
Skywalker: Efficient Alias-method-based Graph
Sampling and Random Walk on GPUs

Pengyu Wang∗, Chao Li∗, Jing Wang∗, Taolei Wang∗, Lu Zhang∗, Jingwen Leng∗†, Quan Chen∗, Minyi Guo∗
∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Email: {wpybtw, jing618, sjtuwtl, luzhang}@sjtu.edu.cn, {lichao, leng-jw, chen-quan, guo-my}@cs.sjtu.edu.cn
†Shanghai Qi Zhi Institute, Shanghai, China

Abstract—Graph sampling and random walk operations, cap-
turing the structural properties of graphs, are playing an impor-
tant role today as we cannot directly adopt computing-intensive
algorithms on large-scale graphs. Existing system frameworks
for these tasks are not only spatially and temporally inefficient,
but many also lead to biased results. This paper presents
Skywalker, a high-throughput, quality-preserving random walk
and sampling framework based on GPUs. Skywalker makes three
key contributions: first, it takes the first step to realize efficient
biased sampling with the alias method on a GPU. Second, it
introduces well-crafted load-balancing techniques to effectively
utilize the massive parallelism of GPUs. Third, it accelerates alias
table construction and reduce the GPU memory requirement with
efficient memory management scheme. We show that Skywalker
greatly outperforms the state-of-the-art CPU-based and GPU-
based baselines, in a wide spectrum of workload scenarios.

Index Terms—Graph sampling, random walk, graphics pro-
cessing unit.

I. INTRODUCTION

As a ubiquitous data structure, a graph holds the information
of entities and the relationship between them. Classic graph
processing algorithms can only capture the low-level features,
while traditional machine learning on graphs requires time-
consuming feature engineering. In recent years, graph repre-
sentation learning aims to automatically learn the embedding
that encodes the structure information of the graphs for
the downstream machine learning tasks. It has shown great
promise in recommendation system [1], e-commerce [2], etc.

Graph sampling and random walk algorithms are both
important procedures for exploring graphs. The former mainly
emphasizes on the local structure while the latter intends to
capture more global information. Both types of operations
can significantly reduce the ever-growing size of graph data,
which allows researchers to adopt deeper and more com-
plicated neural networks on large-scale graphs. Algorithms
like node2vec [3], DeepWalk [4] GraphSAGE [5], Para-
GCN [6] and GraphSAINT [7] learn the embedding of nodes
or graphs, showing similar or even better results than directly
learning from the entire graph. As reported in prior work [8],
graph sampling accounts for 31% to 82% of the time for
GraphSAGE training. Therefore, the performance of graph
sampling is critical for the rapid iteration of GNNs.

Sampling and random walks are considered as embarrass-
ingly parallel computing tasks, which exhibit little commu-
nication between walkers or sampling instances. However,

effectively leveraging the parallel processors for them is non-
trivial. There are two types of sampling and random walks:
unbiased (unweighted) and biased (weighted). The former
one selects neighbors uniformly, and it is generally easy to
scale on cores. However, many algorithms use non-uniform
sampling probability to select neighbors, hoping to capture
more information of the graph structure, termed as biased
walk/sampling. In contrast, the biased version computes the
transition probability for neighbors according to edge weights,
showing great irregularity due to the nature of graphs.

Since sampling can be seen as a type of graph algorithm, a
few researchers have reconfigured the existing general graph
processing frameworks to perform sampling and random walk.
For example, DrunkardMob [9] provides out-of-memory ran-
dom walk capability based on GraphChi [10]. Deep Graph
Library (DGL) [11] leverages a minimal Gunrock [12] im-
plementation to perform sampling. In general, these systems
follow the vertex-centric iterative execution model commonly
used in graph computing frameworks [12]–[14]. Nonetheless,
they lack optimizations specifically for graph sampling and
random walks, which exhibit different properties than tradi-
tional graph processing workloads.

Specialized system frameworks have been proposed to ad-
dress the unique characteristics of graph sampling or random
walks. For example, there have been studies with CPU-based
designs. GraphWalker [15] is a system optimized for random
walk on disk-resident graphs, supporting the only unbiased
random walk. KnightKing [16] is a distributed system dedi-
cated to random walk algorithms. It adopts the classic alias
method [17], which is in favor of sampling but requires a pre-
processing procedure (building an alias table for all vertices).
Another important group of works is to take advantage of
the massive parallelism and the high-bandwidth on-board
memory of GPUs. Two representative GPU-based sampling
frameworks are C-SAW [18] and NextDoor [8]. NextDoor
adopts the rejection sampling techniques from KnightKing, but
its number of trials is highly dependent on the distribution of
biases. C-SAW, on the other hand, uses the inverse transform
sampling (ITS) [19] method to select vertices, which is costly
in terms of time complexity. Besides this, C-SAW neglects
high-degree vertices, resulting in biased results.

Based on the above observations, we ask an important
question: can we perform sampling/walking in a spatially
and temporally efficient manner while ensuring exact results?

To answer this question, we thoroughly investigate exiting
algorithms, systems, as well as hardware platforms. We found
that the alias method has shown great potential. The idea is to
jointly exploit the low-time-complexity sampling with the alias
method and the massive parallelism with GPU acceleration.
Note that the alias method is underestimated and is considered
to be not well-suited for running on GPUs in prior works [18],
[20]. In this paper, we focused our attention on unleashing the
full potential of the alias method on GPUs.

