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ABSTRACT

Recent scale-out cloud services have undergone a shift from mono-
lithic applications to microservices by putting each functionality
into lightweight software containers. Although traditional data cen-
ter power optimization frameworks excel at per-server or per-rack
management, they can hardly make informed decisions when facing
microservices that have different QoS requirements on a per-service
basis. In a power-constrained data center, blindly budgeting power
usage could lead to a power unbalance issue: microservices on the
critical path may not receive adequate power budget. This unavoid-
ably hinders the growth of cloud productivity.

To unleash the performance potential of cloud in the microservice
era, this paper investigates microservice-aware data center resource
management. We model microservice using a bipartite graph and
propose a metric called microservice criticality factor (MCF) to
measure the overall impact of performance scaling on a microser-
vice from the whole application’s perspective. We further devise
ServiceFridge, a novel system framework that leverages MCF to
jointly orchestrate software containers and control hardware power
demand. Our detailed case study on a practical microservice applica-
tion demonstrates that ServiceFridge allows data center to reduce its
dynamic power by 25% with slight performance loss. It improves
the mean response time by 25.2% and improves the 90*" tail latency
by 18.0% compared with existing schemes.
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1 INTRODUCTION

In recent years, microservice architecture has become an impor-
tant trend in deploying cloud computing applications. Microservice
transfers a monolith containing the entire service’s functionality in
a single program to tens or hundreds of lightweight and loosely-
coupled mini services [22]. Some key attributes of microservice
such as domain-driven design, on-demand virtualization and infras-
tructure automation [4] make microservice fit nicely to the model of
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Enterprise Container Product Service
Alibaba [3] Docker Dubbo All except Taobao
Google [1] Docker Kubernetes Google Clouds

Microsoft [7] Docker .Net Framework | Azure Core, Skype(Business)

Amazon [48] Docker ECS Amazon.com

Table 1: Many mainstream cloud providers are tapping into
microservice architecture today.

container-based computing environment. Today, many mainstream
cloud providers such as Alibaba, Google, Microsoft and Amazon
have adopted this application model, as shown in Table 1.

A key benefit of the microservice architecture is the scale-out
capability it enables. For traditional online data intensive (OLDI)
applications (such as web search and social network services), data
centers usually provide excessive computing resources and extra
power budget for reducing the tail latency, which causes low sys-
tem utilization [20]. The typical utilization of data centers hosting
online services is often less than 50% [2, 24]. With microservice
architecture’s unique two-tier topology [47], user queries always
pass a specific API layer and access many mini services. By dividing
a monolithic application into process-level services, microservices
greatly facilitate tail request scheduling. Meanwhile, since heavy
queries are served with multiple separate services, one can avoid
local power peaks induced by traffic flood. It has been shown that
Tmall (the world’s second biggest e-commerce website operated by
Alibaba) based on microservice is able to withstand tens of thousands
of requests from global users [5].

Although microservice architecture offers new opportunities for
accommodating ever-growing workloads in the cloud, its true scala-
bility potential has not been exploited yet. The reason behind this is
two-fold. Firstly, the heterogeneity of microservices is never well-
exposed to the data center management layer, unavoidably causing
power allocation imbalance and power capacity waste. Today’s data
centers make their power management decisions mainly based on ap-
plication level [29, 39] or server level [14, 28] activities. Oftentimes,
they overlook the sensitivity of performance to power budgeting of
each individual microservice. As a result, it could waste precious
power budget on some less critical microservices while leaving inad-
equate power budget to the most important ones. Secondly, existing
power management schemes lack the agility to react at per-service
granularity, further exacerbating the above imbalance issue. Repre-
sentative optimization schemes such as per-server voltage/frequency
tuning [12, 15, 36], rack-level thermal/cooling optimization [35, 37]
and battery-based power peak shaving [12, 25, 30] are too coarse-
grained to fulfill a service-oriented control. Designing aggressively
fine-grained strategy on top of existing power management frame-
works often incurs high software control overhead, which can com-
promise the benefits that the optimization may provide.
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In this paper we show how to further scale out power-constrained
data center in the microservice era by matching server-level power
budget variation to fine-grained microservice heterogeneity. The
first challenge is to develop the mechanism for identifying critical
microservices who dominate the performance of the entire applica-
tion. It depends on both the organization of the microservices that
form the application and the dynamic power behavior of each mi-
croservice that must be analyzed during run-time analysis. Another
obstacle before us is the power management overhead that comes
with per-service control and cross-service coordination. Designing a
completely new framework that fits the needs of microservice-level
power allocation optimization requires significant changes to exist-
ing power management schemes. Thus, we focus our attention on
efficiently adapting exiting server-level power management schemes
to microservices and exploiting a medium-grained scheduling strat-
egy for a desired performance-power trade-off.

