
 

1 

Understanding the Impact of vCPU Scheduling on DVFS-based 

Power Management in Virtualized Cloud Environment 
Ming Liu, Chao Li, and Tao Li 

Intelligent Design of Efficient Architectures Laboratory (IDEAL) 

Department of Electrical and Computer Engineering, University of Florida 

{mingliu, chaol}@ufl.edu, taoli@ece.ufl.edu  

 

Abstract – Virtualized platform has emerged as a promi-
nent environment for cloud computing, especially in today’s 
power-constrained data centers. However, due to a lack of 
coordination between runtime power management and a 
virtual CPU (vCPU) scheduler, existing virtualized cloud 
platform is far from efficient. First, current frequency con-
trol mechanism is unable to satisfy the fast-changing vCPU 
frequency requirement imposed by vCPU scheduler, which 
we refer to as demand imbalance problem. In addition, new-
ly created vCPUs, if scheduled solely based on fairness, can 
cause inefficient frequency rise and drop on an unmatched 
physical core, which we refer to as utilization mismatch 
problem. In both cases, the system incurs degraded power 
efficiency and sub-optimal workload performance. 

In this study we perform a comprehensive analysis on the 
interplay between vCPU scheduling and processor-centric 
power control in virtualized cloud environment. Using rep-
resentative workloads from CloudSuite and real server de-
ployment, we examine the energy/performance implications 
of frequency scaling and vCPU scheduling on both single-
VM and multi-VM cloud host. We show that existing virtu-
alized platform has the potential to improve energy efficien-
cy and workload performance by 32% and 25%, respective-
ly, if vCPUs are balanced and appropriately scheduled. We 
also show that dirty page rate, virtual block device pro-
cessing rate, virtual network packets arrival rate, and net-
work I/O buffer availability are important efficiency indica-
tors for energy-efficient virtualized cloud system design. 
Keywords – virtualization; DVFS; cloud workload; evaluation 

 INTRODUCTION 

Virtualized system represents a massive platform change 
in the cloud computing era, providing energy efficiency and 
cost savings that outperform bare metal system significantly 
[1]. It has been shown that nearly 70% of U.S. companies 
have adopted virtualization for their cloud services since 
2012 [2]. Over 60% of the data center operators will consol-
idate their workloads (encapsulated in virtual machines) if 
computing demand increases, rather than add additional 
server resources to existing data center facilities [3]. 

When scaling out virtual platforms to handle the prolifer-
ation of cloud applications, challenge arises due to the power 
budget constraints in modern data centers, especially in 
those who are under-provisioned. Conventionally, server 
consolidation solves this problem by combining workloads 
from separate machines into a smaller set of systems. As 
VM density continues to increase in data center, the impact 
of workload consolidation on power saving diminishes over 

time. Recognizing this trend, many recent papers start to 
look at joint optimization of VM scheduling and processor-
centric power control (e.g., DVFS) to further reduce energy 
consumption and free up power capacity [19, 34, 5, 6, 26]. 

Unfortunately, to date, a thorough analysis of the inter-
play between virtual CPU (vCPU) scheduling and DVFS-
based runtime power management is still lacking. Existing 
proposals on power-efficient virtualized platforms mainly 
focuses on three design layers: (i) cluster-level load balanc-
ing through workload live migration [19, 34] techniques, (ii) 
server-level power budgeting using DVFS [5, 6], and (iii) 
system-level energy management by adjusting the compu-
ting resource assigned to each VM [26, 35]. While there 
have been papers discussing cross-layer power management 
on virtualized platforms [22, 26, 27], none of the existing 
proposals have ever explored the performance overhead and 
energy inefficiency issue of DVFS in the context of vCPU 
scheduling. In addition, prior studies mainly focus on tradi-
tional workloads with little consideration about virtualized 
cloud applications. Given that emerging cloud VMs have 
much more diverse communication and interaction behav-
iors (request partitioning and collecting, massive data cach-
ing, data scanning, heartbeat checking, etc.), it is crucial to 
understand the control effectiveness of DVFS-based power 
management in virtualized cloud environment. 

There are two issues that might result in degraded per-
formance and efficiency when using CPU frequency scaling 
blindly on a virtualized cloud platform. First, not all vCPUs 
in the execution queue of a physical core can receive desired 
frequency assignments. We term this issue as demand im-

balance problem. Taking Xen credit scheduler for example, 
the default time slice (credit) for vCPU is 30ms [10] and the 
minimum sampling interval of frequency adjustment is 10ms 
[9]. The frequency of a physical core can only be adjusted 
one level at a time for current governors (e.g., Ondemand, 
Conservative). When a high-loading (e.g., 100%) vCPU is 
scheduled on a physical core that previously runs a low-
loading (e.g., 20%) vCPU, the frequency of the physical core 
can be increased by at most three levels – which is still low-
er than the frequency target of the high-loading vCPU. Sec-
ond, a newly inserted vCPU, if mapped to a physical core of 
far different loading, can often disturb the established stable 
frequency level and cause inefficient frequency adjustments. 
We term this problem as utilization mismatch. For example, 
it happens when mapping a latency-sensitive Apache Web 
server VM to a data store VM, or mapping a media stream-
ing VM to a compute-intensive VM. The problem becomes 
even worse if the new vCPU obtains higher weights com-
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pared to other vCPUs. Conventional credit-based scheduler 
is designed to achieve fairness and responsiveness, but might 
impact the power control effectiveness of virtualized cloud 
workloads adversely. 

