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Abstract—In wireless sensor networks (WSNs), since many
basic scientific works heavily rely on the complete sensory data,
data recovery is an indispensable operation against the data
loss. Several works have studied the missing value problem.
However, existing solutions cannot achieve satisfactory accuracy
due to special loss patterns and high loss rates in WSNs.
In this work, we propose a multiple attributes-based recovery
algorithm which can provide high accuracy. Firstly, based on
two real datasets, the Intel Indoor project and the GreenOrbs
project, we reveal that such correlations are strong, e.g., the
change of temperature and light illumination usually has strong
correlation. Secondly, motivated by this observation, we develop
a Multi-Attribute-assistant Compressive-Sensing-based (MACS)
algorithm to optimize the recovery accuracy. Finally, real trace-
driven simulation is performed. The results show that MACS
outperforms the existing solutions. Typically, MACS can recover
all data with less than 5% error when the loss rate is less
than 60%. Even when losing 85% data, all missing data can
be estimated by MACS with less than 10% error.

I. INTRODUCTION

Wireless sensor networks (WSNs) [4][6] are widely used

to gather multiple attributes from the physical world and

reconstruct environmental data in the cyber world [17]. Such

data is significant for scientists to discover the physical world

around. For instance, scientists reveal the plant evolution based

on wind speed, air humidity and temperature data in the air

[10], and predict the eruption by the temperature and shake

data of volcano [12][9][18]. However, in WSNs, massive data

loss is common, e.g., 64% and 35% of the data are missing

in the Ocean Sense project [21] and the GreenOrbs project

[20], respectively. Hence, recovering these lost data with high

accuracy is challenging.

The high loss rates veil the time and spatial correlations.

Therefore classical interpolation methods, such as K-Nearest

Neighbors (KNN) [16], cannot provide a satisfactory result

due to the lack of one-hop neighbors. A recently proposed

compressive sensing approach, the Environmental Space Time
Improved Compressive Sensing (ESTI-CS) [8], can achieve

better accuracy. However, the low-rank and sparse features

are also effected in the massive data loss scenario where the

ESTI-CS experiences the increased estimation error.

We are aware of the following two facts. (1) Usually, WSNs

gather multiple attributes simultaneously, e.g., TelosB node

[20] senses three attributes: temperature, light illumination and

humidity. (2) Intuitively, one can expect that those attributes

are correlated. For instance, when the sun is arising, the

temperature and light illumination outdoor increase simulta-

neously. And the salinity of sea water also ties with the depth.

The empirical study [11] reveals that temperature, dewpoint

temperature and relative humidity have linear correlation. The

correlations among attributes can be used as the supplement

of the internal correlations and benefit the accuracy of the

estimation. Hereby, our technical route is how to mine and

exploit such correlations for the problem of missing data

recovery.

To address this problem, firstly, we study the characteristics

of real sensory data from the Intel Indoor project [7] and the

GreenOrbs project [20]. The low-rank feature of attributes is

revealed. And we propose a joint sparse decomposition method

in order to find the cross features among multiple attributes.

The energetic common part are found in the two correlated

attributes. Secondly, we design an algorithm, named MACS,

which can recover multi-attribute datasets jointly, using their

correlation. Thirdly, we simulate the proposed approach on

real data. We compare MACS with the classical and state-of-

the-art methods such as KNN and ESTI-CS.

Our contributions are summarized as following:

• To the best of our knowledge, this is the first work to

study the joint data recovery in WSNs.

• We design a novel algorithm, MACS, which is based on

compressive sensing theory.

• Real trace driven simulations are performed extensively.

The evaluation shows that MACS outperforms other

compared solutions.

The rest parts of this paper are organized as following. In

Section II, we present the related work. Section III shows

the problem formulation. Section IV mines the internal and

external features of attributes in WSNs. Section V proposes

our approach, MACS. The performance is evaluated in Section

VI. Section VII discusses the conclusion and future work.

II. RELATED WORK

Lots of works have contributed in missing data interpolation.

The most classic interpolation method is K-Nearest Neighbors

(KNN) [16], which utilizes the average value of neighbors to

estimate the missing data. This interpolation method performs

well in situations where there is a moderate number of missing
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values. As the loss rate grows, the estimation error increases

quickly due to the lack of one-hop neighbors.

Compressive Sensing (CS) [2][3] is currently an advanced

and powerful technique for estimating massive missing data.