We first propose microservice criticality factor (MCF), a compre-
hensive metric for evaluating the importance of each microservice to
the performance of the entire application. MCF models the two-layer
microservice architecture as a bipartite graph. It takes into account
both how much time a microservice is performing useful work and
how performance scaling affects the running microservices. Each mi-
croservice’s MCF is calculated based on three static factors and one
dynamic factor. The static factors include execution duration, call
times and performance-power characteristics of a microservice - all
of them determine the weight of an edge in the graph. The dynamic
factor reflects the variation of the incoming requests. It determines
the indegree of a microservice, i.e., vertex in the graph. MCF depicts
the likelihood that power budget capping on that particular microser-
vice will result in severe QoS violation. High criticality often means
more sensitive to power variation. In contrast, slowing down non-
critical microservices has negligible impact on performance, which
allows for a more aggressive execution mode for energy saving.

Based on our characterization of microservice, we propose a novel
power management coordination framework named ServiceFridge.
The major feature of our framework is that it can synergistically
combine different server-level power management schemes to adapt
power-hungry data centers to the microservice environment. In ad-
dition to coordinate power management schemes, ServiceFridge
joinly manages the container orchestration system (a system for
deploying, scaling and managing containerized applications, such
as kubernetes [45], docker swarm [49]) as well. In order to provide
service-oriented power allocation (but not too fine-grained), Service-
Fridge logically partitions a data center into three different zones:
a hot zone, a warm zone, and a cold zone. The cold zone targets
microservices that require guaranteed QoS; servers in this zone are
configured without any power budget limiting operations to guaran-
tee high performance. The hot zone allows aggressive power capping
on low MCEF services to squeeze further energy savings from the
power-hungry data centers. Finally, a warm zone hosts services with
uncertain criticality. It serves as a buffer between the hot and the
cold zones. During runtime, ServiceFridge isolates microservices
into different zones and dynamically swaps microservices between
different zones for ensuring optimal quality-of-service as well as
meeting power budget.

This paper makes the following contributions:
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Figure 1: Microservice decomposes the monolith into a
two-layer architecture which consists of an API layer and a
service layer with independent components.

e We investigate emerging microservice architecture and dis-
cuss its implication on power-limited data centers.

e We propose microservice criticality factor (MCF), a metric for
identifying the critical microservices. It allows data centers to
evaluate the necessity of power allocation for a microservice
with the static and dynamic factors.

e We propose ServiceFridge, a cross-layer power management
coordination framework adapted to the microservice enviro-
ment. It isolates the power management of different types of
microservices for better performance-power trade-off.

e We implement our design as a proof-of-concept system and
conduct a case study with real-world microservice applica-
tions containing more than 42 microservices. We show that
ServiceFridge could reduce dynamic power range by 25%
with the slightest performance loss.

The rest of this paper is organized as follows. Section 2 introduces
microservice in this paper. Section 3 discusses critical micoservice.
Section 4 proposes a new metric called MCF to measure microser-
vice criticality. Section 5 describes ServiceFridge power coordina-
tion framework for microservice. Section 6 presents experimental
methodology and evaluation results. Section 7 discusses related work
and Section 8 concludes this paper.

2 BACKGROUND AND MOTIVATION
2.1 The Microservice Revolution

Microservice architecture is appealing to cloud providers for its
agile software development, high service quality, and scalable ser-
vice deployment. Microservice architecture presents application as
a suite of services [22]. Unlike monolith encompassing the entire
application’s functionality into a huge block of code, each microser-
vice runs as a single process. These small processes communicate
with each other through lightweight mechanisms such as an HTTP
resource API [48]. Therefore, it is easier and faster to deploy and
remove a small service with microservice architecture. It allows a
system to conveniently dispatch computation resources according to
the real-time demand. Even if a failure occurs, a microservice based
application can continue running with graceful degradation.

The benefit of microservice architecture mainly comes from de-
composition. As shown in Figure 1, microservice architecture de-
composes a monolithic application into two layers [47]. The API
layer acts as a service-access portal and the service layer contains
massive loosely-coupled microservices. The clients always access a
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Figure 2: Dependency graph for Advanced Search service.

specific service via an API and is responded by several microservices.
In this work we refer to the API and its corresponding microservices
as a microservice region. Microservice regions that employ different
numbers/types of microservices can realize different functions. This
topology enables fine-grained dispersion and isolation of different
functions, which brings new opportunities to scale out the data center.
For example, it allows one to spatially disperse the explosively high-
volume query floods into multiple microservice regions located on
different physical servers. One can also balance resource allocation
among different functions to accelerate program execution.

2.2 Power Management Challenge

Power and energy resources significantly limit the scalability of
data centers today [10-12, 15, 27, 36, 39]. As cloud applications
proliferate and data-analyzing demands continue to increase, it is
important to improve data center utilization and smartly use power
budget. For conventional online data-intensive (OLDI) workloads
in monolithic deployment mode, power-saving techniques such as
workload consolidation and performance scaling can be problematic
[13, 15, 20]. When running iterations of the full application across
thousands of servers, it is difficult to determine which iteration can
cause unacceptable SLAs (Service-Level-Agreements) violations
under power shortage.