We present Skywalker, an efficient solution for graph sam-
pling and random walks on GPU. We have implemented an
easy-to-use programming interface for a variety of algorithms.
It includes optimization for unbiased or biased, sampling or
random walk algorithms, and real-time or online application
scenarios. Skywalker shows significant speedup over the state-
of-the-art baseline systems. We are ready to release Skywalker
as an open-source project in the near future. To the best of
our knowledge, Skywalker is the first system that addresses
the challenges of efficiently adopting the alias method for
sampling on GPU.

This paper makes the following contributions:
• We introduce a parallel algorithm for alias table con-

struction. To the best of our knowledge, this is the first
implementation of the alias method on GPU.

• We introduce versatile sampler, a novel execution model
for graph sampling and random walk algorithms. It care-
fully handles the irregularity of graphs and it can reduce
the overhead of GPU kernel invoking.

• We introduce efficient buffering techniques using shared
memory to accelerate alias table construction. Along
with the proposed compressed alias table, the memory
requirement of the alias method is greatly reduced.

• We put the above techniques together and present Sky-
walker, an efficient system for graph sampling and ran-
dom walk algorithms on GPU. It is heavily optimized
for the alias method on GPU in execution and memory
efficiency. We show that Skywalker achieves significant
speedup over state-of-the-art baselines.

II. BACKGROUND

A. Graph Sampling and Random Walk

We first introduce the terminology of graph sampling and
random walk algorithms. Graph sampling and random walk
algorithms are to find a subgraph that can be used to estimate
the properties of the original graph.

a) Graph Sampling: Graph sampling algorithms work
as follows: For a given graph, one sampler starts from a
given root vertex, then repeatedly selects several neighbors
of the residing vertex (usually without replacement). Select-
ing uniformly or according to a given transition probabil-
ity distribution results in unbiased or biased sampling. The
probability distribution is often determined by the weight of
edges. Neighbor sampling samples a constant number
of neighbors for each layer. GraphSage [5] is an induc-
tive algorithm to learn the embedding of a graph using

Aggr.

Aggr.

Aggr.

2-hop

1-hop

Root

Fig. 1: Graph neural network using Neighbor Sampling.
Aggregators gather the information of 2-hop neighbors.

0

43

12

Fig. 2: Random walk on a graph. A walk path is in green.

Neighbor sampling. It samples the k-hop neighbors of
the root vertices. Figure 1 shows how these GNN algorithms
work. Snow-ball sampling [21] continually adds newly-
discovered neighbors of vertices in the current vertex set until
a certain depth. Forest-fire sampling [22], [23] is a
probabilistic version of Snow-ball sampling, following
a binomial distribution.

b) Random Walk: The procedure of random walks is
similar to sampling. One walker repeatedly selects one neigh-
bor from the residing vertex, and moves itself to the selected
vertex until its length reaches a given length. Personalized
PageRank (PPR) [24], [25] is a sophisticated version of
PageRank [26]. It is a biased random walk algorithm with a
determination probability for each step. Deepwalk [4] is an
unbiased walk algorithm for graph embedding. Later work [27]
extends Deepwalk to a biased version.

The biases in the aforementioned algorithms are static. On
the other hand, some algorithms leverage dynamic biases using
the runtime information. node2vec [3] introduces the 2nd

order random walk, defining two hyperparameters p and q to
utilize the running states. Specifically, a walker just traveled
edge (t, v) and resides at vertex v. Its transition weight to
vertex v’s neighbor x for the next step is regulated with a
parameter αpq as w′vx = αpq(t, x)× wvx, where

αpq(t, x) =

1
p , if dtx = 0

1, if dtx = 1
1
q , if dtx = 2

p is called as the return parameter, deciding the likelihood of
immediately revisiting a node.

c) Summary: Random walk algorithms can be seen as
special cases of sampling as they both select vertices based on
the connectivity of graphs. We use sampling to refer to both
graph sampling and random walk algorithms unless otherwise
noted. We use transit vertices to term the vertices whose

neighbors are to be selected. We use sample instances to
represent the independent sampling tasks.

B. Key Operations of Sampling

Selecting vertices for unbiased sampling is straightforward
as we can generate random numbers from 1 to the degree of
the current vertex to select the neighbors. To select vertices
for biased sampling, there are several options.

a) Inverse Transform Sampling (ITS): ITS is a common
technique for sampling. It computes the cumulative distribu-
tion function (CDF) of the bias distribution, and then performs
sampling. Suppose a vertex u has neighbors v1, v2, ..., vn. The
bias of edge Euvi

connecting vertex u and vi is buvi
. We can

get the CDF as

C(j) =

∑j
1 buvi∑n
1 buvi

.

Given a random number p between 0 and 1, we can find a
candidate vertex vk satisfying that C(k) ≤ p < C(k + 1).
For example, v1 to v4, the neighbors of v0, have bias 1, 1,
1 and 2, respectively. The CDF is computed as Figure 3(a).
Suppose we generate the random number as 0.8, then v4 is the
sampled vertex. Computing the CDF requires O(n) time and
space while optimized drawing samples once has O(log n)
complexity using binary search.

b) Rejection Sampling: Rejection sampling does not
need to compute the CDF. Instead, it leverages an easy-to-
sample distribution to assist the sampling. Specifically, this
distribution, called envelope distribution, is the upper bound
of the bias distribution. For example, the rectangle covering
from (0,0) to (4,2), representing a uniform distribution, is an
envelope of the bias distribution in Figure 3(b). Then we can
generate two random numbers to simulate throwing a dart
within that envelope. If the height of the sample is lower than
the bias of its position, we accept this sample. If the height of
the sample is higher than the bias of its position, we reject this
sample and repeat this procedure until we find a valid sample.
Finally, the accepted samples follow the bias distribution. For
more details, please refer to the related textbooks [28].

c) Alias Method: This method constructs two tables, a
probability table, and an alias table to draw samples. Specifi-
cally, this algorithm assigns the biases of n neighbor vertices
into n buckets. The vertices which have biases larger than the
average bias distribute their biases to help those vertices with
biases lower than the average bias to fill up their buckets. As
Figure 3(c) shows, v1, v2, v3 all have a normalized bias 0.8.
Thus, v4 contributes its bias to fill up the bucket of v1, v2, v3.
The resulted probability table is {0.8, 0.8, 0.8, 1} and the alias
table is {v4, v4, v4, v4}. To select one sample, we need to
generate two random numbers. The first one determines one
index while the second one determines to choose the vertex
of that index or its alias. Constructing an alias table requires
O(n) time and space while the cost of sampling once is O(1).