There are a series of CS based solutions being used in different

fields, e.g., Distributed Compressive Sensing (DCS) [1][5] and

Multi-Task Compressive Sensing (MTCS) [15] are utilized

in the fields of signal processing and image processing. The

state-of-the-art CS based interpolation method, utilized in the

field of WSNs, is ESTI-CS [8]. ESTI-CS exploits the low-

rank feature and spatial-temporal feature from the sensory data

against the special loss patterns of WSNs. However, the low-

rank and sparse features are also affected in the massive data

loss scenario where the ESTI-CS experiences the increased

estimation error.

All above methods aim at missing value estimation based on

a single attribute. However, many physical attributes in nature

have strong correlations such as humidity and temperature

[11]. This work is to further improve the recovery accuracy

exploiting such correlations. To the best of our knowledge, this

is the first missing data recovery work using multiple attributes

in WSNs.

III. PROBLEM FORMULATION

A. Environment Data Recovery Problem

Suppose n nodes are deployed in an area, each of which

equips k sensors to measure attributes. The monitoring period

includes t time slots. The format of the data packet is as

following:

Sensor ID Time Stamp Attribute 1 Attribute 2 ...

Hereafter, let k attributes be denoted by Mi, i =
1, 2, · · · , k. Each Mi is a n × t matrix. Mi is usually an

incomplete matrix due to the data loss in WSNs. The available

information about Mi is a sampled set of entries (Mi)pq ,

(p, q) ∈ Ωi, where Ωi is a subset of the complete set of

entries in Mi. This process is represented by using a sampling

operator PΩ(·), which is defined as:

[PΩ(X)]ij =

{
Xij , (i, j) ∈ Ω;
0, otherwise.

(1)

Therefore, the matrices we obtain are PΩi(Mi), i = 1, · · · , k.

Our problem is to recover a series of matrices M1, · · · ,Mk

(complete environmental data) from their sampled matrices

PΩi(M1), · · · ,PΩi(Mk) (incomplete data gathered by WSN)

as precisely as possible, so-called Environment Data Recovery
(EDR) problem .

B. Problem Statement

Since we focus on exploiting the correlation among mul-

tiple attributes, multiple matrices are estimated jointly. For

simplicity, in the most parts of this paper, we discuss the EDR

problem under the situation of two attributes as an example.

Our analysis and approach can be easily extended to the case

of more attributes.

Formally, when k = 2, the problem is defined as follows:

Fig. 1. Filter the original dataset by selecting the red parts to construct a
small but completed dataset as the ground truth [8].

TABLE I
SELECTED DATASETS AS THE GROUND TRUTH

Data Name Matrix Size Time Interval
Intel Indoor 49 nodes × 149 intervals 1.5 minutes
GreenOrbs Temperature 281 nodes × 170 intervals 10 minutes

Give subsets of M1, M2 as PΩ1(M1), PΩ2(M2), find an

optimal solution as M̂1 and M̂2, i.e.,

minimize ||M̂1 −M1||F + μ||M̂2 −M2||F , (2)

subject to PΩ1(M̂1) = PΩ1(M1),

PΩ2(M̂2) = PΩ2(M2),

where || · ||F represents the Frobenius norm, which is used in

[19][8]. For instance, to a matrix X = (x(i, j))p×q , ||X||F =√∑
i,j(x(i, j))

2. Because the magnitudes of attributes are not

equal, which may cause one matrix overshadowing another, μ
is used a tradeoff coefficient.

IV. DATASETS IN SENSOR NETWORKS

In this section, we analyze the real datasets of WSNs and

discover several features of them, which are the foundations

for our data recovery approach.

A. Ground Truth

The original datasets are gathered from two projects,

GreenOrbs [20] and Intel Indoor [7]. After investigating the

raw data, the loss rates of these two datasets are 35% and 23%,

respectively. Hence, in order to obtain the ground truth, two

small but completed datasets are selected as shown in TABLE

I. The selection method is shown in Fig.1, which considers

the maximization of the integrality in both time and space.

Each dataset contains subsets of two attributes: temperature

and light illumination, which share the same selecting entries.

B. Low-rank Structure

Consider the fact that the readings of nearby sensors are

correlated and the readings in short time periods are close,

we mine the inherent structure or redundancy of environment

datasets.