In this study we examine the efficiency of DVFS-based 
power management in virtualized cloud environment. Spe-
cifically, we investigate the energy/performance implica-
tions of dynamic frequency scaling and vCPU scheduling on 
both single-VM and multi-VMs cloud hosts. In the single-
VM scenario, we vary the upper limit of CPU utilization in 
Xen’s credit-based CPU scheduler and estimate its impact 
on energy efficiency. We explore optimization opportunities 
with detailed VM execution profiling data such as dirty page 
number, network activities (send/receive), and VBD (virtual 
block device) read/write. For multi-VM cloud hosts, we 
evaluate both homogeneous and heterogeneous cloud VMs 
and analyzed the demand imbalance issue and utilization 

mismatch issue in detail. 
To the best of our knowledge, this paper presents the first 

work on the mutual impact between vCPU scheduling and 
DVFS based runtime power management for emerging cloud 
workloads on virtualized platforms. 

This paper makes the following contributions: 
 We build a comprehensive evaluation framework based 

on Xen and use representative cloud workloads from 
CloudSuite [8]. Our framework features a VM behavior 
analysis wrapper that enables detailed profiling. We clas-
sify cloud VM workloads based on their logic functions 
and grouped them into four categories: computation VM, 
data serving VM, network I/O VM and intermediate 

transfer VM. We evaluate various deployment scenarios.  
 We investigate the implication of vCPU utilization cap-

ping in single-VM cloud host. We identify an uncertainty 

issue in runtime power control in virtualized cloud envi-
ronment: although increasing utilization typically means 
higher VM energy consumption, it might improve energy 
efficiency. We show that dirty page rate, VBD local 
queue processing rate, virtual network packets arrival 
rate, and network I/O buffer availability are good effi-
ciency indicators for system optimization. 

 We identify and characterize a demand imbalance issue 
for multi-VM cloud hosts. For heterogeneous workload 
consolidation, it increases energy consumption by 13% 
but lowers performance by 18% on co-located VMs. For 
homogeneous workload consolidation, this problem also 
happens due to asynchronous workload execution phas-
es, leading to 29% extra energy consumption with 16% 
performance degradation. We show that CPU utilization 
based vCPU grouping and separating, and workload syn-
chronization could help improve energy efficiency. 

 We identify and characterize a utilization mismatch issue 
for multi-VM cloud hosts. We show that by matching 
vCPU to an appropriate processor core, one can improve 
energy efficiency by up to 32% and 9% for heterogene-
ous and homogeneous workload consolidation, respec-

tively. In the meantime, one can improve system perfor-
mance by up to 25% and 20% for heterogeneous and 
homogeneous workload consolidation, respectively. 
The rest of this paper is organized as follows: Section 2 

introduces the background. Section 3 describes our cloud 
workloads classification and experimental setup. Section 4 
presents our evaluation results and analyses. Section 5 dis-
cusses related work and Section 6 concludes this paper. 

 

Figure 1: The Hypervisor-based cpufreq  

 BACKGROUND 

A. DVFS-Based Runtime Power Management in Xen 
Dynamics voltage and frequency scaling (DVFS) is the 

major runtime power saving mechanism for current multi-
core processors. Today, most operating systems and hyper-
visors have incorporated related modules to support DVFS 
based runtime power management. For example, Xen sup-
ports CPU P-states (cpufreq) based on the Enhanced Intel 
SpeedStep Technology [11] or AMD PowerNow! Technolo-
gy [12]. The cpufreq driver in virtualized environment peri-
odically measures CPU utilization and adjusts frequency 
based on the status of CPU governors. Xen has two cpufreq 
implementations: one is Domain 0 based, which implements 
the cpufreq logic in Domain 0; and the other one is hypervi-
sor based, which implements the cpufreq logic in hypervisor. 

The Domain 0 based cpufreq implementation handles 
frequency adjustment requests through Domain 0 kernel 
code with XENPF_change_freq and XENPF_getidletime 
hypercalls to obtain system status and change the CPU fre-
quency. In contrast, the hypervisor-based method is more 
complicated, which involves three layers of coordination. As 
shown in Figure 1, the hardware layer contains the processor 
with DVFS capability. The Domain 0 layer includes two 
components: 1) an ACPI parser that passes the frequency 
adjustment information to the hypervisor cpufreq core via a 
ACPI table, and 2) a user-level control tool called xenpm. 
The hypervisor layer has three components: cpufreq core, 
cpufreq governor and cpufreq CPU driver. The cpufreq core 
specifies the overall logic and the cpufreq CPU driver issues 
the frequency adjustment command to the processor. The 
cpufreq governors play a major role in setting the target fre-
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quency based on system conditions. There are four major 
governors. Performance and Powersave governors set the 
highest and the lowest frequency statically. Userspace pre-
scribes frequency based on user requirement. Ondemand 
governor samples the physical core utilization periodically 
and dynamically adjusts CPU frequency one level upper or 
lower when the utilization is above or below a specified 
threshold. We use the hypervisor-based cpufreq (xenpm 
module) with an Ondemand governor in this work. 

B. Xen vCPU Credit Scheduler 
Current vCPU schedulers in the hypervisor, such as 

VMware’s proportional share algorithm [13] and Xen credit 
algorithm [10], are designed to share CPU resources (fair-
ness), maximize CPU utilization (throughput) and satisfy 
latency-sensitive requests (responsiveness). Taking Xen 
credit scheduler as an example, the algorithm maintains a 
local queue of active vCPU for each physical core, sorted by 
priority. The scheduler assigns credits (time slice) for future 
execution. There are two different vCPU priorities: over or 
under, representing whether the vCPU has exceeded its cred-
it share or not during the accounting period. 