C. Limitations of the State-of-the-Art

Exiting frameworks all have their limitations. Taking C-
SAW (the latest work on GPU-based sampling) for example, it

often generates biased results. C-SAW leverages prefix-sum to
compute the Cumulative Transition Probability Space (CTPS),
but it lacks the support for computing the CTPS for extremely
high-degree vertices. Its open-sourced implementation [29]
just skips the vertices with degrees larger than 8000. In
addition, C-SAW uses binary search to draw samples. The
time complexity of selecting samples in this way is too high
compared with the alias method (O(log n) vs. O(1)). It is
costly to draw samples for high-degree vertices. Moreover,
C-SAW’s implementation leverages inflexible data structure
for sampled result and intermediate data which is severely
limited for high-degree vertices and space inefficient in terms
of memory utilization. For example, its in-memory variant can
only issue around 4000 random walk instances for Orkut at a
time on a single tested GPU with 11 GB memory.

Another representative work on GPU-based sampling is
NextDoor [8]. It chooses to leverage rejection sampling similar
to KnightKing [16]. However, the average number of trials of
rejection sampling is highly dependent on the distribution of
biases. For example, Layer Sampling [30] leverages the degree
of vertices as bias. For power-law graphs, the biases also have
a power-law-like distribution which means that the biases of
some vertices are so large that rejection sampling would have
a large average number of trials for every trial.

D. Design Opportunities and Challenges

The alias method is preferable in practice as it allows
drawing samples in constant time. Once the alias table is
constructed, sampling takes constant time as long as the
bias does not change. This is preferable as the alias table
can be reused across epochs and even different downstream
applications. The preprocessing cost can be amortized as the
downstream GNN tasks generally need to run tens or hundreds
of epochs till convergence. Not to mention that AI researchers
often need to run tasks repetitively for network architecture
searching [31] and hyperparameter tuning.

Despite the above benefit, the speed for constructing the
alias table can be a bottleneck, especially for some algorithms
using dynamic biases such as node2vec. A natural way
to speed up alias table construction is leveraging parallel
processing units such as GPGPU. However, constructing an
alias table is considered to be non-trivial or problematic
on GPUs [18], [20]. Wei et al. [20] found that their GPU
implementation for TopPPR [32] is no faster than the multi-
thread CPU version.

Specifically, adopting the alias method on GPU faces three
challenges:

1) It is challenging to parallelize the execution of the alias
method on GPU. Constructing the alias table includes
a large portion of serial operations. It is non-trivial to
map the alias table to GPUs with SIMT execution style.
Naively mapping the serial part of the algorithm to
each GPU thread would incur warp divergence due to
unpredictable logical branch, which would severely limit
execution efficiency.

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ili

ty

(a) Inverse transform sampling

0

0.5

1

1.5

2

1 2 3 4

B
ia
s

Reject

Accept

(b) Rejection sampling

1 1 1 2

0.2 0.2 0.2 0.4
1 2 3 4

0.2 0.4 0.6 0.999
V1 V1 V3 V4

0.25 0.25 0.25
0.8 0.8 0.8 1
0.2 0.2 0.2

x y
0 0.2

0.99 0.2
1 0.4

1.99 0.4
2 0.6

2.99 0.6
3 1

3.99 1

B
ia

s

0

0.5

1

1.5

2

1 2

B
ia

s

0

0.5

1

1 2 3 4

N
o

rm
al

iz
e

d
 B

ia
s

v1

v4

v4v2 v3

v4v4

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

𝑽𝟒
𝑽𝟒
𝑽𝟒
𝑽𝟒…

Alias
…

Prob

.8

.8

.8

1𝑽𝟒

𝑽𝟏

……

(c) Alias method

Fig. 3: Methods to perform sampling.

Sampling & Random Walk Algorithms

Execution Engine

Compressed
Alias Table

Efficient buffer

Mem. Opt.

Versatile
Sampler

Semi-async.
Execution

Programming Interface

Parallel Alias
Table

Construction Alg.

Speculative
Execution

Fig. 4: Skywalker architecture.

2) It is challenging to balance the parallelism and memory
requirement on GPUs. On one hand, processing many
sampling instances concurrently is the key to utilize
the massive parallelism of GPUs. On the other hand,
constructing an alias table for each vertex requires
memory space to storing the necessary intermediate data,
which is not insignificant (more details are discussed in
§III-C1c). The overall memory requirement of the buffer
is proportional to the number of concurrent sampling
instances. It is difficult to provide high sampling perfor-
mance while squeezing the memory budget.

3) It is challenging to adopt the memory-hungry alias
method on resource-limited GPUs. Besides the memory
consumption for the intermediate data, storing the alias
method itself requires a larger space than the graph
structure data. Thus, the capability of processing large
graphs would be greatly limited without sophisticated
designs for space efficiency.