The singular value decomposition (SVD) is adopted. The

SVD of a n× t matrix X is:

X = UΣV T =

min(n,t)∑
i=1

σiuiv
T
i , (3)

where σi ≥ σi+1, i = 1, · · · ,min(n, t), (·)T is the transpose

operator, U is a n × n orthogonal matrix, V is a t × t
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Fig. 3. Correlation analysis by joint sparse decomposition.

orthogonal matrix and Σ is a n× t diagonal matrix containing

all singular values σi of X. Suppose r = rank(X), so σi in

Σ = diag(σ1, · · · , σr, 0, · · · , 0).
The sum of all singular values represent the total energy of

X . According to [19], if a matrix X is low-rank, the sum of

its first r singular values occupy the total or near total energy,

i.e.,
∑r

i=1 σi ≈ ∑min(n,t)
i=1 σi. Fig.2 is a CDF to show the

distribution of singular values’ energy. The top 5% singular

values contain all energy in Indoor temperature and Indoor

light. The top 5% and 20% σi include 90% of energy in

GreenOrbs temperature and GreenOrbs light, respectively. The

above results show that rank minimization is suitable for our

data recovery problem.

C. Inter-Correlation between Attributes

The relationship usually exists among natural attributes. For

instance, the empirical study [11] reveals that temperature,

dewpoint temperature and relative humidity have linear corre-

lation under some special cases. However, in most cases, the

correlations cannot be directly measured as a simple function.

In order to exploit the relationship of attributes in a WSN,

we propose the joint sparse decomposition (JSD) to divide two

matrices into a common part and two individual parts. Suppose

M1 = (m
(1)
1 , · · · ,m(t)

1 ) and M2 = (m
(1)
2 , · · · ,m(t)

2 ). For

both column vector m
(k)
1 and m

(k)
2 , the goal is to split them,

TABLE II
LOW-RANK FEATURES AFTER JOINT SPARSE DECOMPOSITION

Data Name Matrix Name XX% σ contain 90% Energy
Intel Indoor U 14%

light/temperature Δ1 8%
Δ2 2%

GreenOrbs U 27%
light/temperature Δ1 28%

Δ2 21%

i.e.,
m

(k)
1 = u(k) + δ

(k)
1

m
(k)
2 = u(k) + δ

(k)
2

u(k) = Ψv(k)
(4)

where u(k) is the common part of m
(k)
1 and m

(k)
2 , which is

the multiplication of a certain basis Ψ (e.g., a wavelet basis)

and a sparse vector v(k). The individual parts are represented

by δ
(k)
1 , δ

(k)
2 , respectively. Furthermore, Eqn.(4) is rewritten in

a matrix formulation, i.e.,[
m

(k)
1

m
(k)
2

]
=

[
Ψ I 0
Ψ 0 I

]⎡⎣v
(k)

δ
(k)
1

δ
(k)
2

⎤
⎦ (5)

According to compressive sensing theory [2][3], it is able to

obtain (v(k)T , δ
(k)T
1 , δ

(k)T
2 )T by solving an l1-norm minimiza-

tion problem as following:

ϑ̂ = argmin
ϑ

||ϑ||1 s.t. m = Aϑ, (6)

where || · ||1 is the l1-norm, ϑ = (v(k)T , δ
(k)T
1 , δ

(k)T
2 )T , m =

(m
(k)T
1 ,m

(k)T
2 )T and A = (Ψ, I,0; Ψ,0, I). And then u(k)T ,

δ
(k)T
1 , and δ

(k)T
2 are calculated from ϑ.

Applying JSD onto every column vector, M1 and M2 are

decomposed, i.e.,
M1 = U +Δ1

M2 = U +Δ2
(7)

Fig.3 shows that the common part occupies bigger ratio

if two matrices have stronger correlation. For instance, when

JSD is operated on two same matrices, which have definitely

highest correlation, the common part contains 100% energy

and individual parts Δ1 = Δ2 = 0. Intuitively, in an outdoor

WSN, the sensory light and temperature have correlation. Fig.3

shows the common part of light/temperature in forest contains

29% of total energy, while the individual parts contain 35%
and 36%. We also verify JSD on two irrelevant matrices.

The common part of forest light and indoor light, where no

relationship exists, contains only 7%.

In addition, the low rank feature of matrices after JSD is

also revealed. As shown in TABLE.II, over 90% energy of

attributes are contained in the first 30% singluar values. This

means that the derived matrices of JSD still exhibit the low-

rank feature.

