energy

of the i-th principal component. The total energy is equal to

the sum of all singular value
∑min(n,t)

i=1 σi. According to PCA,

a low-rank matrix [25] exhibits that its first r singular values

occupy the total or near-total energy
∑r

i=1 σi ≈
∑min(n,t)

i=1 σi.
In Fig. 3(a), we illustrate the distribution of singular values

in 6 EMs. The X-axis presents the i-th singular values. Since

the scales of 6 EMs are different, we normalize the X-axis.

So min(n, t) of every EM is normalized to 100%. The Y-

axis presents the values of i-th singular value. Due to the

same reason of X-axis, the Y-axis is also normalized. i.e.,
max(σi) of every EM is normalized to 1. This figure suggests

that the energy is always contributed by the top several

singular values in real environments. For example, the top

5% singular values contribute all energy in Indoor-Temp; the

top 12% σi include all energy in Forest-Temp; and even in

the worst case of Ocean-Light, the top 25% singular values

contribute the most of energy. The universal existence of∑r
i=1 σi ≈ ∑min(n,t)

i=1 σi and r << min(n, t) reveals that

EMs exhibit obvious low-rank structures. Low-rank features

[14] serve for the prerequisite for using compressive sensing.

B. Temporal Stability Feature

In real world, most of measured data (e.g., temperature)

usually change stably, i.e., there is little mutation on envi-

ronmental value between adjacent time slots. On the basis

of this natural phenomenon, we analyze the datasets in time

dimension to reveal temporal features.

We measure the temporal stability at node i and time slot

j by computing the normalized difference values between

adjacent time slots Δx(i, j):

Δx(i, j) =
|x(i, j)− x(i, j − 1)|

max(|x(I, J)− x(I, J − 1)|) , (6)

where I varies from 1 to n, J varies from 1 to t, and

max(|x(I, J)−x(I, J−1)|) is the maximal difference between

any two consecutive time slots in the EM.

The CDF of Δx(i, j) is plotted in Fig. 3(b). The X-

axis presents the normalized difference values between two

consecutive time slots, i.e., Δx(i, j). The Y-axis presents the

cumulative probability. We observe that > 80% in the Forest

datasets, > 60% in the Indoor datasets, and > 50% in the

Ocean-Temp, the value of Δx(i, j) is 0. i.e., the environmental

value is not changed between two consecutive time slots. In

addition, near all (> 95%) Δx(i, j) are very small (< 0.05)

in Forest and Indoor datasets. Even in the worst case, the

ocean-light values between two consecutive time slots mostly

(> 80%) change only a little (< 0.3). These results indicate

that temporal stability exists in real environments. Based on

this discovery, we can adopt the time feature to optimize the

compressive sensing technique for missing data estimation.

C. Spatial Correlation Feature

We also consider the difference value from the space

dimension. We know that environments are often smooth in

a small area, i.e., at the same time, environmental values are

similar at nearby locations.

In real WSN applications, the locations of nodes can either

be known [17] or unknown [24]. Generally, it is not easy

to know the actual distance between nodes from a WSN

without GPS information. Although physical distance may not

be available, the network topology is always easy to obtain.

The topology can be known from the routing information when

the sink gathers sensory data from nodes. Constrained by the

wireless power, sensors are usually located near their one-

hop neighbors. First, Topology Matrix for One-Hop (TM-1H)

nodes H is defined as:
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Fig. 3. Environmental features mining from the selected datasets.

H = (h(y, z))n×n =

{
1 if y and z are 1-hop neighbors;

0 otherwise,
(7)

where y = 1, 2, · · · , n, z = 1, 2, · · · , n. Both rows and

columns in a TM-1H represent sensor nodes, and h(y, z) rep-

resents whether the node y and node z are one-hop neighbor or

not. The TM-1H demonstrates the binary relationship between

nodes, so H is an n× n symmetry matrix.

Then, the spatial correlation at node i and time slot j is

measured by computing the normalized difference between

the value of a node and the average value of its all one-hop

neighbors �x(i, j):

�x(i, j) =
x(i, j)− (H(i)X

(j)/
∑

H(i))

max(x(I, J))−min(x(I, J))
, (8)

where H(i) is the i-th row of matrix H , X(j) is the j-th column

of matrix X . H(i)X
(j) depicts the sum values of all one-

hop neighbors of node i at time slot j.
∑

H(i) represents the

number of one-hop neighbors of node i. max(x(I, J)) and

min(x(I, J)) are the maximum and minimum environmental

value in the EM, and max(x(I, J))−min(x(I, J)) stands for

the maximal difference value.