Every vCPU consumes credits when running. The hy-
pervisor implements a system-wide accounting thread to 
compute vCPU credits. Positive credits imply under priority 
and negative credits means over priority. If a vCPU blocks, 
wakes up, or completes its time slice, the scheduler will 
choose the next one from the head of the local queue. When 
a new vCPU is inserted, it is placed after all active vCPUs 
with the same priority of one physical core. A CPU can also 
preemptively load one vCPU from other CPUs’ queue to 
balance CPU resources system-wide when it becomes idle. 
The CPU scheduler also allows customized time slices, pro-
portional share of CPU (weight), and utilization capping.  

Traditional priority-based round-robin credit schedulers 
are fit to achieve fairness among VMs, maximize through-
put, and accelerate request processing rate. However, they 
overlook the inefficiency and overhead of DVFS runtime 
power control, which motivates our study. 

 METHODOLOGY AND CLOUD PLATFORM 

A. Cloud Workload Classification 
We use representative cloud workloads from CloudSuite 

[8] and classify them as either symmetric or asymmetric. For 
the symmetric workloads, all servers play an equal role in 
data processing. In contrast, for the asymmetric workloads, 
servers take different responsibilities (e.g. front-end request 
processing, task partition, back-end data serving, etc.). 

The symmetric configuration is popular in data store or 
data caching systems and has three features: 1) data sets are 
split across all the servers; 2) each node can process a cli-
ent’s request independently based on its own fraction of da-
ta; 3) there is little coordination or synchronization among 
different servers. The symmetric workloads can be further 
divided into two different types based on communication 
patterns: cooperative and independent. In the cooperative 

type, such as Cassandra NoSQL distributed storage [14], the 
whole system is transparent to the client and each node 
stores a fraction of data along with its hash values. In this 
case, each node can receive client requests but they might be 
further routed to the corresponding nodes that have the data. 
In the independent communication scenario, such as a media 
streaming server, no communication exists between nodes 
and each node can directly reply to client’s requests. In the 
CloudSuite benchmark, Data Caching, Data Serving, Graph 

Analytics, and Media Streaming all belong to this type. 
TABLE I.  WORKLOAD DESCRIPTION AND CONFIGURATIONS 

Benchmark Description Setup 

Data Analytics 
(Asymmetric) 

Run Bayesian classification 
algorithm on Wikipedia data set in 
Hadoop cluster 

1 master VM and 2 
slave VMs 

Data Caching 
(Symmetric) 

Run Memcached data cache server 
with twitter data set 

4 data caching 
VMs 

Data Serving 
(Symmetric) 

Run Yahoo! Cloud Serving 
Benchmark (YCSB) dataset on 
Cassandra database 

4 Cassandra data 
store VMs 

Graph Analytics 
(Symmetric) 

Run machine and data mining 
algorithms for graph analytics 

4 standalone 
computing VMs 

Media Streaming 
(Symmetric) 

Run simulated clients with Faban 
driver on Darwin Streaming server 

3 Darwin streaming 
VMs 

Software Testing 
(Asymmetric) 

Run Klee SAT Solver parallel 
symbolic engine 

1 load VM and 3 
worker VMs 

Web Search 
(Asymmetric) 

Run simulated clients with Faban 
driver to benchmark Nutch search 
engine 

1 frontend VM and 
2 web search VMs 

Web Serving 
(Asymmetric) 

Run simulated clients with Faban 
driver to benchmark social event 
calendar with Cloudstone [17] 

1 frontend VM and 
1 backend VM 

The asymmetric configuration usually assigns one serv-
er (or multiple) as a coordinator, which is responsible for job 
partitioning or tasks balancing. The other servers just act as 
computation or data storing resources. In terms of how client 
requests are processed, we observe that nearly all workloads 
in asymmetric configuration maintain a “master-slave” co-
operation style. For example, Hadoop [15] splits and assigns 
data sets through key/value pairs on master nodes and exe-
cutes tasks on slave nodes. For load-balancer applications, 
load node receives clients’ requests, splits complex problems 
into sub-tasks, and then balances sub-tasks among all the 
workers. In a Web processing scenario, a Web front-end 
node usually distributes client requests across other servers, 
collects and sorts temporary responses from Web back-end 
servers, gathers results then replies to clients. In CloudSuite, 
Data Analytics, Software Testing, Web Search and Web 

Serving are all asymmetric configurations. 
In Table 1 we summarize the evaluated workload con-

figurations. We consolidate these cloud workloads into vir-
tualized environment. Each VM is referred to as a node in 
the benchmark. Based on the above classification and cloud 
VM logic function analyses, we further group all these VMs 
into four categories: computation VM, data serving VM, 
network I/O VM, and intermediate transfer VM.  

The computation VM focuses on job (task) execution on 
any available computing resources. The slave node of Data 

Analytics, analysis node in Graph Analytics, and worker 
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node of Software Testing all belong to this kind. The data 

serving VM is mainly used for storing data, such as Cassan-
dra node in Data Serving, cache node in Data Caching, and 
Web slave node in Web Serving. The network I/O VM han-
dles client requests and sends network packages, which dif-
fers from data serving VM in that it has lots of network I/O 
requests instead of disk I/O requests. The network I/O VM is 
important in cloud workload as it is frequently used in media 
streaming application. These three types of VMs are usually 
used for nodes in symmetric organization.  