Although the microservice architecture shows great promise in al-
leviating the above issue, realizing the true power saving potential in
a microservice based data center can be challenging. Existing power
management schemes, no matter server-level [14, 30] or OS-level
[23], are unaware of the topology and heterogeneity of microservices
(detailed in Section 3). Consequently, they often lead to sub-optimal
power allocation or even unbalanced power allocation with signifi-
cant power waste. In addition, even if we expose detail microservice
statistics to a global data center power controller, one needs to deter-
mine appropriate control granularity for performing power capping.
Extremely fine-grained control (e.g., per-microservice basis) unnec-
essarily increases control overhead, and therefore is not suitable for
microservices that exhibit extremely short request service time.

3 ANALYZING MICROSERVICE SYSTEMS

In this section, we investigate the topology of microservices. We
show that microservice based design manifests remarkable hetero-
geneity. It is beneficial if one can exploit it for better performance-
power design trade-offs in power-constrained data centers.
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Node Name Roles Running MS Description

Server A Swarn manager | Zipkin/UI Providing web interface for observing.
Server B Power worker Observed MS Observing MS at various V/F settings.
Server C1,C2,C3 Normal worker Other MS Excluding other influence factors.

Cluster‘s Server Configurations

Cluster 4 worker nodes (total 24 cores) + 1 manager node
Server Dell Edge Power R730 6-core, 2.4 GHz Intel Xeon CPU E5-2620 v3
Host OS Ubuntu 14.04.31-generic kernel running docker 18.06.1-ce

Table 2: Testbed configuration in our experiment.

3.1 Methodology

Although there are a few microservice applications online [6, 48],
most of them are just toy benchmarks only containing limited mi-
croservices. Recently, Gan et al. present the first comprehensive
microservice benchmark called DeathStarBench [43]. However, it
is not publicly available at this moment. Thus, we conduct our case
study mainly using TrainTicket [40], a railway ticketing system im-
plemented based on microservice design principles. The number of
microservices in TrainTicket is more than any other existing bench-
marks [40]. It contains more than 40 microservices including 24
microservices related to business logic.

Figure 2 shows the two-layer topology of TrainTicket. The upper-
level microservices in the API layer not only perform their own
tasks, but also wait for the return of the lower-level microservices
in the service layer. In Figure 2, we show a widely used function
called Advanced Search. The red bold lines indicate its microservice
region which contains many microservices. Different microservice
regions in TrainTicket may interact with each other, resembling
microservice systems in industrial practices. These services can be
deployed on server with docker swarm [49] and kubernetes [45]
for simulating a public cloud application. In this study, we deploy
TrainTicket on a cluster with 6 server nodes with docker swarm.
Each container only executes a single microservice. Docker swarm
leverages a fair docker scheduling algorithm (round-robin) to deploy
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Figure 3: Partial microservices always execute longer across a
microservice region.
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Figure 5: The CDF of response time for four representative
microservices executing at different frequencies.

all the related microservice dockers among server nodes. We write a
Python program to continuously access the Advanced Search service
via the 80 port of the manager node. By analyzing the request-tracing
data with Zipkin [50], we can obtain the request response time and
execution time of each microservices. We repeat our experiment for
1000 times and report the average results.

Our cluster contains 1 manager node and 4 worker nodes with
100 watts nameplate power per server. As shown in Table 2, the man-
ager node provides web interfaces for gathering timing data of each
microservice along user’s request links. We deploy the observed
microservice on the power worker apart from others for debugging
specified microservice properties. Besides, the 3 normal workers
and the manager node host the remaining microservice for ensur-
ing functionality integrity of TrainTicket. We deploy the observed
microservice on the power worker apart from others for debugging
specified microservice properties.

As for hardware specifications, each server has a 6-core CPU
(Intel Xeon E5-2620, 2.4GHz) and Ubuntu 14.04 installed as the
operating system. With the advanced configuration and power inter-
faces (ACPI), their processors support operating frequencies from
1.2GHz to 2.4 GHz at the intervals of 0.1GHz. With linux tool
turbostat, we can read the dynamic power of every server. All the
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Figure 7: Microservis’ criticality changes under different
power capping scenarios.

servers are connected to a FAST FSG116 network switcher to ensure
high-speed network among microservices.

3.2 Basic Properties of Microservices

We begin by examining the relationship among user request, mi-
croservice region, as well as various microservices. Figure 3 presents
the distribution of execution time for each related microservice. The
x-axis is the time interval. Each colored rectangle represents the
frequency of the execution time that falls into an given time interval.
The darker the color, the higher the frequency. For a given microser-
vice in our experiment, it shows almost the same execution time
under 1000 trials. For Advanced Search, its related microservices
seem to have relatively longer computing time than the others. These
microservices are more likely to be the critical ones.