III. SKYWALKER

In this work, we set an ambitious goal of addressing the
aforementioned challenges, so that we can enjoy the benefits of
the alias method for sampling on GPUs. This section presents
Skywalker, our comprehensive solution for graph sampling and
random walk on the GPU.

A. System Overview

Skywalker is systemically optimized in three aspects: par-
allel algorithm, parallel execution engine, and memory opti-
mizations. 1) The parallel algorithm aims to address the first

challenge, allowing Skywalker to exploit the parallelism inside
each sampling task instance, i.e. intra-instance parallelism.
2) The parallel execution engine leverages a novel execution
model with multi-level parallel for load-balancing and GPU
execution efficiency to fully exploit the parallelism of indepen-
dent sampling instances, i.e. inter-instance parallelism. This
execution model allows one to utilize the massive parallelism
of GPUs while it does not require much space for intermediate
data, addressing the second challenge. 3) Our memory opti-
mizations include the designs to reduce memory requirement
so that Skywalker can better handle large graphs, addressing
the third challenge.

Skywalker targets both unbiased and biased workloads.
Skywalker supports two working modes for biased workloads,
offline or realtime mode. In the offline mode, it constructs the
alias table for all vertices in one graph dataset at once as a
preprocessing procedure. After the preprocessing, Skywalker
performs sampling or random walk directly using the built
alias table. In the realtime mode, the alias table of one vertex is
constructed for those transit vertices on the fly. Skywalker can
cache the constructed alias table for future reuse. For sampling
and random walk algorithms using dynamic bias, Skywalker
works in the realtime mode. For algorithms using static bias,
Skywalker can work in either realtime or offline mode.

B. Exploiting Intra-instance Parallelism

To allow the alias method to effectively run on GPUs, we
first parallelize the algorithm to construct the alias table.

a) Parallel Alias Table Construction: We first present a
classic serial algorithm, known as Vose’s Alias Method [33]
in Algorithm 1. Without loss of generality, we first normalize
the bias so that the average bias equals to 1. Then, the
vertices with biases larger than 1 are inserted into a set
Large. Correspondingly, the vertices with biases less than 1
are inserted into a set Small. Then, vs and vl are popped from
Small and Large. Their biases are used to fill up a bucket
of size one. A portion of bias of vl can help vs to fill up the
bucket of vs. As the original bias of vl is larger than 1, its
currently remaining bias is larger than 0. If the remaining bias
of vl is larger than 1, vl is inserted back to Large, or Small
if the remaining bias of vl is smaller than 1. This procedure
is repeated until Small or Large becomes empty. Note that
the resulted alias table is not unique. Large and Small can

be implemented as either stacks or queues as they both lead
to valid results.

Algorithm 1 Serial algorithm to construct alias table.

tmp
Pengyu Wang

Algorithm 1: Serial algorithm to construct alias table.
Input: B = {b1, b2, ...bn}
Result: Prob,Alias

1 Large = Small = Alias = ∅;
2 Prob = {pi|pi = n∗bi∑n

1 bj
, 1 ≤ i ≤ n} ;

3 for i = 1 to n do
4 if pi > 1 then
5 Large = Large ∪ {vi};
6 else
7 Small = Small ∪ {vi};
8 end
9 while Large 6= ∅ And Small 6= ∅ do

10 vs = Small.pop();
11 vl = Large.pop();
12 Prob[vl] = Prob[vl] + Prob[vs]− 1;
13 Alias[vs] = vl;
14 if Prob[vl] > 1 then
15 Large = Large ∪ {vl};
16 else if Prob[vl] < 1 then
17 Small = Small ∪ {vl};
18 end

Algorithm 2: Parallel alias table construction.
Input: Large, Small, Prob, Alias
Result: Prob,Alias

1 while Large 6= ∅ do
2 if ThreadIdx < Large.size then
3 IsMain = true;
4 else
5 IsMain = false;
6 vs = Small.pop();
7 if ThreadIdx == 0 then
8 Large.size− = MIN(Large.size,GroupSize);
9 vl = Large[ThreadIdx mod Large.size];

10 if IsMain then // Main thread compute
first

11 oldP = atomicSub(Prob[vl], (1− Prob[vs]));
12 if !IsMain then
13 oldP = atomicSub(Prob[vl], (1− Prob[vs]));
14 if oldP − (1− Prob[vs]) < 0 then // Roll back
15 AtomicAdd(Prob[vl], (1− Prob[vs]));
16 Small = Small ∪ vs;
17 else // Successful update
18 Alias[vs] = vl;
19 if IsMain then
20 if Prob[vl] > 1 then
21 Large = Large ∪ vl;
22 else if Prob[vl] < 1 then
23 Small = Small ∪ vl;
24 end

To utilize the parallelism of GPU, Skywalker utilizes mul-
tiple threads to compute the alias table of one vertex. Several
threads in one thread warp or thread block, termed as a
workgroup, work cooperatively. Threads in one workgroup
can insert vertices into Large and Small simultaneously
using atomic operations (line 3 to 8 of Algorithm 1). As for
combining the vertices in Large and Small (line 9 to 18 of
Algorithm 1), each thread in one workgroup dequeues and pro-
cesses one pair of large- and small-bias vertices independently
as long as there are enough vertices in Large and Small.