The intermediate transfer VM is one of the most widely 
deployed schemes in clouds, especially for asymmetric con-
figurations. It is responsible for client request analyzing, 
assigning tasks to slave (worker) nodes, collecting requests 
and replying to clients. It usually combines characteristics of 
data serving VM with network I/O VM. Most master nodes 
and Web front-end nodes belong to this type. For asymmet-
ric cloud workloads, there must be one intermediate transfer 

VM with other type VMs. The impact of vCPU scheduling 
on each kind of VM will be discussed in Section IV. 

B. Experimental Setup 
We perform experiments on servers that use Intel CoreTM 

i7-2600K processors, 32GB RAM, and 500GB hard drives. 
The processor has 4 physical cores with hyper-threading. It 
also supports 16 performance states with 1600MHz mini-
mum frequency and 3801MHz maximum frequency. We use 
Xen-based virtualization to create virtual machines for cloud 
workloads. All the experiments are carried out on Xen-4.1.2 
hypervisor with kernel 2.6.32.40 for Domain 0. Each evalu-
ated VM is HVM type with 2 VCPUs and 2 G memories. 

We choose the credit-based scheduler and Ondemand 
governor as vCPU scheduling and DVFS runtime power 
management. In the single-VM scenario, we study the effect 
of vCPU scheduling on each kind of VM’s DVFS power 
control. For multi-VM cloud hosts, we analyze demand im-

balance (detailed in Section IV-B) and utilization mismatch 
(detailed in Section IV-C) issues using both homogeneous 
and heterogeneous VM consolidation. 

For each VM in the single-VM experiment, we charac-
terize detailed virtual machine behaviors to explore efficien-
cy indicators, including CPU utilization, CPU frequency, 
dirty page number per second, network packets send/receive 
per second, and VBD (virtual block device) sectors 
read/write per second. The CPU frequency is collected using 
xenpm tool. Other metrics including CPU utilization, net-
work packets send/receive per second and VBD sectors 
read/write per second are collected through xentop tool. To 
count dirty page number per second, we develop a method to 
record dirty page number with log dirty mode. We integrate 
all instruments into a single wrapper (as shown in Figure 2) 
to generate dynamic profile of VM behavior under 
Ondemand governor. To achieve accurate frequency anal-
yses, we use xm vcpu-pin method to pin each vCPU to a 
specific physical CPU. We use WattsUp [16] meter to meas-
ure the power consumption of our physical host. 

 
Figure 2: VM Behavior Evaluation Wrapper  

 RESULTS AND ANALYSES 

In this section, we first evaluate the impact of vCPU 
scheduling on single VM in virtualized cloud. We investi-
gate how vCPU scheduling (especially CPU utilization cap-
ping) affects four types of representative cloud VM in terms 
of power, performance, and energy. We then identify and 
characterize the demand imbalance and utilization mismatch 
issues for multi-VM cloud hosts.  

A. Single-VM Cloud Host 
For single-VM scenario, we carefully evaluate four types 

of VM: 1) worker VM (computation VM) from the Software 

Testing benchmark; 2) data store VM (data server VM)  
from the Data Analytics benchmark; 3) Darwin streaming 
VM (network I/O VM) from the Media Streaming bench-
mark; and 4) Web front-end VM (intermediate transfer VM) 
from the Web Search benchmark. Figure 3 shows how vCPU 
capping affects the performance, power and efficiency of the 
evaluated VMs. We adjust the maximum CPU utilization by 
varying the vCPU cap value (the upper limit of the provided 
CPU utilization) through Xen credit scheduler. The com-
mand is: xm sched-credit. 

The first interesting observation is that the vCPU utiliza-
tion capping affects the energy efficiency of different VMs 
in a different way. According to the Ondemand DVFS poli-
cy implemented in the Linux kernel, processor frequency is 
dynamically changed depending on current usage. There-
fore, CPU frequency often increases when utilization goes 
up. As shown in Figure 3-(a), although a higher CPU fre-
quency typically results in increased power demand, the 
system energy consumption does not necessarily increase 
significantly. Here the computation VM yields a relatively 
flat normalized energy efficiency curve when utilization 
varies, indicating better energy proportionality. In contrast, 
other VMs are less energy-proportional to CPU utilization. 
For example, the energy consumption of network I/O VM 
and data serving VM increases significantly as we decrease 
their utilization caps. This is because they incur a great deal 
of un-core power demand which does not change much 
when we vary the CPU frequency. For data serving VMs, 

there are massive memory and disk operations due to the 
NoSQL database requests (such as column read and dataset 
update). For network I/O VMs (such as VMs that run Media 

Streaming workloads), storing and supplying data for clients  
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(a) Computation VM (b) Data serving VM 

  
(c) Network I/O VM (d) Intermediate transfer VM 

Figure 3: Performance, power, and energy of four VMs under different vCPU caps. All the experimental data are normalized to 100% 
vCPU cap in each VM. We use throughput or 1/execution time to represent performance. Power is quantified for the physical host and is 
averaged during the execution. Energy is computed based on performance and power. 

 
requires both disk and network I/O requests. The intermedi-

ate transfer VM combines the characteristics of both data 

serving VM and networking I/O VM. As shown in Figure 3-
(d), its energy consumption fluctuates as we increase the 
utilization cap from 25% to 100%. The observed energy 
saving at highest CPU utilization is less than 5%. 