Even if a microservice has a short execution time, it can still be a
critical component for the entire program. A microservice may be
frequently called in the process of responding to one request. Taking
Advanced Search request for example, when a client clicks search
button, this service will return multiple records showing train infor-
mation. Meanwhile, each return calls frain service more than price
since different trains between two stations usually have the same
price. Each record accesses train service for obtaining the informa-
tion of different trains, but it only calls price service in accordance
with the train types. It is possible that train service demands more
computation power. We observe that every microservice has distinc-
tive call times. Figure 4 shows the call times of all the microservices.
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Figure 8: Each microservice’s MCF is calculated with its running time (edge weight), call times (indegree) and performance-power
characteristic (variance coefficient) based on the bipartite graph model.

Microservices marked with red bar are called more frequently. There-
fore, when determining the criticality of microservices, we should
also take into account the call times of each microservice per request.

3.3 Performance-Power Characteristics

The criticality of a microservice in power-constrained data centers
is not only related to its execution time and call times, but also its
sensitiveness of performance to power capping. We enable dynamic
voltage and frequency scaling (DVFS)in our experiment for power
capping. We characterize the variation of microservice’s execution
time under different power supply conditions.

In Figure 5, we present the cumulative distributions of execution
time of 4 types of microservices when responding to 1000 requests.
From the figure we can see that route has short execution time which
is almost irrelevant with performance scaling. In contrast, price is
more sensitive with performance. Therefore, price microservice is
more likely to become the bottleneck of the program than the route
microservice.

By comparing Figures 5-(c) and (d), we can draw similar con-
clustions. For long-running microservices, some microserivees (e.g.,
seat) are more sensitive to performance scaling. However, in terms
of travel, it is hard to determine whether it is sensitive to power vari-
ation or not. Therefore, we need a metric to quantitatively evaluate
the static and dynamic behaviors of different microservices.

3.4 The Effect on Entire Application’s QoS

From the above study we can see that the criticality of a microservice
is closely related to its execution time, call times, and performance-
power profile. To better understand the impact of these factors on
the performance of the entire application, we further compare the
performance impact of critical and non-critical microservices un-
der power capping. Based our offline analysis, we eventually select
station, ticketinfo and travel as the critical microservices. We com-
pare them with basic and seat, which are all among the non-critical
microservices.

We separately run the selected five microservices on Server B as
described in Table 2 at different frequency of 1.8GHz and 2.4GHz.
The other microservices are always hosted on Server A, C1, C2 and
C3 at the frequency of 2.4GHz. We evaluate the impact on the QoS
of the entire application with regards to the percentile latency and
mean response time. We choose deploying TrainTicket with docker
swarm’s default configuration as the baseline.

Figure 6-(a) shows the result at the frequency of 2.4GHz. It is
surprising that when we isolate the critical microservices, the mean
response time is higher than the baseline’s, but the percentile latency

is much better. This is because isolating the critical microservice
can accelerate its execution, thus lower latency. When reducing the
frequency to 1.8GHz of the server running critical microservices,
the latency increases a lot as shown in Figure 6-(b).

The above experiment further motivates that critical microservice
can be identified with its running time, call times and its performance-
power characteristics. In the following paragraph, we will discuss
how to coordinate these three factors to formally evaluate the criti-
cality of a microservice.

4 MICROSERVICE CRITICALITY FACTOR

In this study we propose Microservice Criticality Factor (MCF), a
new metric for evaluating the priority of each microservice when
allocating power.

Identifying the critical microservices is non-trivial. The reason
is that our analysis on microservices shows that their criticality
changes dyanmically during runtime. Figure 7 shows an example of
4 microservices represented by different shapes. The digit on each
microservice represents its execution time and the number of times
the micorservice appears presents its call times. Microservice a has
the largest running time but its total execution time is less than mi-
croservice ¢ which has the most running instances. When changing
the running frequency from 2.4GHz to 2.0GHz, microservice c has
the same total execution time as b. Therefore, it is important to find a
way to compute the MCF, which synthesizes all the relevant factors.

We model the relationship of the API layer and function service
layer using a bipartite graph as shown in Figure 8. The API layer
is one of the disjoint and independent vertex set in the bipartite
graph. The pairs of a function microservice and its corresponding
database microservice constitute another vertex set. Generally, func-
tional services are services that support specific business operations
or functions, whereas a database service only maintains the private
data for a function service and is not shared with any other services.
Namely, a function service is the execution logic and its database
service is the computation data. Note that the microservice arhitec-
ture is different from a service-oriented architecture (SOA) [47]. In
this work we focus on microservice architecture, in which function
and database services are bounded together for completing a task.