However, the construction would have limited parallelism
if the number of vertices in Large or Small is imbalanced.
Consider the example shown in Figure 5(a). This workgroup
has eight threads. The size of Small is equal to or larger
than 8 while there are only three vertices in Large. Thus, five
threads will be idle as they can not get one large-bias vertex
to process. This situation is common as we cannot assume
that Large and Small have similar sizes. Actually, different
bias distributions result in Large and Small with different
sizes. For example, using vertex degree as the bias on power-
law graphs would result in few large-bias vertices and many
small-bias vertices. In such cases, many vertices would be idle
as they cannot get large-bias to process.

b) Handling Irregular Bias Distribution: To solve the
above problem, we propose a technique named speculative
execution. As the bias of vertices in Large will eventually
be distributed into several buckets of vertices in Small,
we can let several small-bias vertices aggressively consume
the bias of large-bias vertices. This could result in negative
biases when the biases of those vertices are over-consumed,
which is impossible under normal execution. In this situation,
those threads that incur over-consumption should roll back
their execution. In this way, the workgroup would have full

TkT0 T1 … T7

0 1 2 3 4 5 6 7Small

0 1 2Large 0 1 2 0 1

T0 T1 … T7

0 1 2 3 4 5 6 7Small

0 1 2Large 0 1 2 0 1

T0 T1 … T7

0 1 2 3 4 5 6 7Small

0 1 2Large

(a) Direct mapping.

TkT0 T1 … T7

0 1 2 3 4 5 6 7Small

0 1 2Large 0 1 2 0 1

T0 T1 … T7

0 1 2 3 4 5 6 7Small

0 1 2Large 0 1 2 0 1

T0 T1 … T7

0 1 2 3 4 5 6 7Small

0 1 2Large

(b) Speculative execution.

Fig. 5: Workload mapping strategies have different parallelism
when Large and Small are imbalanced.

parallelism even if the size of Large is smaller than the size
of Small or the size of the workgroup.

Algorithm 2 Parallel alias table construction.

tmp
Pengyu Wang

Algorithm 1: Serial algorithm to construct alias table.
Input: B = {b1, b2, ...bn}
Result: Prob,Alias

1 Large = Small = Alias = ∅;
2 Prob = {pi|pi = n∗bi∑n

1 bj
, 1 ≤ i ≤ n} ;

3 for i = 1 to n do
4 if pi > 1 then
5 Large = Large ∪ {vi};
6 else
7 Small = Small ∪ {vi};
8 end
9 while Large 6= ∅ And Small 6= ∅ do

10 vs = Small.pop();
11 vl = Large.pop();
12 Prob[vl] = Prob[vl] + Prob[vs]− 1;
13 Alias[vs] = vl;
14 if Prob[vl] > 1 then
15 Large = Large ∪ {vl};
16 else if Prob[vl] < 1 then
17 Small = Small ∪ {vl};
18 end

Algorithm 2: Parallel alias table construction.
Input: Large, Small, Prob, Alias
Result: Prob,Alias

1 while Large 6= ∅ do
2 if ThreadIdx < Large.size then
3 IsMain = true;
4 else
5 IsMain = false;
6 vs = Small.pop();
7 if ThreadIdx == 0 then
8 Large.size− = MIN(Large.size,GroupSize);
9 vl = Large[ThreadIdx mod Large.size];

10 oldP = atomicSub(Prob[vl], (1− Prob[vs]));
11 if oldP − (1− Prob[vs]) < 0 then // Roll back
12 AtomicAdd(Prob[vl], (1− Prob[vs]));
13 Small = Small ∪ vs;
14 else // Successful update
15 Alias[vs] = vl;
16 if IsMain then
17 if Prob[vl] > 1 then
18 Large = Large ∪ vl;
19 else if Prob[vl] < 1 then
20 Small = Small ∪ vl;
21 end

As Figure 5(b) shows, eight threads in a workgroup work
cooperatively. Each thread has a unique smaller-bias vertex
to process. As for large-bias vertices, there are only three of
them. Specifically, we term the threads with a local index less
than the size of Large as main threads. Main threads hold the
ownership of the respective vertices, and are responsible for
enqueuing that vertex to Large or Small at the end of the
steps. Those non-main threads can also consume the bias of
one large-bias vertex for its smaller-bias vertices even though
they do not hold the ownership. Thus, thread t0, t1, t2 are
the main threads, holding the ownership of vertex vl0 , vl1
and vl2 , respectively. All threads try to process their low-
bias vertices using atomic operations, speculatively. If the
resulted probabilities are valid, the speculative execution is
succeeded, and the corresponding threads continue to update
the alias table. Otherwise, the corresponding threads withdraw
their probability updates. Note that the atomic functions in

Algorithms 2 return the original value before modification,
following CUDA’s semantic [34]. At the end of this step, main
threads enqueue the large-bias vertices to Large or Small
based on their current probability. In this way, the parallelism
is improved. Algorithms 2 shows the parallel algorithm.

If the workgroup is a block, block synchronization is nec-
essary. For GPUs whose architecture is newer than Volta [35],
warp-level synchronization is also needed as the independent
thread scheduling feature does not guarantee divergent threads
in one warp to converge. For most of the vertices, the atomic
operations are on shared memory with negligible overhead.

C. Exploiting Inter-instance Parallelism

This subsection presents how Skywalker exploits inter-
instance parallelism of graph sampling.

1) Versatile Sampler: Skywalker introduces an execution
model named versatile sampler for sampling tasks. More than
implementing the algorithm introduced in § III-B, versatile
sampler allows GPU threads to participate in different levels
of collaboration for alias table construction with low overhead.

a) Multi-level Load-balancing: Real-world graphs often
have skewed degree distributions, and therefore a onefold par-
allel execution strategy would cause severely load-imbalance.
It can result in stragglers that dominate the execution time. To
efficiently handle the skewness of graphs, Skywalker leverages
a hierarchical algorithm to assign GPU resources for vertices
with varying degrees. Specifically, Skywalker determines the
different sizes of workgroups to process one transit vertex
using two thresholds: warp-processing threshold and block-
processing threshold. For low-degree vertices whose degrees
are lower than the warp-processing threshold, 4 or 8 threads in
the same warp cooperate to construct the alias table. For mid-
degree vertices with degrees higher than the warp-processing
threshold but lower than the block-processing threshold, Sky-
walker provides a warp for them. For the remaining high-
degree vertices with degrees higher than the block-processing
threshold, threads in one block work cooperatively.