Capping utilization of vCPUs could decrease the perfor-
mance of all types of cloud VMs. In Figures 3(a)–3(d), the 
VM throughput is always positively correlated with CPU 
utilization. We observe that a higher CPU utilization can 
increase performance significantly only if the VMs are com-
putation-intensive (such as the code analysis task in worker 
VM and the request partitioning/collecting in data store 
VM). For both network I/O VM and intermediate transfer 

VM, increasing vCPU cap from 25% to 100% results in less 
than 9% performance improvement. This is because these 
two types of workload have low computation demand but 
incur intensive I/O interrupts due to disk read/write and 
packets send/receive. 
 Figure 3 also indicates that the most energy-efficient 
operating statue (i.e., the most energy-efficient VM utiliza-
tion cap) can be nondeterministic. During runtime, cloud 
workloads affect both CPU utilization and frequency ad-
justment in an unpredictable way, resulting in very complex 
system-hardware interaction. To fully understand the opera-
tional efficiency of VM scheduling in a DVFS-enabled 
cloud environment, we monitor detailed virtual machine 
runtime behaviors. We set unlimited vCPU utilization in 
each evaluated virtual machine and use Ondemand DVFS 

governor. Our VM characterization considers dirty page rate, 
network packet send/receive rate, and VBD sector read/write 
rate. Figure 4 reports our experimental results. 
 Similar to traditional architectural DVFS power control 
schemes [28], computation VMs incur inefficient frequency 
adjustment primarily due to memory operations. In this 
study we evaluate memory access behavior with dirty page 
rate at the hypervisor/OS level. For characterization purpose, 
we collect dirty page number of each virtual machine every 
second. As we can see from Figure 4-(a), high dirty page 
rate results in CPU frequency droop when CPU utilization is 
below the threshold. If application generates irregular dirty 
page ratio, the frequency jitter will happen, such as 20s ~ 
70s and 80s ~ 160s period in Figure 4-(a). 

For data serving VMs, we monitor their virtual block de-
vice (VBD) operation factors. The VBD refers to an emulat-
ed block device (e.g., disk) for guest virtual machine. It 
serves as the interface between guest OS and physical block 
device. Figure 4-(b) shows the CPU utilization and VBD 
sector operation rate of Cassandra VM over 300s of execu-
tion duration. We observe that the VBD read/write rate is 
almost constant. However, the VBD read rate of a data serv-

ing VM (686406 sectors /s) can be 4.0X (169334 sectors/s) 
and 2.4X (302288 sectors/s) higher than that of intermediate 

transfer VMs and network I/O VMs. CPU utilization varies 
based on clients’ requests and can randomly surpass the 
threshold of Ondemand governor, leading to an increased 
CPU frequency. In this case, lowering vCPU utilization 
would be more efficient here to wait for VBD processing. 
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(a) Dirty page number and frequency varia-
tion of a computation VM in 200s.  

(b) CPU utilization and VBD sector read/write 
variation of a data serving VM in 300s 

  
(c) CPU utilization and packet send varia-
tion of a network I/O VM in 300s 

(d) Packet send/receive and VBD read/write vari-
ation of an intermediate transfer VM in 200s 

Figure 4: Detailed characterization of 4 differ VMs during execution with Ondemand governor under unlimited vCPU utilization 

 Figure 4-(c) presents the network I/O VM. As its name 
suggests, a media streaming VM has much higher network 
packet processing rate (4705394 packets/s) than that of an 
intermediate transfer VM (126900 packets/s). It frequently 
sends video back after receiving client’s request. The CPU 
frequency stays around 1600MHz throughout execution and 
goes up occasionally. Specifically, the request analyses and 
data marshaling phases cause utilization to increase, while 
the video data read and packet prepare phases lower the uti-
lization. Accelerating request parsing and packet marshaling 
by increasing vCPU utilization can improve the throughput 
of the system while maintaining low power consumption at 
the same time. It is useful when the clients’ requests arrive 
frequently or the network buffer is ready.  
 Figure 4-(d) shows the VM characterization of interme-

diate transfer VMs. Even though VBD sector and network 
packets processing rate are not striking among these 4 VMs, 
it combines characteristics from data serving VM and net-

work I/O VM. During 200s of execution time, VBD sector 
read/write has the same trend as data serving VM and net-
work packet send/receive varies like network I/O VM. 
 
Summary: Virtual CPU (vCPU) scheduling affects DVFS 
power management effectiveness through setting different 
CPU utilization limits. Usually, the higher the utilization is, 
the better the performance will be. However, the impact of 
utilization tuning on VM energy consumption is uncertain. 
To save energy cost while maintain high performance, one 

should dynamically adjust the utilization capping of vCPU 
scheduling based on detailed VM behavior analyses. Our 
characterization shows that VM dirty page ratio, VBD local 
queue processing rate, virtual network packets arrival rate, 
and network buffer I/O availability may serve as good effi-
ciency indicators for fine-grained vCPU utilization control.  
 This work mainly focuses on the impact of vCPU sched-
uling on DVFS-based power management. Further system 
design and software overhead optimization are out of the 
scope of this paper, and will be our future work. 

B. Demand Imbalance Issue in Multi-VM Host 
In this subsection, we focus on multi-VM hosts (VMs are 

co-located on a single server). Our key observation is that 
the server energy efficiency could decrease significantly 
when multiple vCPUs with different utilization requirements 
are co-located in the local queue of a single physical core. 
We refer to this problem as demand imbalance.  