V. OUR APPROACH

To address the EDR problem, we propose a novel rela-

tive data estimation approach named Multi-Attribute-assistant
Compressive Sensing (MACS), which is designed to jointly

recover the attributes in a WSN.
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A. Approach Design

Normalization: In Eqn.(2), the choice of μ has a significant

effect on the accuracy of estimation. Since the relationship

between M1 and M2 is unknown, it is difficult to find the

best μ. To overcome the difficulty, a simple method is to

normalize each matrix, and then set μ = 1. The real maximum

value is possible to loss, hence we adopt the maximum value

in gathered datasets instead, i.e., for each sensory matrix

PΩi(Mi), max(PΩi(Mi)) is used on the normalization. This

operation is based on the observation that the natural attributes

changes gradually. In other words, the gap between maximum

values of the observed matrix and the original matrix is small

in terms of the magnitude, i.e., for i = 1, 2

max(Mi)−max(PΩi(Mi)) � max(Mi) (8)

Low-Rank Matrix Approximation: Eqn.(2) contains the

parameters M1 and M2, so the problem cannot be directly

solved. However, since the low-rank features are revealed

in Sec.IV, the problem is calculated by converting to a

rank minimization problem. Through the inverse process of

SVD, using k largest singular value of X, an optimal k-rank

approximation [8] of X under the Frobenius norm || · || of

errors can be obtained as X̂ =
∑k

1 σiuiv
T
i . In our problem,

this method is infeasible since we do not know the complete

Mi its proper rank. However, it is reasonable to assume that

estimated M̂i is low-rank due to the low-rank feature of the

original Mi. Thus the optimal Mi is evaluated by the problem:

min(rank(M̂i)), s.t. PΩi(Mi) = PΩi(M̂i).

Still two problems are up against us: (1) the rank calculating

operator rank(·) is not convex. (2) there is no connection

between M1 and M2.

To bypass the difficulty (1), we utilize SVD-like factoriza-

tion [8] as X̂ = LRT where L is a n×k matrix and R is a t×k
matrix, k is an approximation of the proper rank. According

to the progress of the matrix compressive-sensing literature

[14][19], rank minimization is exactly equivalent to the nuclear

norm minimization when a certain technical condition holds

on PΩ(·) (the restricted isometry property [14]). Further, if the

rank of X is less than the rank of LRT , min(rank(X̂)) is

equivalent to min(||L||2F + ||RT ||2F ).
Compressive Sensing-based Joint Matrix Decomposition:

To overcome the difficulty (2), we need to find the correlation

between M1 and M2, and then exploit it into finding an

optimal solution.

Through the joint sparse decomposition proposed in Sec.IV,

the correlation between two matrices can be revealed. Hence,

we separate the approximation M̂1 and M̂2 by JSD as:

M̂1 = Û + Δ̂1

M̂2 = Û + Δ̂2
(9)

Assume that Û , Δ̂1 and Δ̂2 are low-rank based on the low-

rank structure analysis in Sec.IV. The problem is reformulated

as:

minimize ||Û ||∗ + ||Δ̂1||∗ + ||Δ̂2||∗ (10)

subject to PΩ1(Û + Δ̂1) = PΩ1(M1)

PΩ2(Û + Δ̂2) = PΩ2(M2)

where || · ||∗ is the nuclear norm which is defined as the sum

of singular values, e.g., ||X||∗ =
∑r

i=1 σi(X).
Further more, by using SVD-like factorization into Û , Δ̂1

and Δ̂2, Eqn.(10) is rewritten as:

||LU ||2F + ||RT
U ||2F + ||L1||2F + ||RT

1 ||2F + ||L2||2F + ||RT
2 ||2F (11)

where LU , L1, L2 are n × r matrices and RU , R1, R2 are

t × r matrices. Moreover, Û = LUR
T
U , Δ̂1 = L1R

T
1 and

Δ̂2 = L2R
T
2 .

To avoid overfitting, we convert the problem to a non-

stationary optimization problem by using the Lagrange multi-

plier method, i.e.,

minimize ||PΩ1(LUR
T
U + L1R

T
1 )− S1||2F

+ ||PΩ2(LUR
T
U + L2R

T
2 )− S2||2F

+ λ(
∑
L

||Lj ||2F +
∑
R

||Rj ||2F ) (12)

where S1 = PΩ1(M1) and S2 = PΩ2(M2). The Lagrange

multiplier λ allows a tunable tradeoff between the rank mini-

mization and the accuracy fitness.
Eqn.(12) is solvable because (1) Ω1, Ω2, S1 and S2 are

known, (2) each || · ||2F is non-negative, (3) the optimal value

can be reached by minimizing all non-negative parts to zero.