This strategy is inspired by the virtual warp-centric [36]
and the Thread-Warp-CTA (TWC) [12], [37] strategy used in
GPU-based graph processing frameworks. Virtual warp-centric
strategy leverages sub-warps to improve the utilization. TWC
utilizes thread, warp or CTA (cooperative thread array, the
same as thread block) to process vertices with varying degrees.
But they are different as the operations of traditional graph
computing algorithms are generally simpler and independent
while constructing the alias table is more complicated and
requires cooperation among threads.

b) Role Morphing: Skywalker allows the threads to
morph between different roles. Specifically, Skywalker imple-
ments subwarp-, warp- and block-collective alias table con-
structors as GPU device functions. During execution, threads
in one block morph between these modes on demand. Similar
to the persistent thread [38] execution model, the kernel
threads which are alive across the execution consume the tasks
in a queue until there are no other tasks to be processed. This
strategy reduces the kernel invoking overhead. Furthermore,

Skywalker leverages shared memory to store the context of
samplers. As shared memory has the lifetime of a block [34],
the shared memory consumption of the kernel would be the
sum of all device functions. To solve this issue, Skywalker
statically casts the sampler contexts between subwarp-, warp-
and block-collective ones. Note that the threads in one block
guarantee the same execution mode by the block barrier.

Unlike the persistent thread model where threads in one
block do the same work on different inputs independently, ver-
satile sampler allows threads in one block to morph between
three working modes where a different number of threads work
collectively to process one task. The load-balancing of the
original persistent thread model relies on the assumption that
each thread needs to do a similar amount of work for each
task. However, the workload of construction the alias table
for one vertex, as a basic work unit, is highly varied due to
the irregularity of graphs.

c) Memory Requirement Discussion: Alias table con-
struction demands a large size of memory to store the interme-
diate data. As described above, Skywalker assigns warps and
blocks for high- or low-degree vertices. Each SM of an Nvidia
GPU can run at most 32 warps concurrently. Thus, it requires
thousands of active warps to saturate the hardware resources
for a recent GPU with around 100 SMs [39]. Moreover, the
sizes of these intermediate data are dependent on the degree of
transit vertices, which is highly varied and unpredictable. It is
hard to accommodate the memory requirement as real-world
graphs may have extremely high degree vertices. Unlike CPU-
based frameworks that are free to leverage dynamic arrays,
GPU in-kernel memory allocation/deallocation is considered to
be slow and unreliable [40], [41]. Even though there are works
on dynamic GPU memory allocators [40]–[42], Skywalker
chooses to reuse the allocated buffer to fully eliminate the
overhead of dynamic memory allocation instead. If we pre-
allocate a large buffer capable of storing intermediate data for
all processed vertices having the highest degree, the memory
requirement would be

Mem1 = K ×#SM ×WorkgroupPerSm×MaxDegree

where K stands for the memory consumption of constructing
an alias table for one element (around 16 bytes). This could
consume gigabytes of GPU memory for a graph with 30000 as
the highest degree (Orkut, for instance). This would severely
limit the capability of processing large graphs.

Skywalker leverages different sizes of workgroups to con-
struct the alias tables. The subwarp- and warp-collective sam-
ples are assigned to process the vertices whose degrees have
an upper bound. Thus, the memory requirement is reduced to

Mem2 = K ×#SM × (SubwarpPerSm× TH1

+WarpPerSm× TH2

+BlockPerSm×MaxDegree)

where TH1 and TH2 stands for the warp- and block-
processing threshold.

Sample task Sampler kernel

Job queue

High-degree
job queue

Sampled
edges

Thread block k

…

Block-collective sampler

①

②

③

④

⑤

Graph data

Weighted CSR

Alias table

Sampler state

Probability
array

Alias array Valid array

Warp-collective
sampler

Warp-collective
sampler

Warp-collective
sampler

…

⑥

Subwarp-collective sampler

Fig. 6: Skywalker’s execution flow.

2) Semi-asynchronous Execution: Sampling systems [9],
[18] derived from graph processing systems often follow
the synchronous iterative-based execution pattern. However,
blocks often have a different amount of workload due to the
irregularity of graphs during execution. Those thread blocks
processing transit vertices with extremely high degrees could
become the stragglers for the current iteration. Moreover,
synchronous execution fails to utilize the potential locality
existing in sampling algorithms. Sampling one instance only
requires the data of k-hop neighbors of the root vertex.
Synchronous execution with large batch-size processes transit
vertices in the frontier successively, thus would eliminate the
locality. Synchronous execution would cause frequent data
eviction from the cache to global memory even though such
data would be used for the next depth of sampling. For
large graphs using streaming processing or Unified Memory
(UM), the overhead is even heavier as moving data from the
main memory through the PCI-e interface has much higher
latency. On the other hand, asynchronous execution is no
panacea. Recall that Skywalker leverages warp and block
to process collectively. Full-asynchronous execution requires
frequent synchronizations within the thread block to convene
all threads for collectively processing a high-degree vertex.

To tackle the above problems, Skywalker adopts a semi-
asynchronous [43] execution strategy for sampling and ran-
dom walk algorithms. Specifically, the samplers in Skywalker
continually request jobs from a per-depth global queue and
process its job independently. When one sampler is free and
there are no jobs for the current depth in the queue, this
sampler advance to process jobs for the next depth without
the need of waiting for other samplers.