The CDF of �x(i, j) is plotted in Fig. 3(c). The X-axis

presents the normalized difference between value of one node

and the average value of its all one-hop neighbors, i.e.,
�x(i, j). The Y-axis presents the cumulative probability. We

find that no matter in which dataset, > 95% the value of

�x(i, j) is < 0.3. These results imply that real environments

also have the feature of spatial correlation, i.e., the value of

a node is similar to the value of its neighbors. Thus, the

compressive sensing based estimation approach can be also

optimized by space feature.

VI. ENVIRONMENTAL SPACE TIME IMPROVED

COMPRESSING SENSING (ESTI-CS) APPROACH

We propose a novel missing data estimation approach to

address ERSN problem. The proposed algorithm, namely en-
vironmental space time improved compressive sensing (ESTI-

CS), takes into consideration the spatio-temporal features to

optimize the estimation accuracy.

A. Compressive Sensing Based Approach Design

Compressive sensing, which can tolerate high data loss, is

a potential approach for ERSN. Mathematically, CS based

approach can only be applied to sparse matrices. Furthermore,

a low-rank matrix can be well approximated by a sparse

matrix. Since we have revealed the low-rank structure in most

real environment datasets, we propose to use CS method to

estimate missing data from SM.

The goal of solving ERSN problem is to estimate X̂ .

According to Eqn. (5), any matrix can be decomposed by SVD

into
∑min(n,t)

i=1 σiuiv
T
i . Through the inverse process, we can

also create a r-rank approximation X̂ by using only the r
largest singular values and abandoning the others:

r∑
i=1

σiuiv
T
i = X̂. (9)

This X̂ is known as the best r-rank approximation that min-

imizes the error measured by Frobenius norm. Nevertheless,

the optimal X̂ cannot be obtained directly by this way as we

do not know matrix X and the proper rank in advance.

Thus we propose to find X̂ as follows:

Objective: min(rank(X̂)),

Subject to: B · X̂ = S.
(10)

We make this assumption according to two reasons. On the

one hand, since RM is generated from SM, it is reasonable to

be as close as SM. On the other hand, like EM, RM should

also have a low-rank structure. Given this, it is still difficult

to solve this minimization problem because it is non-convex.

To bypass this difficulty, we take advantage of the SVD-like

factorization, which re-writes Eqn. (5) as:

X̂ = UΣV T = LRT , (11)

whereL = UΣ1/2 andR = V Σ1/2. Substituting Eqn. (11) to

Eqn. (10), we can solve the minimization problem according

to the compressive sensing theory in [5], [7]. Specifically, if

the restricted isometry property holds [19], minimizing the

nuclear norm can result to rank minimization exactly for a

low-rank matrix. Hereby, we just need to find matrix L and
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R that minimize the summation of their Frobenius norms:

Objective: min(||L ||2F + ||RT ||2F )
Subject to: B · (LRT ) = S,

(12)

Looking forL and R that strictly satisfy Eqn. (12) is likely

to fail due to two reasons. First, real EMs usually approximate

low-rank but not exact low-rank. Second, noises in sensory

data may lead to the over-fitting problem if strict satisfaction

is required. Thus, instead of solving Eqn. (12) directly, we

solve the following equation using the Lagrange multiplier

method:

min(||B · (LRT )− S||2F + λ(||L ||2F + ||RT ||2F )), (13)

where the Lagrange multiplier λ allows a tunable tradeoff

between rank minimization and accuracy fitness. This solution

provides the low-rank approximation but not strict satisfaction.

In Eqn. (13), 1) B and S are known, 2) any || · ||2F is non-

negative, 3) the optimal values approximate 0 by minimizing

all non-negative parts. Hence, L and R can be estimated in

this optimization problem under the tuning of λ.

B. Environmental Spatio-Temporal Improvement

ESTI-CS includes two key components: 1) compressive

sensing based method for estimating massive missing val-

ues and 2) environmental spatio-temporal improvement for

increasing the accuracy against diverse loss patterns. On the

one hand, the compressive sensing method relies on the low-

rank structure. On the other hand, after exploiting the temporal

stability and spatial correlation features, we complete ESTI-CS

approach by developing Eqn. (13) as following:

min(||B · (LRT )− S||2F + λ(||L ||2F + ||RT ||2F )
+||HLRT ||2F + ||LRT

T||2F ),
(14)

where H and T are the spatial and temporal constraint ma-

trices respectively. We set ||HLRT ||2F , ||LRT
T
T ||2F , and

||B · (LRT ) − S||2F to be equal in the similar order of

magnitude, otherwise, they may overshadow the others when

solving Eqn. (14).