The demand imbalance issue happens because current 
frequency control mechanism is unable to follow the fast-
changing vCPU frequency requirements imposed by vCPU 
scheduler. Existing schedulers typically execute these run-
nable vCPUs in a round-robin fashion until they finishes. 
The default vCPU switching interval is 30ms [10], while the 
minimal sampling rate of Ondemand governor is 10ms [9]. 
Although one can increase the switching interval for more 
effective DVFS control, it can significantly degrade the per-
formance of some latency-sensitive virtual machines. 
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(a) Execution time (b) Power and energy (c) Frequency variation in 100s 

Figure 5: Experimental results of heterogeneous workload consolidation under demand imbalance. Performance is evaluated through exe-
cution time. Energy is computed with the average power and the execution time of each computation VM. Performance, power and energy 
are normalized to heter_imbalance scenario. Frequency variation is selected from CPU 0 and CPU 2 in the first 100s. 
 

To understand the demand imbalance issue, let’s consid-
er a system with 16 performance states (P-state, P0-P15). 
Assume that a 100% utilized vCPU A is newly scheduled on 
a physical core previous mapped by a vCPU B of 10% utili-
zation (running at P3, for example). The physical core can 
increase its frequency by three levels at most, which is still 
much lower than the targeted frequency (i.e., the highest 
performance state P15). When A has used up its credits, B 
starts to execute again and the CPU frequency drop back to 
its original level. Consequently, A has to be running on a 
less efficient performance state. It can achieve its best per-
formance-per-watt only if B is removed from the local 
queue. On the other hand, when B is scheduled on a core 
previously long mapped by A (with a steady high frequency 
level), B will always stay at a frequency that is much higher 
than required, leading to unnecessary energy consumption. 

 
1) Demand Imbalance with Heterogeneous Consolidation 

The demand imbalance scheduling problem is common 
in virtualized cloud environment, especially for heterogene-
ous workload consolidation. To demonstrate this, we com-
pare two power management scenarios: heterogeneous con-
solidation with demand imbalance issue (heter_imbalance) 
and heterogeneous consolidation without demand imbalance 
issue (heter_balance). In both scenarios, we create 4 differ-
ent types of multi-VM host: graph analysis VM (computa-

tion VM), Cassandra data store VM (data serving VM), me-
dia streaming VM (network I/O VM), and Web front-end 
VM (intermediate transfer VM). Each VM has 2 vCPUs and 
4GB memory. Our detailed profiling data shows that graph 
analysis VM and Cassandra data store VM have similarly 
high CPU utilization, while media streaming VM and Web 
front VM have very low utilization.  

In the heter_imbalance scenario, we map the vCPUs of 
computation VM and network I/O VM to two separate CPUs 
(CPU 0 and CPU 1), while data serving VM and intermedi-

ate transfer VM are consolidated on another group of two 
CPUs (CPU 2 and CPU 3). In the heter_balance scenario, 
we experiment with different VM consolidation scenarios; 
we consolidate the vCPUs of computation VM and data 

serving VM on CPU 0 and CPU 1. We deploy network I/O 

VM and intermediate transfer VM on CPU 2 and CPU 3. 
Hence, in the first scenario (i.e., heter_imbalance), each 
physical CPU runs two vCPUs of very different utilization. 
In the second scenario (i.e., heter_balance), however, each 
physical CPU runs two vCPUs of similar utilization.  

Figure 5 presents our evaluation results with heterogene-
ous workloads. In terms of performance, except that inter-

mediate transfer VM shows 0.7% degradation, all the other 
VMs’ performance have been improved in the heter_balance 
scenario. The computation VM and data serving VM de-
grades 17.7% and 10.1% in heter_imbalance scenario be-
cause they can hardly run at their targeted frequency.  

From the point of view of energy efficiency, balancing 
VM utilization can lead to very interesting results. As shown 
in Figure 5-(b), even though the balanced scenario shows 
5.6% higher power demand, the total energy consumption is 
saved by 13.4% due to fast execution of computation VM. 

Figure 5-(c) illustrates the frequency switching phenom-
enon in detail. In the heter_imbalance scenario, CPU 0 and 
CPU 2 frequently adjust their frequency. In contrast, in the 
heter_balance case, both CPU 0 and CPU 2 maintain con-
stant frequency (3801 MHz and 1600 MHz, respectively). 
Intermediate transfer VM obtains slightly better performance 
since it executes in much higher frequency than expected. 
However, network I/O VM shows 8.3% performance im-
provement in heter_balance scenario due to performance 
interference, which means consolidating computation VM 
and network I/O VM together leads to more L2 cache miss. 
This has been discussed in [32, 33].  

 
2) Demand Imbalance with Homogeneous Consolidation 

Not only heterogeneous workload, but also homogeneous 
workload consolidation can suffer from demand imbalance. 
Even if the consolidated VMs have the same CPU utiliza-
tion, their execution phases are not always synchronous. For 
example, consider one VM that has three periodical utiliza-
tion phases of equal duration (e.g., 90%, 60%, and 20% uti-
lization). When two VMs of this type are mapped to the 
same physical CPU, it is very likely that the second VM 
begins to execute when the first VM are in the third phase. 
In this case, the vCPUs of these two VMs are not coordinat-
ed very well, resulting in unnecessary frequency adjustment.  

To explore the demand imbalance issue in homogeneous 
consolidation environment, we create three Cassandra data 
store VMs with 2 vCPUs and 2G memory. For each created 
VM, we map their vCPUs to separate physical CPUs (CPU 0 
and CPU 1). We experiment with two scenarios. In the first 
scenario (homo_balance), we use synchronous vCPU sched-
uling. In the second scenario (homo_imbalance), we analyze 
asynchronous execution in vCPU scheduling by deferring 
the application start time.  
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(a) Execution time (b) Power and energy (c) Frequency variation in 100s 

Figure 6: Experimental results of homogeneous workload consolidation under demand imbalance. Performance is measured through exe-
cution time. Energy is computed as the average energy at the time that all VM finishes. Performance, power and energy are normalized to 
homo_balance scenario. Frequency variation is selected from CPU 0 and CPU 2 in the first 100s.   
 