Figure 6 shows the execution flow of Skywalker: 1© Each
thread warp runs a subwarp-collective sampler. The samplers
acquire jobs from the job queue. If the transit vertex to be
sampled has a degree no larger than the warp-processing
threshold, the subwarp-collective sampler constructs the alias
table, and draws samples for it. 2©When a sampler get a high-
degree transit vertex, it enqueues that vertex to a queue storing
the high-degree jobs. For mid-degree transit vertices versatile
sampler temporarily stores them in a per-SM queue. 3© When

the global job queue for current iteration is empty, subwarp-
collective samplers in one thread warp group together and
becomes one warp-collective sampler to process jobs in the
per-SM queue. 4©When the per-SM job queue is empty, warp-
collective samplers in one thread block group together and
becomes one block-collective sampler. 5© The block-collective
sampler processes the transit vertices in the high-degree queue
until empty. 6© The block-collective sampler converts back
into subwarp-collective samplers for the next iteration.

3) Selecting Vertices: After the construction of the alias ta-
ble, we want to select vertices based on the alias table. Most of
the sampling algorithms adopt sampling without replacement.
In other words, the selected vertices for one transit vertex
should have no redundancy. Skywalker leverages a bitmap for
each transit vertex to avoid redundant selection. Specifically,
each bit of the bitmap indicates whether one vertex has been
selected or not. As GPU cannot directly update the adjacent
bits in one byte without using atomic operation, Skywalker
uses one byte for each vertex instead. When selecting, threads
use the atomic compare-and-swap operation to ensure avoid
selecting one vertex repeatedly. As Skywalker adopts the alias
method, we can perform resampling with constant overhead.
As random walk algorithms select one vertex per depth, there
is no need for such a bitmap to avoid redundancy.

For realtime workload, Skywalker selects vertices right after
the alias table construction. Several threads in one workgroup
select vertices once the workgroup constructs this alias table.
For offline workload, Skywalker executes random walk and
sampling differently. Specifically, Skywalker follows the semi-
asynchronous execution in realtime mode for graph sampling.
As one walker selects exactly one vertex per depth, each
walker runs on one thread asynchronously till its end.

D. Memory Optimizations

This subsection presents how Skywalker optimizes the
memory access and reduces the memory requirement.

1) Accelerating Alias Table Construction with Shared Mem-
ory Buffer: To create the probability table and alias table
(Prob and Alias) for one vertex, we need to load all its
neighbors in queues and process them with frequent enqueu-
ing/dequeuing operations. The speed of these operations is
crucial for performance. Skywalker leverages shared memory
of GPUs to further optimize the buffer. Shared memory, as a
region of programmable scratchpad memory inside each SM,
provides much lower access latency and higher bandwidth than
global memory. Each SM generally has around 48 KB shared
memory, which is sufficient to act as a buffer for subwarp-
and warp-collective sampler. For example, each SM supports
1024 concurrent threads at most. Thus, each warp can be
provisioned with around 1.5 KB shared memory. This means a
warp-collective sampler can process nearly 100 elements using
buffer shared memory, which is larger than a reasonable warp-
processing threshold. For a block-collective sampler, shared
memory in each SM alone is not sufficient for processing ver-
tices with extremely high degrees. In this scenario, Skywalker
splices shared memory and global memory for the buffer. In

Alias table

12

10

1413

11

K+4K… …

12 13 1411… …

10 11
CSR

Row
offset

Column
index

11 11 1311… …

Skywalker’s alias table

0 0 20… …

Alias
array

Alias
array

4-byte 1-byte

Alias
offset

0xk
+4

… …0xK

Fig. 7: Skywalker uses the compressed alias table. The prob-
ability array is not shown.

other words, the buffer falls back to global memory when the
required buffer size is larger than the size of shared memory.
Thus, the memory requirement is further reduced to

Mem3 = K ×#SM ×BlockPerSm×MaxDegree.

This strategy allows to enjoy the low latency of shared memory
for the most of time. At this point, Skywalker effectively
leverages shared memory on GPU and significantly reduces
the memory requirement for alias table construction.

2) Compressed Alias Table: Storing or caching the alias
table for future reuse requires large space. The length of the
alias array and the probability array of the alias table equals
to the out-degree of one vertex. Storing the alias table for the
whole graph needs twice space as the graph structure data.
Considering the limited memory capacity of GPU, this greatly
restricts the capability of sampling large graphs.

To address the above issue, Skywalker efficiently com-
presses the alias table. Specifically, the original alias method
stores the indices of neighbor vertices which range from 1 to
|V |. For graphs with millions of vertices, a 4-byte format is
necessary for identifying the vertex indices. Considering that
the degree of vertices in one graph is generally much smaller
than |V |, Skywalker stores the offset rather than the vertex
indices in the alias table. Depending on the maximum degree
in on graph, Skywalker can leverage 1-byte, 2-byte, or 4-byte
format for the alias array, alternatively.

Recall that the degree of vertices varies and most of the
vertices in real-world graphs have low degrees. Skywalker
further adopts different formats for different vertices on the
alias array. For example, suppose we want to sample a vertex
v10 with 4 neighbors shown in Figure 7. As the unsigned 1-
byte int format can represent numbers up to 255, its alias array
can leverage the unsigned 1-byte int format to represent its
neighbors with the offset. When drawing samples, the offsets
are randomly selected first and are used to find the actual
indices of neighbors based on the CSR. To construct such an
alias table in a compact format, a preprocessing procedure is
necessary. Specifically, Skywalker computes an offset for each
vertex to indicate the start position of its alias array. This
length of each alias table is computed based on the degree
and the format capable of storing the offset of neighbors. The
start positions also abide by the alignment requirement. When
selecting vertices, Skywalker finds the start position based on
the alias offset and then looks up the alias array to find the
offset of the selected neighbor in the format determined by its

degree. Using the offset, Skywalker gets the neighbor index
by looking up the column index array in the CSR.