Temporal stability improvement: The temporal constraint

matrix T captures the temporal stability feature, which outlines

that the change between two consecutive time slots is small.

Hence, we set T = Toeplitz(0, 1,−1)t×t. The Toeplitz matrix

is defined with central diagonal given by 1, and the first upper

diagonal given by -1, and the others given by 0. i.e.,

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1
. . .

...

0 0 1
. . . 0

...
...

. . .
. . . −1

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
t×t

. (15)

This Toeplitz matrix adds the temporal constraint into the

estimation. Importing ||LRT
T||2F into Eqn. (14) is equal to

induct an additional constraint into the original optimization

problem. Since the temporal constraint is an inherent feature of

environment, this additional constraint can filter more noises

and errors in LRT estimation.

Spatial stability improvement: The spatial constraint ma-

trix H captures the spatial correlation feature, which reveals

that values among one-hop neighbors nodes are usually sim-

ilar. Hence, we set H to be a row-normalized H∗, where

H∗ = H + D. The matrix H is a TM-1H, i.e., the one-

hop topology matrix mentioned before. And D is an n × n
diagonal matrix, which is defined with central diagonal given

by diag(d1, d2, . . . dn), and the others given by 0. In D,

di = −∑H(i). e.g., if there is a TM-1H:

H =

⎡
⎢⎢⎣

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

⎤
⎥⎥⎦ , (16)

then,

H∗ = H +D =

⎡
⎢⎢⎣

−2 1 0 1
1 −3 1 1
0 1 −1 0
1 1 0 −2

⎤
⎥⎥⎦ , (17)

thus, the corresponding spatial constraint matrix is:

H =

⎡
⎢⎢⎣

1 −1�2 0 −1�2
−1�3 1 −1�3 −1�3

0 1 −1 0
−1�2 −1�2 0 1

⎤
⎥⎥⎦ . (18)

The spatial correlation constraint is added by the matrix H.

Computing the result of HX is to get the matrix of differences

between the elements and the average value of their one-hop

neighbors in X . As the same purpose of time improvement

part, we introduce the part of minimizing ||HLRT ||2F into

Eqn. (14). It also takes advantage of the inherent environment

feature as an additional constraint in optimization problem,

which leads to a more accurate estimation of LRT , i.e., X̂ .

C. ESTI-CS Algorithm

We propose an efficient ESTI-CS algorithm to solve the

estimation in the optimization problem Eqn. (14). The detail

pseudo code of this algorithm is shown in Algorithm 1.

First, we scale the T and H as all || · ||F2 in Eqn. (14)

have the similar order of magnitude. Hence, they will not

overshadow each other when optimizing. The scaling method

is similar to [25]. Then ESTI-CS algorithm solves the opti-

mization in an iterative manner. L is initialized randomly, so

R can be computed by solving the following contradictory

equation: [
B · (LRT )√

λRT

]
=

[
S
0

]
. (19)

This equation can be rewritten as:[
Diag(B(i)) ∗LRT

(i)√
λRT

(i)

]
=

[
S(i)

0

]
, (20)

where i ranges from 1 to t. This is a combination of mul-

tiple standard linear least squares problems. We then have
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Algorithm 1 ESTI-CS algorithm

Input:
Sn×t: sensory matrix
Bn×t: binary index matrix
r: rank bound
λ: tradeoff coefficient
MaxIter: iteration times

Output:
X̂n×t: estimated environment matrix

Main procedure:
1: L ← random matrix(n, r);
2: for 1 to MaxIter do
3: R ← myInverse(B,L , λ, r, S)
4: L ← myInverse(BT ,RT , λ, r, ST )
5: v ← ||B · (LRT ) − S||2F + λ(||L ||2F + ||RT ||2F ) +

||HLRT ||2F + ||LRT
T
T ||2F

6: if v < v̂ then
7: L̂ ← L ; R̂ ← R; v̂ ← v;
8: end if
9: end for

10: X̂ ← L̂ R̂T ;
11: return X̂;

// return solution to contradictory equation
Procedure Y=myInverse(B,L,λ,r,S):

1: for i=1 to t do
2: Pi ← [Diag(B(:, i)) ∗L ;

√
λ ∗ Ir]

3: Qi ← [S(:, i);0r]
4: Y (:, i) = (PT

i ∗ Pi)\(PT
i ∗Qi)

5: end for
6: return Y ;

RT
(i) = (PT

i Pi)\(PT
i Qi), where Pi = [Diag(B(i))∗L ;

√
λIr]

and Qi = [S(i);0r]. This procedure is reflected by the

subfunction myInverse in the pseudo code. Similarly, L
can be computed by fixing RT . This process repeats until the

optimal value is reached.