Figure 6 shows our experimental results with homogene-
ous workloads. Obviously, homo_balance is much stable 
than homo_imbalance with fewer frequency jitters since 
synchronous execution allows different VMs to take ad-
vantage of each other for DVFS-based software power man-
agement. In contrast to homo_imbalance scenario, different 
VMs in the homo_balance scenario maintain similar execu-
tion phase. Compared to homo_balance, homo_imbalance 
increases the execution time by 1.1%, 10.2, and 5.1% for 
VM1-VM3, respectively. The measured average power also 
decreases by 17.2%, leading to 28.7% total energy savings. 

 Note that the above results are conservative since there 
are still a significant amount of overlaps among the evaluat-
ed VM execution phases. For cloud workloads, nearly all 
applications on the server side maintain one daemon process, 
waiting for client’s requests and then starting related actions. 
Such execution pattern always leads to asynchronous execu-
tion in homogeneous workload environment. 
Summary: There are two ways to improve vCPU scheduler 
performance and system energy efficiency: 1) grouping 
vCPUs based on their utilization and assigning different 
groups (with different utilization levels) on physical cores. 
2) synchronizing the workload execution phases. 

C. Utilization Mismatch Issue in Multi-VM Host 
We further explore the inefficiency of existing vCPU 

scheduler when a new vCPU has been created and inserted 
in existing vCPU queue. We refer to this problem as the uti-

lization mismatch in multi-VM host environment. 
For current credit-based scheduler, when a new vCPU is 

brought into the system, the scheduler will place it into the 
local queue of one physical core either according to the us-
er’s preference or based on system’s load balancing mecha-
nism. However, this newly inserted vCPU may disturb the 
steady performance state (P-state) established by runtime 
DVFS power management. For example, when a vCPU of 
computation VM is assigned to a local queue with all vCPUs 
from network I/O VM, this vCPU can hardly achieve its tar-
geted frequency level. Similarly, if a vCPU of network I/O 

VM comes into a runnable queue of all vCPUs from compu-

tation VM, it will always run at a higher frequency level, 
leading to unnecessary power consumption. Note that the 
utilization mismatch problem could eventually become a 
demand imbalance problem. However, the utilization mis-

match problem is mainly concerned with vCPU provisioning 
and distribution efficiency.  

1) Utilization Mismatch with Heterogeneous Consolidation 

For heterogeneous workloads, we create 4 different types 
of VMs as before, software testing VM (computation VM), 
Cassandra data store VM (data serving VM), media stream-
ing VM (network I/O VM), and Web front VM (intermediate 

transfer VM). Each VM has 2 vCPUs and 4G memory. We 
deploy computation VM and data serving VM on CPU 0 and 
CPU 1 while network I/O VM and intermediate transfer VM 
are mapped to CPU 2 and CPU 3. The former two have simi-
lar high utilization and the latter two stay at low utilization. 
In this experiment the newly created VM is a computation 

VM with 2 vCPU and 4G memory. In a utilization matched 
scenario (heter_match), we statically pin this VM to CPU 0 
and CPU 1. In a utilization mismatched scenario (het-

er_mismatch), we map the new VM to CPU 2 and CPU 3. 
We present our results in Figure 7. In the heter_match 

scenario, since we have assigned additional vCPUs to CPU 0 
and CPU 1, the execution time of computation VM and data 

serving VM have been increased by 7.4% and 25.6%, respec-
tively. Similarly, in the heter_mismatch scenario, the execu-
tion time of network I/O VM and intermediate transfer VM 
have been increased. Regarding the newly inserted VM, its 
execution is 94.7s in the matched case and 118.6s (25.2% 
longer) in the mismatched scenario. Therefore, avoiding 
utilization mismatch can help improve the performance of 
the newly inserted VMs significantly.  

In terms of energy efficiency, the heter_match could re-
duce 5.6% power demand and 32.4% energy consumption, 
as shown in Figure 7-(b). This can be explained in Figure 7-
(c). The frequency of CPU 0 in the matched case is not dis-
turbed by the newly created vCPU, which still maintains at 
3801 MHz as it is in the second one. However, the frequency 
of CPU 2 in heter_mismatch scenario rises since the newly 
inserted computation VM has higher utilization. We can see 
more frequency jitter in Figure 7-(c), where the CPU 2 in 
heter_match case only has two jitters due to the intermediate 

transfer VM. 

2) Utilization Mismatch with Homogeneous Consolidation 

In homogeneous consolidation environment, we create 2 
data serving VMs with 2 vCPUs and 4G memory. We insert 
a computation VM in the matched scenario (homo_match) 
and we insert an intermediate transfer VM in the mis-
matched scenario (homo_mismatch). The newly inserted VM 
in both cases have the same configuration. All the VMs are 
pinned to CPU 0 and CPU 1. 
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(a) Execution time (b) Power and energy (c) Frequency variation in 100s  

Figure 7: Experimental results of heterogeneous workload consolidation with utilization mismatch. Performance is measured by execution 
time. Energy is computed with the average power and the time that all 4 VMs are finished execution. Performance, power and energy are 
normalized to heter_match scenario. Frequency variation is selected from CPU 0 and CPU 2 in the first 100s. 
 