Hence, M̂1 and M̂2 can be estimated by combining Eqn.(12)

with Eqn.(9).
Extension: Our approach is also suitable for the case of

more attributes. For instance, if three attributes is measured in

one WSN, represented as M1, M2 and M3. Similarly, rewrite

Eqn.(10) as following:

||Û ||∗ + ||Δ̂1||∗ + ||Δ̂2||∗ + ||Δ̂3||∗ (13)

where i = 1, 2, 3, M̂i = Û+Δ̂i. This Equation can be solved

by a similar method like Alg.1. In cases of more attributes, it

is able to extend Eqn.(10) by this way.

B. Algorithm
To solve the estimation in the optimization problem defined

by Eqn.(12), we propose an efficient algorithm. The detail of

this algorithm is shown in Alg.1.
The algorithm solves the optimization by a iterative manner.

First, all L and R matrices are initialized randomly except RU .

Fixing LU , RU can be calculated from other L and R matrices

by solving the equation:⎡
⎣PΩ1(LUR

T
U )

PΩ2(LUR
T
U )√

λRT
U

⎤
⎦ =

⎡
⎣S1 − L1R

T
1

S2 − L2R
T
2

0

⎤
⎦ (14)

this equation is solvable by calculating each line. Rewrite it

as: ⎡
⎣PΩ1(LU )(i)R

T
U(i)

PΩ2(LU )(i)R
T
U(i)√

λRT
c(i)

⎤
⎦ =

⎡
⎣(S1 − L1R

T
1 )(i)

(S2 − L2R
T
2 )(i)

0

⎤
⎦ (15)
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Algorithm 1 MACS Algorithm

Input:
Ω1 and Ω2: sensory entry set
S1 and S2: incomplete sensory data
r: rank estimation of M1 and M2

λ: tradeoff coefficient
k: iteration times

Output:
M̂1 and M̂2: estimated environment matrices

Main Procedure:
1: Normalization
2: α1 ← max(S1); α2 ← max(S2);

S1 ← S1./α1; S2 ← S2./α2;
3: Approximation
4: LU ← rand(n, r); L1 ← rand(n, r); L2 ← rand(n, r);
5: R1 ← rand(r, t); R2 ← rand(r, t);
6: for 1 to k do
7: A1 = S1 − PΩ1(L1R

T
1 );A2 = S2 − PΩ2(L2R

T
2 );

8: RU ← crossInverse(Ω1,Ω2, LU , λ, r, A1, A2)
9: LU ← crossInverse(ΩT

1 ,Ω
T
2 , RU , λ, r, A

T
1 , A

T
2 )

10: B1 = S1 − PΩ1(LUR
T
U );B2 = S2 − PΩ2(LUR

T
U );

11: R1 ← singleInverse(Ω1, L1, λ, r, B1)
12: L1 ← singleInverse(ΩT

1 , R1, λ, r, B
T
1 )

13: R2 ← singleInverse(Ω2, L2, λ, r, B2)
14: L2 ← singleInverse(ΩT

2 , R2, λ, r, B
T
2 )

15: v ← Eqn.(12)
16: if v < v̂ then
17: L̂U ← LU ; R̂U ← RU ; L̂1 ← L1; R̂1 ← R1; L̂2 ←

L2; R̂2 ← R2; v̂ ← v;
18: end if
19: end for
20: M̂1 ← α1(L̂U R̂U

T
+ L̂1R̂1

T
)

21: M̂2 ← α2(L̂U R̂U
T
+ L̂2R̂2

T
)

Procedure Y = singleInverse(Ω, L, λ, r, S):
1: for i=1 to t do
2: Pi ← [PΩ(L)(:, i);

√
λ ∗ Ir]

3: Qi ← [S(:, i);0r]
4: Y (:, i) = (PT

i ∗ Pi)\(PT
i ∗Qi)

5: end for
Procedure Y = crossInverse(Ω1,Ω2, L, λ, r, S1, S2):

1: for i=1 to t do
2: Pi ← [PΩ1(L)(:, i);PΩ2(L)(:, i);

√
λ ∗ Ir]

3: Qi ← [S1(:, i);S2(:, i);0r]
4: Y (:, i) = (PT

i ∗ Pi)\(PT
i ∗Qi)

5: end for

where i ranges from 1 to t. Eqn.(15) can be treated as a

linear least square problem. RU can be obtained by the inverse

procedure given in Alg.1 as crossInverse. And LU can be

computed using the same procedure by fixing RU .