We analyze the complexity of the ESTI-CS algorithm. The

key operation is the procedure for computing the inverse

matrix, which provides the best approximate solution to the

contradictory equation. This procedure is completed by a

matrix multiplication. Thus, its time complexity is O(rnt).
Since ESTI-CS repeats the procedure for k times, the total

complexity is O(rntk). From our evaluation experience in

Section VII, L and RT converge after 5 iterations.

D. Design Optimization

There are two parameters in ESTI-CS algorithm, i.e., rank

bound r and tradeoff coefficient λ. These two parameters

influence the quality of X̂ estimation. The genetic algorithm

in [14] is adopted to derive the optimal rank bound r and

tradeoff coefficient λ. ER is served as fitness in that algorithm.

The optimal parameters will be obtained when the fitness is

stalled after several generations.

VII. PERFORMANCE EVALUATION

A. Methodology

The proposed ESTI-CS approach is compared with existing

algorithms for missing data interpolation for environmental

reconstruction in WSN.

Since the performance evaluation needs complete EMs X
to compute ER, in our experiment, we use the pre-processed

datasets as shown in Table II. Six EMs are adopted: indoor-

temp, indoor-light, forest-temp, forest-light, ocean-temp and

ocean-light.

To verify the effectiveness ESTI-CS, we choose other

classic interpolation methods for comparison. They are com-

pressive sensing (CS) [14], Delaunay Triangulation (DT) [12],

Multi-channel Singular Spectrum Analysis (MSSA) [26], and

K-Nearest Neighbor (KNN) [6]. The parameter K in KNN is

set to be
∑n

i=1 H(i)/n. The parameter M in MSSA is set to

32 as suggested by [26].

The procedure of simulation is: 1) Generate BIM B accord-

ing to four loss patterns. 2) Compute SM S according to Eqn.

(2) S = X · B. 3) All interpolation algorithms being tested

take SMs as input and generate RMs. 4) The accuracy metric

ER is computed for all these algorithms and datasets. And

finally, these errors are compared for performance evaluation.

Two series of experiments are evaluated. The basic experi-

ment measures the performance of different algorithms against

typical random loss probability. And the second experiment

evaluates the performance in diverse loss patterns.

B. Performance Analysis: Basic Comparison

In the basic comparison, we test the error ratios among

algorithms on the element random loss (ERL) pattern. The

data loss rate pERL ranges from 10% to 90%. If the loss

rate is 0, i.e., the dataset is complete, it is unnecessary to be

interpolated. If the loss rate is raised to 100%, i.e., all data are

lost, no methods can work.

Fig. 4 shows basic comparison results. The X-axis presents

the data loss probability, and the Y-axis is the value of ER. In

general, ER increases with the data loss rate.

In the indoor-temp, ESTI-CS shows the best performance.

Even 90% data have been lost, ESTI-CS still can reconstruct

the environment with ER≤ 10%. While ER of CS is about

19%, DT is close to 38%, and ER of KNN and MSSA are

more than 60%. ESTI-CS is much better than other algorithms

in this scenario. In the indoor-light, ESTI-CS still outperforms

the others, but the advantage is less significant than that in

indoor-temp. The reason is that the indoor temperature change

has strong spatio-temporal feature. However, the change of

indoor light is largely influenced by the light switch. So

the indoor light dataset observes more artificial changes than

spatio-temporal stability.

The performance of Forest-Temp and the Forst-Light are

similar. ESTI-CS achieves the best environment reconstruction

among the five algorithms. CS, MSSA and DT fall behind

ESTI-CS a little. KNN is not bad when pERL < 50%, but

when pERL > 50%, ER of KNN increases quickly.

In the ocean-temp, ESTI-CS and DT produce the similar

performance. When the data loss is 90%, they achieve ER<
30%. Meanwhile, the ERs of CS, KNN and MSSA are bigger.