We define a bipartite graph G = (V4, V, E) where V4 and Vp are
two disjoint sets of vertices and E is the set of directed edges from
vertex in V4 to vertex in Vr, i.e., e}“ :A— f,whereA € Vp&f € Vp.
The number of head ends adjacent to vertex a is called the indegree
of vertex a, denoted by In,. We assume W is the set of edge weights.
We use graph G to describe a microservice application. As shown
in Figure 8, each vertex in V4 and VF respectively presents an API
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and a function service. The edges in E actually present the number
of different requests invoking the microservices in various service
regions. For example, there are n edges from O to d and each Eg
means a request waiting to be solved by microservice d in set O as
shown in Figure 8. Meanwhile, the Ing equals to (n+m)/(n+m+1),
which presents the ratio of different requests accessing microservice
d. The weight W, of a edge linked to microservice a is its completion
time of a request, which is its execution time multiplied by the call
times. According to the analysis in section 3, the execution time
of a microservice is also related to its available power resource.
Thus, we add a variance coefficient , to W, to reflect the QoS-
power characteristics of a microservice. Namely, the edge weight
of microservice a is the production of its execution time, call times
and QoS-power relationship. Eventually, like locating the influential
vertex in a graph [34], we can identify the critical microservice
through comparing the production of their edge weight and indegree.
Thus, the MCF of a microsevrice (vertex) is computed with its
request ratio (indegree) and per-request execution time (weight).
MCEF considers both static and dynamic factors of a microser-
vices. The execution time, call times, as well as QoS-power profile
are treated as static factors that can be obtained through offline pro-
filing. The ratio of different request quantities are dynamic behaviors
of a microservice, which should be monitored online. Inspired by
our previous characterization, the call times of a microservice is the
same under the scenario of handling the same request type. Thus,
the number of edge linked to a microservice is a constant. Accord-
ing to prior work [39], the power-performance profile of a service
can be represented as a constant list. Namely, edge weight W, is a
constant only determined by the property of microservice a, while
variance coefficient f3, is a static curve under different power scenar-
ios. Nevertheless, the MCF of a microservice is not a constant in the
real operating environment. A microservice is always involved by
multiple service region. Taking service d in Figure 8§ as an example,
it is involved into service regions of API O and API P at the same
time. There are two types of edges linked to d. Meanwhile, due to
the varying pattern of clients’ behavior, the number of requests ac-
cessing API O and P changes a lot in a day. Therefore, the indegree
of vertex d varies with the incoming request quantity at a specific
power state. Considering Vr has m vertices. There is a request list
RES =< resy, ..., resm,m > accessing these microsevices respectively.
According to the computation mode of the influential vertex in a
graph [34], the MCF of a microservice i can be calculated as:

MCF; = FUCN(Inj, w;) = Inj * W; 1)
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Figure 10: The update process of indegree.
where
Wi = call_ts; = exec_t; * f; 2)
and
res;
In,- = <sm - (3)
res;

i=1
With the above equations, we can calculate the MCF for different
microservices varying with the incoming request.

S SERVICEFRIDGE: MCF-DRIVEN POWER
MANAGEMENT COORDINATION

Based on the MCF, we propose ServiceFridge, a differentiated power
management approach by the consolidation of container orchestra-
tion and power controller. As shown in Figure 9, the key idea behind
ServiceFridge is to extract the critical microservices and to strictly
guarantee their QoS requirement with full power supply.

5.1 Overview
ServiceFridge has three distinctive features:

(1) Cross-layer Scheduling Support. ServiceFridge establishes a
cross-layer framework that spans both docker orchestration
and power controller. It inserts a scheduling engine into the
docker orchestration layer, which uses a MCF Calculator to
compute the criticality of microservices and to classify them
into different levels. Then the power controller assigns the
classified microservices to server nodes with different budget.

(2) Differentiated Power Management. ServiceFridge partitions a
data center into a hot zone, a warm zone and a cold zone. To
ensure QoS, the cold zone does not have any software power
limits when running highly-critical services. Differently, the
hot zone allows today’s aggressive capping schemes on low-
criticality services to save power budget. The warm zone host
services with uncertain criticality.
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i i i cheme escrption
Algorithm 1 Autocaling Algorithm Sch Descrp
Require: Warm zone: S = {s1, s2, . . - Sp } Baseline Without any capping.
Require: Microservice set running on s; in S: MSy, MS,, ... MS, ServiceFridge The MCF-driven management.

Require: The maximum and minimum utilization of S: «, f8
1: // Promote the criticality
2: while utilization(S) > «a do
3 Select s; in S with maximum utilization.
4 Label s; as a warm node.
5. Promote the criticality of microservice belonging to MS;.
6: end while
7: // Demote the criticality
8: while utilization(S) < § do
9 Select s; in S with minimum utilization.
Label s; as a cold node.
11:  Demote the criticality of microservice belonging to MS;.
: end while

3

]

Capping Managing peak power based the utilization of servers.
P-first Fine-grained and high-power-as-first power management.
T-first Fine-grained and time-driven power management.

Table 3: Evaluated power management schemes.