   
(a) Execution time (b) Power and energy (c) Frequency variation in 100s 

Figure 8: Experimental results of homogeneous workload consolidation with utilization mismatch. Performance is measured by execution 
time. Energy is computed with the average power and the time that all 2 VMs are finished execution. Performance, power and energy are 
normalized to homo_match scenario. Frequency variation is selected from CPU 0 and CPU 2 in the first 100s. 

 
As shown in Figure 8-(c), CPU 0 in homo_mismatch 

scenario varies a lot as the intermediate transfer VM has 
unstable CPU utilization compared to that in homo_match 
scenario where CPU 0 maintains high frequency. Thus, the 
execution time of two data serving VMs in the mismatch 
scenario increases by 19.7% and 20.5%, compared to a 
matched scenario. Although the physical host consumes 
9.7% more power, its energy consumption decreases by 
8.8% due to fast execution.  
 
Summary: For a newly created VM, utilization mismatched 
scheduling not only affects the performance of collocated 
virtual machines, but can also degrades energy efficiency of 
the physical host. This could happen in both homogeneous 
and heterogeneous cloud environment. Without appropriate 
optimization, existing scheduling schemes can adversely 
affect DVFS-based power management. By re-mapping the 
unmatched vCPU to a different physical core, one could 
improve the overall system efficiency. 

 RELATED WORK 

Prior work on power management in virtualized envi-
ronment mainly include cluster-level management, server-
level and system-level management.  

There have been many papers discussing power control 
of VMs across the data center. Nearly all approaches [4, 19, 
21, 34] leverage live migration techniques for online sched-
uling. For example, vGreen [19] proposes a multi-tiered 
software system to manage VM scheduling at cluster-level 
to achieve energy efficiency. Its key idea is to explore the 
relation between architectural characteristics (IPC, memory 
behavior, etc.) of a VM and system performance. The dis-
tributed resource scheduler (DRS) from VMware [20] is a 

proprietary solution, which also takes power into considera-
tion when placing and scheduling one VM. Recently, [21] 
proposes a monitoring infrastructure to measure both per-
formance and QoS metrics for different types of workloads. 
Their scheme dynamically manages services and batch jobs 
in order to maximize throughput. Their solution scales well 
for resource management in heterogeneous workloads. 

At the server level, prior studies mainly focus on power-
aware scheduling using DVFS. These studies typically 
monitor virtual machine load and apply fine-grained perfor-
mance control based on DVFS technique. For example, [5] 
proposes a feedback control framework, which takes proces-
sor load as input and dynamically decides the new frequency 
based on the historical trend. It also allocates a power credit 
for each guest OS, which is used to account power consump-
tion for different CPU frequency. In contrast, [6] proactively 
monitors VM CPU load and dynamically scales processor 
frequency to save energy. In addition, a recent proposal [7] 
explores low-latency power states (S states) in enterprise 
servers and integrates them with an end-to-end power-aware 
virtualization management scheme. 

At the system level, [22] leverages the power manage-
ment decisions of the guest OS on virtual power states to 
determine local and global policies. It mainly relies on effi-
cient power management policies in the guest OS and takes 
little VM characterization into consideration. The authors in 
[23] design a coordinated multi-level solution to drive VM 
placement and power management via power estimation and 
workload utilization. Stoess et al. [24] implements an effec-
tive infrastructure to account, distribute and control the pow-
er consumption in multi-layered software virtual environ-
ment. For HPC workload, the authors in [25] use VM char-
acteristics such as cache footprint and working set to achieve 
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power-aware VM placement. Besides, the authors in [26] 
build power models based on VM resource usage to infer 
VM power consumption at runtime then they further work to 
budget power in virtualized data centers [27]. 

There are also extensive studies focusing on DVFS eval-
uation and optimization in the machine architecture level. 
For example, [28] and [29] put an emphasis on DVFS per-
formance predictor. [30] and [31] explore workload execu-
tion phase detection. In this paper we focus on system-level 
frequency scaling in cloud environment. 

Our paper distinguishes itself from prior work in two as-
pects. First, this paper provides the first detailed characteri-
zation on the interplay between vCPU scheduling and 
DVFS-based system power management. Second, while 
prior work mainly focuses on traditional applications, we put 
an emphasis on emerging scale-out virtualized cloud work-
load (including single- and multi- VMs hosts), which has 
much more complex execution behaviors. 

 CONCLUSIONS 

In this study we explore the efficiency of vCPU schedul-
ing on system-level DVFS power management in virtualized 
cloud environment. We evaluate four types of representative 
cloud virtual machine and we examine the interplay between 
vCPU scheduling and dynamic frequency scaling on both 
single-VM and multi-VMs cloud hosts.  

For single-VM hosts, vCPU scheduling affects DVFS 
power management through setting different CPU utilization 
caps. Although workload performance increases when utili-
zation goes up, we observe that the energy efficiency of the 
physical host is actually workload-dependent.  

For multi-VM hosts, we identify and characterize the 
demand imbalance and utilization mismatch issues which 
can cause inefficient or unnecessary frequency tuning activi-
ties. We show that existing platforms have the potential to 
improve energy efficiency and workload performance by 
32% and 25%, respectively, if vCPUs are balanced and ap-
propriately scheduled based on their utilization.  

This work represents our first step toward designing a 
joint optimization scheme for improving both virtual ma-
chine’s performance and physical host’s energy efficiency. 
We believe this paper provides valuable insights for energy- 
efficient virtualization in the cloud environment. 
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