Li and Ri are obtained by a similar procedure, which is

defined in singleInverse as the pseudo code.

Moreover, in Alg.1, the rank approximation r and the

lagrange tradeoff coefficient λ are significant influential in the

accuracy of estimation. Hence, λ is tuned by the method in

[13]. And our evaluation uses r = 20%min(n, t), since 20%
singular values contributes to over 90% energy in the datasets.

The complexity of the algorithm is O(rntk). Because the

key operation in Alg.1 is the inverse computation, whose

complexity is O(nrt) [8], and the algorithm iterates k times.

VI. PERFORMANCE EVALUATION

A. Methodology

Performance evaluation is based on real-trace driven simu-

lation.

Ground Truth: The real trace includes the temperature and

light illumination attributes from GreenOrbs and Intel Indoor

projects. In Sec. IV-A, we have presented the method to obtain

the ground truth from raw data in detail.

Compared Methods: To verify the effectiveness of our

approach, two methods for missing data recovery in WSNs

are chosen for comparison. They are the classical interpolation

method, K-Nearest Neighbor (KNN) [16], and the state-of-the-

art method, Environmental Space Time Improved Compressive

Sensing (ESTI-CS) [8].

Metric: To compare results evaluated from different matri-

ces, the error rate of approximation under the Frobenius norm,

err(M̂,M,Ω), is applied [13], which is defined as:

err(M̂,M,Ω) =
||PΩ(M)− PΩ(M̂)||2F

||PΩ(M)||2F
(16)

where Ω is the complementary set of Ω.

Procedure: The procedure of simulation is as following:

1) Randomly lose the data from the ground truth to simu-

late the gathered data in WSNs. Generate the subset Ω
from the random loss pattern and then set Ω1 = Ω2 = Ω.

The quantity of data loss is from 20% to 90%.

2) Using datasets of two physical attributes, compute

PΩ(M1) and PΩ(M2).
3) PΩ(M1) and PΩ(M2) serve as the inputs of the estima-

tion algorithms including KNN, ESTI-CS, and MACS,

separately or together. Then we obtain the approxima-

tions of M1 and M2 as M̂1 and M̂2.

4) Compare the performance of the algorithms on the error

rate defined by Eqn.(16).

B. Simulation Results

In Fig.4, we plot the comparison result of three algorithms in

the case of two attributes. According to the simulation, MACS

can obtain less than 5% error rate under the loss rate less than

60%, where ESTI-CS can provide 10% and KNN performs

worse. Even in high loss rate (80%), the error rate of MACS

is still less than 10%. The main reason is that MACS uses

the correlation between two attributes. Hence, the accuracy of

estimating missing values increases if the correlation exists.

And even when there are no relation between two attributes,

the performance of MACS is as equal as ESTI-CS.

The recovery accuracy of the temperature is higher than

the one of the light illumination. The main reason is that the

temperature in outdoor WSNs changes slowly and has small

amplitude, which leads to its strong time and space stabilities

benefiting estimation methods. While the accuracy of light

illumination in GreenOrbs is a little weak, the reason is that

light illumination varies considerably in nature.

As shown in Fig.4, the estimation performance of KNN is

barely satisfactory and reduces quickly as the increasing of
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Fig. 4. The accuracy of missing value estimation methods.

data loss rate. The possible reason is that the massive data

loss in WSNs veils the time and spatial correlations between

attributes. Hence the interpolation methods can not benefit well

from these features.

Totally, MACS outperforms ESTI-CS and KNN in random

loss pattern, whatever the correlation between attributes exists

or not.

VII. CONCLUSION

In this paper, we studied the Environment Data Recovery

Problem in WSNs. We proposed the joint sparse decomposi-

tion to reveal the correlation among multiple attributes. The

low-rank feature was exhibited by both the original and the

JSD derived data. Driven by these observations, we designed

the MACS algorithm to approximate the missing data. The

algorithm combines the benefits of compressive sensing and

the correlation of attributes. Data-driven simulations illustrated

that MACS outperforms existing interpolation methods.

The future works are as following. First, considering to

use the Bayesian Model into the prediction and the data

reconstruction. Second, studying the relationship between the

computation time and the accuracy. Third, generalizing the

multiple attributes data reconstruction to more fields.
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