\ ticket basic seat travel station route config train

ET A 12.2 9 25.7 225 1.3 1.5 2 2.1

B 4.1 2.8 0 0 12 14 0 0

A 44 44 16 10 70 34 16 24
CT

B 2 2 0 0 2 1 0 0
- A 536.8 396 411.2 225 91 51 32 50.4

B 8.2 5.6 0 0 24 14 0 0

(3) Dynamic and Fast Scaling. ServiceFridge dynamically swaps
services between hot and cold zones for better performance-
power trade-offs. It uses an auto-scaling algorithm to adapt
to the client’s requirements. It also implements a fast, light-
weight microservice migration strategy by creating new in-
stances on the target nodes and terminating the old ones.

In the following, we mainly discuss the basic mechanism of the
ServiceFridge framework in a microservice environment.

5.2 MCF-Driven Power Allocation

As shown in Figure 9, ServiceFridge obtains the execution time
of each microservice and their call times in different microservice
regions through an offline analysis. The MCF Calculator maintains
a dynamic bipartite graph for capturing the varying MCF of a mi-
croservice affected by users’ behaviors. MCF Calculator initiates the
bipartite graph with parameters analyzed offline. According to Equa-
tion (1), (2) and (3), the MCF of a microservice is a function value of
its execution time, per-request call times, QoS-power profile and the
request ratio. While some factors are static, the MCF is determined
by the users’ request types and quantities as well as timely power
supply. As shown in Figure 10, each vertex in the graph maintains a
counter to count its present indegree. It is the sum of edges incurred
by the remaining requests in former time interval and the incoming
requests in current time interval. Digit surrounded by the red circles
presents the completed edges in the former time intervals.

The ServiceFridge framework uses a normalized MCF to classify
microservices. The MCF is normalized to the required response
time of the whole application. Generally, the required response time
of an application is no less than the completion time of any small
microservice. The required response time of an application is an
empirical value or a standard limit. It can always be determined
by running some benchmarks and finding the maximum response
time [47]. Nevertheless, the standard value is always proposed
by a reputed organization and is pervasively accepted, such as the
response times is no more than 100 ms for interactive services
[21, 46]. If no power capping is used, the normalized MCFs of all the
microservices are no more than 1. A larger value means more critical.
When limiting the power consumed by a microservice, the MCF
varies with the QoS-power relationship. If the MCF of a microservice
at the lowest power states is still less than 1, MCF Calculator marks

Table 4: Offline analysis of edge weight.

it as the low-criticality microservice. The normalized MCF of highly-
critical microservices exceeds 1 even if power changes slightly.

The practical boundary between uncertain-criticality microser-
vices and high-criticality ones is dynamically decided by the avail-
able power resources, which will be discussed in the next part.

5.3 Collaborative Power Management

To separately support high-/uncertain-/low-criticality microservices,
ServiceFridge logically groups server nodes into a hot zone, a warm
zone, and a cold zone, as shown in Figure 9. It implements a cen-
tralized controller to manage the power consumption of servers in
each zone. As the cold zone hosts high-criticality microservices,
server nodes always run at full speed. The controller regulates the
power consumption of servers in the other two zones for limiting the
total power budgt via multiple power tuning knobs integrated into
servers such as p-states [44], DVFS [14]. ServiceFridge uses the
same power capping strategy on servers belonging to the same zone.

Since the total power of microservices changes with users’ behav-
ior during an operating process, the power peak to be capped also
varies. To fully utilize power resource, ServiceFridge always tries
to maximize the average and tail response time without violating
the power constraint. Therefore, one must dynamically adapt the
power management to the variation of request number. Although
MCEF Calculator has classified the microservices into three levels,
ServiceFridge Controller can promote or demote the criticality of
a microservice timely based on the available power resources. For
example, when the power is abundant, it can promote the uncertain-
criticality microservices as high-criticality ones and enlarge the cold
zone. Taking the warm zone as an example, ServiceFridge adopts an
auto-scaling algorithm as shown in Algorithm 1.

The promotion or demotion of a microservice is achieved by the
coordination of the container orchestration and the ServiceFridge
Controller. MCF Calculator first delivers a MCF list of all the mi-
croservices to the ServiceFridge Controller. Then the controller
automatically revises the microservices classified into different lev-
els based on the original MCF list as well as the above auto-scaling
algorithm. After that, it returns the modified list to the docker or-
chestration and adjusts the servers in different zones. Meanwhile,
it regulates the power consumption of each zone in case that their
total power usage exceeds the budget power. Eventually, the docker
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Figure 11: MCF of microservices changes with incoming request type, quantity and power management.
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Figure 12: The effect of MCF variance on each microservice.

orchestration will start new instances and terminate old instances in
accordance with the new MCEF list.

6 EXPERIMENT AND RESULTS
6.1 Experiment Methodologies

We experiment with the testbed detailed in Section 3.1. We com-
pare our design with three types of data center power management
schemes as summarized in Table 3.