In the ocean-light, the performance of ESTI-CS and DT are

similar with the range of loss rate from 10% to 80%. When the

loss rate increases to 90%, ER of DT also increases rapidly,
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Fig. 4. Error ratio performance of five algorithms in the basic data loss pattern: element random loss.
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Fig. 5. Error ratio performance in different loss patterns.

and ER of ESTI-CS still keeps within 22%. These two figures

indicate that ESTI-CS and DT perform better than CS, KNN

and MSSA in this outdoor and small-scale WSN scenario.

Overall, ESTI-CS obtain lower interpolation error, which

can be used in almost all tested datasets with different loss

ratios. KNN and DT produce similar but the poor ER perfor-

mance, because both of them interpolate with only the space

relation among nodes but no time relation consideration. CS

and MSSA are better than KNN and DT, but still worse than

ESTI-CS. Especially, at the high data loss cases (data loss

≥ 80%), ESTI-CS exhibits an evident advantage over other

algorithms. In all dataset, ESTI-CS can successfully achieve

an environment reconstruction with 20% error when there are

90% data are missing.

C. Performance Analysis: Data Loss Patterns Comparison

In Fig. 5, we plot the comparison histograms of five algo-

rithms for reconstructing the environment with four different

data loss patterns.

In the simulation for BRL pattern, each of the six EMs is

set to lose data with the block pattern as shown in Fig. 1(b).

The scale and the number of the blocks are random, but

the amount of total data loss is 50% in this simulation. In

Fig. 5(a), most algorithms in most EMs perform not well. For

example, in forest-light, ER of all algorithms are bigger than

60%. The reasons are 1) in the forest, many shadows disturb

the spatio-temporal stability. 2) if large blocks of data lose,

spatio-temporal optimized estimation is helpless either. These

two reasons lead to the result. However, in indoor-temp, ocean-

temp, and ocean-light, the environment changes are smoothly,

ER of ESTI-CS are less than 5% despite 50% BRL data loss.

Even indoor-light, forest environments, ESTI-CS is still a bit

better than the others. In addition, we find that KNN is in big

trouble for estimating the missing data in BRL.

In the simulation of EFLR pattern, the rows are randomly

selected, the loss frequency in these rows is set > 75%, and the
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totally lose data in matrix is set 50%. We find that the results

in Fig. 5(b) are close to the basic comparison, because the data

loss in EFLR is similar to ERL pattern. In EFLR, the temporal

optimization can contribute a partial effect, but the space

optimization still works. So our ESTI-CS still outperforms CS,

KNN, DT, and MSSA.

In the simulation of SELR pattern, the starting points are

randomly selected, and then all elements after the starting

points in those rows are lost as shown in Fig. 1(d). The

total amount of data loss is set to be 50%. The results of all

algorithms are between those in EFLR and BRL. For ESTI-

CS, these results are reasonable. The reason is that ESTI-CS

can only use space optimization, but the time optimization

has no effect due to elements lost in all time of a node.

Note that all algorithm plays not well for ocean-light in this

simulation. Since the scale of ocean-light is small, after some

additional rows are lost, it becomes smaller, which is hard to

be estimated.

In the simulation of Combinational Loss pattern, we set

20%ERL+10%BRL+10%EFLR+10%SELR. The results of

five algorithms are shown in Fig. 5(d). The ER of ESTI-CS is

≤ 20% in any dataset in the combinational loss pattern.

In summary, ESTI-CS outperforms CS, KNN, DT and

MSSA in any data loss pattern.

VIII. CONCLUSION

In this paper, we studied the environmental data loss and

reconstruction problem in WSN. We verified the massive data

loss in real datasets and modeled the special data loss patterns

of WSN. Then, we mined the spatial, temporal, and low-rank

features from WSN datasets. By drawing on these observa-

tions, we designed the ESTI-CS algorithm to estimate the

missing data. The proposed algorithm combines the benefits

of compressive sensing and environmental space-time features.

Trace-driven experiments illustrated that ESTI-CS outperforms

existing interpolation methods. Notably, ESTI-CS can achieve

an effective reconstruction with 20% error in face of 90%

missing values in the original data.

There are three avenues for our future work. First, exploit

the correlations between multiple environmental factors to

further improve the accuracy of estimation. e.g., light and tem-

perature have compact correlation in many scenarios. Second,

study the tradeoff between the computation time and accuracy

in environment reconstruction. Third, data interpolation in

mobile sensor networks is also interesting and challenging.
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