Among those, Capping is a representative peak power manage-
ment technique similar to prior work [14], which only scales down
the overall servers’ active power to shave peak power. P-first and
T-first represent a group of schemes that pay more attention on every
single application or task [23, 39]. P-first is a high-power-as-first
management approach. It firstly limits the power usage of power-
consuming microservices. T-first slows down the execution of fast
microservice to meet the power constraint.

In the following experiment, we consider two microservice re-
gions, i.e., Advanced Search service region and Basic Ticketing
service region. We use A to present Advanced Ticketing service re-
gion while B for Basic Search service region. Both A and B contain
microservice ticket, basic, station and route and only A invokes mi-
croservice seat, travel, config and train. We select 8 representative
microservices involved in A and B. We write Python programs to
adjust the ratio of requests accessing A and B.

6.2 Analysis of Criticality

We examine the MCF of the evaluated 8 microservices. We first
discuss the static and dynamic factors (defined in Section 4) deter-
mining the MCF of a microservice. Then, we analyze the impact of
applying MCF to power management of different microservices.
We send requests accessing A and B for 5 minutes respectively.
We randomly select 1000 requests and analyze their execution trace.
In Table 4, we show the call times (CT) and average execution time
(ET) of the microservices. The CT and ET of a microservice keeps
constant within the same service region (as depicted in Section 3
and Section 4). W means the weight (per-request completion time)
of an edge linked to a microservice. Microservices spend more time

FREQ(GHz)
5%

01 2 3 456 01 2 3 4 56 01 2 3 456

Time(min) Time(min) Time(min)
(a) ticketinfo (b) seat (c) config
g2 g2 220
=) SR I £ M Mg 5
z W W i z
D P P P 7 =z 14
01 23 456 01 23 456 0123 456
Time(min) Time(min) Time(min)
(d) ticketinfo (e) seat (f) config

Figure 13: The frequency (upper) and power (lower) of three
representative microservices varies with incoming requests.

to complete the request of A. Since B does not contain service seat,
travel, config and train, the corresponding values are zeros.

The MCF of microservices also varies with the incoming request
types and quantities as well as the available power resources. We con-
sider 4 different access scenarios, i.e., the ratios of requests accessing
A and B are 30:0, 30:20, 20:30 and 0:30. We obtain the execution time
of the services under 7 voltage/frequency settings through offline
profiling. We normalize the MCF to 100ms according to Section 5.2.
Figure 11 illustrates the MCF of microservices in these situations.
Larger data, i.e., darker color means higher criticality. There are
three rankings. The darkest black marks the highly-critical microser-
vices. The lighter and lightest black labels the uncertain-criticality
and non-criticality ones separately. We can see that a microservice
can be classified into different ranking layers. For example, when
the ratio of A and B transfers from 30:0 to 30:20, travel becomes
a uncertain-criticality microservice from highly-critical one. Gen-
erally, the MCF of microservices decreases when the percentage
of requests accessing B increases. When focusing on every single
microservice, their MCF declines with the reduction of power supply.
It is remarkable that the effect of power reduction on one micro-
sevrice’s MCF differs from the other shown as the uneven color
variation. To summarize, the MCF of microservice is determined by
multiple factors particularly the dynamic factors. Taking basic as an
instance, its weight is larger than the seat, nevertheless, the situation
reverses when the ratio of A and B becomes 20:30.

6.3 Impact on Each microservice’s Execution

In Figure 12, 13 and 14, we show how ServiceFridge adjusts the ex-
ecution state of each microservice with its MCF variation. In Figure
12, we demonstrate the operating frequency of each microservice in
the above four request ratio scenarios when the overall power supply
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Figure 14: The impact of mis-computing MCF on QoS.
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Figure 15: Variance of service time with decreasing power
budget for different power management schemes.

of the testbed system is 80% of the maximum peak power. Service-
Fridge always guarantees the frequency of critical microservices at
2.4GHz. Thus, it aggressively throttles the frequency of non-critical
microservices to limit the power into the budget. As more percentage
of request accessing B, it eventually reduces the same frequency of
all services since they belong to the same criticality level.

In Figure 13, we observe the detailed power consumption and
frequency variation of microservice with the available power. The
power budget is 80%. We switch the request traffic among low (5
workers), medium (15 workers) and high (25 workers) mode at
a interval of 60 seconds. We select ticketinfo, seat and config as
the representative services belonging to three criticality layers as
our observed microservices. As shown in Figure 13 -(a) (b) and (c),
ServiceFridge dynamically improves the criticality of seat and config
to allow them operating at higher frequency when the request traffic
is low. Meanwhile, each microservice consumes various power with
changes in its MCF and the total power consumption in the system
as shown in Figure 13 -(d) (e) and (f).

The operation of ServiceFridge largely depends on its awareness
of the incoming requests. If the data center mis-computes the MCF
of microservices with wrong request proportion, it can cause de-
graded optimization effectiveness. We evaluate two scenarios, over
estimation and under estimation. As shown in Figure 14, in the for-
mer experiment, the data center mistakenly uses smaller MCF of
microservices to guide the power allocation under the more crit-
ical scenario; in the latter experiment, the data center mistakenly
manages the more lightly-critical situation based on larger MCF. In
Figure 14 -(a), the request ratio of A and B is 30:0. When mistakenly
computing the MCF at the ratio of 0:30, ServiceFridge decreases
the power allocated to the critical microservices, resulting in severer
mean response time. Similarly, under-estimating the criticality also
can lead to longer 99¢ h tail latency as shown in 14 -(b).

6.4 Comparison with the Present Schemes

Finally, we compare ServiceFridge with traditional power manage-
ment designs in terms of application QoS and their effects on differ-
ent microservices. We first evaluate both the mean response time and
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Figure 16: The impact of different power management
schemes on three representative microservices.

percentile tail latency. In this experiment, we access both A and B
with 25 paralleling workers at the same time. We observe the results
under different power budget scenarios from 100% to 75% percent
of the maximum required power.

Figure 15 shows our results. The y-aixs presents response time
normalized to the normal execution time, which is measured without
any power throttling. As the power budget decreases, conventional
schemes affect the mean response time as well as the 90* h g5th
and 994" percentile latency. With ServiceFridge, the system can still
maintain desirable service quality when the power budget is low.
Compared with the other schemes, it improves the average response
time by 25.2% and improves the 90* h tail latency by 18.0%. This is
because ServiceFridge allows the data center to trade off high power
budget of non-critical microservices for better overall tail latency of
the entire application.

In Figure 16, we further evaluate the impact of various power man-
agement schemes on three representative microservices. From Figure
16 -(a), we can see that conventional designs such as Capping and
P-first severely reduce the average response time of ficketinfo, which
belongs to the highly-critical microservice set. This is because they
overlook the QoS of critical services when distributing the power
resource. Compared with these mechanisms, our ServiceFridge al-
ways maintains a better QoS for high-criticality microservice like
ticketinfo. It limits the total power consumption by decreasing the
power of non-critical microservice like station and train. Thus, in
16 -(a) and (b), the mean response time of ServiceFridge is lower.

7 RELATED WORK

Microservice: In recent years, microservice software architecture
is proposed to solve several problems [4, 17, 47, 48] of deploying
monolithic applications in data centers. Most of them emphasize de-
signing and implementing microservice applications [40, 41, 43] or
verifying and enhancing the robustness of this software architectures
itself [19, 31]. No prior works consider the power management of
microservices. A few proposals have focused on using microservices
to improve the performance and QoS of cloud computing service. Yu
et al.focus on anticipating QoS violations in cloud settings to miti-
gate it performance unpredictability [41, 42]. Marcelo et al. compare
the CPU and network performance of implementing microservice
with docker and virtual machines [26]. These prior works mainly
focus on how to deploy microservices platforms or how to enhance
the performance of microservices. Only Chih-Hsun Chou et al. [8]
propose a power-saving mechanism under the architecture of mi-
croservice through prolonging the execution of microservices to its
maximum time limit.

Data Center Power Management: There have been substantial
works related to power management in an power-constrained data
center. To ensure that the power dissipation stays below a given bud-
get, aggressive power control strategies such as power/performance
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state tuning [12, 15, 36], thermal/cooling optimizing [35, 38] and

battery-based peak power shaving [12, 25, 30] are employed. Performance-

preserving aggressive power capping framework has been deployed
in the industry [28]. However, current works focus on data center
power management at the server level. They are coarse-grained and
insufficient for managing the power for microsevices. Some works
focus on managing data center’s peak power at fine-grained gran-
ularity [39]. However, these works are mainly history-data-driven,
making them too slow to allocating power at per microservice level.

Criticality and Latency Analysis: There have been prior works
on recognizing the critical path [16, 32, 33] in a process pipeline to
enhance the performance of a system. For example, Srinivasan et al.
[32] define an alternative measurement of the critical path for char-
acterizing performance of memory system. Tune et al. [16] provide
the first exploration of heuristics-based critical path predictors. Dif-
ferent from these prior works, our work focuses on identifying the
critical microservices at service level. There also exists some works
on improving the tail latency of cloud service. Adrenaline [9] iden-
tifies latency-critical operations in an application and boosts their
computation. However, it cannot evaluate the criticality in quantity.
Other proposals like Rubik [18] and Pegasus [13] permit adjusting
frequency every few seconds to keep tail latency on server level.
They are insufficient in data center environments.

8 CONCLUSIONS

Unleashing the power saving potential of microservices allows data
center to better scale out. In this paper, we propose to adapt existing
power management schemes to OLDI applications with the emerging
microservice architecture. We show that by taking into account the
heterogeneity of microservices and offering a differentiated power
capping service, one can greatly save power capacity in a power
constrained data centers, with minor design overhead.
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