IV. EVALUATION

In this section we evaluate Skywalker. Specifically, we want
to answer four questions:
• What kind of speedup can Skywalker bring to unbiased

workloads?
• How is the performance of Skywalker on workloads with

static or dynamic bias?
• How do the introduced optimizations contribute to the

performance?

A. Methodology

a) Platform: We conduct experiments on a Linux server
with two 2.40 GHz Intel 20-core, Xeon 6148 CPUs with
hyper-threading disabled (40 cores in total). Each CPU has
27.5 MB L3 Cache. The main memory is 256GB. Four
NVIDIA RTX 2080Ti GPU with 11GB GDDR6 memory is
connected to this system through PCI-e ×16 interface. One
NVIDIA RTX 2080Ti GPU has 68 multiprocessors (SMs),
each with 64 CUDA cores. The operating system is Ubuntu
16.04 with Linux kernel 4.15.0. We use the NVCC compiler
version 11.0.167 (g++ version 7.5.0) to compile.

b) Baseline Frameworks: We evaluate the performance
of Skywalker comparing with systems:

1) GraphWalker [15] is a single-machine graph random
walk engine. It preferentially processes the loaded sub-
graphs to optimize for IO efficiency.

2) KnightKing [16] is a distributed graph random walk
engine. KnightKing leverages the alias method for al-
gorithms with static bias and rejection sampling for dy-
namic bias. It proposes two optimizations named outliers
handling and pre-acceptance for rejection sampling.

3) C-SAW [18] is a GPU-based graph sampling and ran-
dom walk framework. It leverages the Inverse Transform
Sampling method. It computes the cumulative transition
probability array using prefix sum. C-SAW also includes
optimizations named bipartite region search for resam-
pling, and stridden bitmap for collision detection.

4) Nextdoor [8] is a GPU-based framework, utilizing the
same rejection sampling technique from KnightKing.

Table I summarizes the baselines and Skywalker. We obtain
their source code from Github. Note that GraphWalker only
supports unbiased walk and the public APIs of C-SAW do
not support PPR, node2vec and unbiased sampling. Besides
these, C-SAW skips all vertices with degrees higher than 8000
as it pre-allocates a fixed-sized buffer for each thread block.

c) Workload: To understand the performance of Sky-
walker, we carefully select several workloads to cover both
sampling and random walk algorithms in different applica-
tion scenarios. The evaluated algorithms include Deepwalk,
PPR, node2vec and NeighborSampling. Note that the
baseline systems have different processing capabilities and
may not support part of the evaluated algorithms. We eval-
uate both unbiased and biased versions of these algorithms.

TABLE I: Baseline comparison.

Name Sampling Method Supported workload
Graphwalker [15] Unbiased. Unbiased PPR.
KnightKing [16] Alias method (offline) for static bias, rejec-

tion sampling for dynamic bias.
Biased/unbiased random walks.

C-SAW [18] Inverse transform sampling. Biased DeepWalk and sampling.
NextDoor [8] Rejection-sampling Unbiased node2vec and Sampling. Bi-

ased DeepWalk and PPR.
Skywalker Alias method (offline and on-the-fly). Biased/unbiased walks and sampling.

TABLE II: Graph datasets in evaluation from [44], [45]. The
sizes are graphs in human-readable weighted edgelist format.

Dataset Abbr. |V | |E| Max Degree Size(GB)
web-Google GG 0.9 M 5.1 M 456 0.07
Livejournal LJ 5 M 69 M 20 K 1.4

Orkut OK 3 M 117 M 33 K 2.0
Arabic-2005 AB 22 M 640 M 10 K 12

UK-2005 UK 39 M 936 M 5 K 18
Friendster FS 65 M 1.8 B 3 K 35
SK-2005 SK 50 M 1.9 B 12 K 38

For NeighborSampling, we adopt the configuration from
GraphSAGE [5] with the sampling depth as 2 and expansion
factor (the number of neighbors to be sampled for one vertex)
as S1 = 25 and S2 = 10. For PPR, we use 15% as determi-
nation probability. For node2vec, we use hyper-parameter
p = 2.0 and q = 0.5. For all random walk algorithms, we use
100 as the maximum length. For all algorithms, we perform
sampling with batch size 40000.

d) Metrics: For most of the experiments, we report
the runtime excluding the time of loading data from disk
and initialization. For Graphwalker, we exclude the time of
repeatedly loading graph chunks during processing. For GPU-
based systems, we report the kernel execution time on GPU.
We consider the time of alias table construction for the
full graph as preprocessing for KnightKing and Skywalker
unless specified otherwise. We evaluate the cost of alias table
construction for the full graph in § IV-B3. Note that C-SAW
skips all vertices with a degree higher than 8000, resulting in
much less sampled edges than they should be. We scale the
runtime with a factor of the sampled edges.

e) Graph Dataset: We conduct experiments on a vari-
ety of widely used datasets listed in Table II. LiveJournal
(LJ) [44], Orkut (OK) [44] and Friendster (FS) [44] are social
networks. Web-Google (GG) [44], Arabic-2005 (AB) [45],
UK-2005 (UK) [45] and SK-2005 (SK) [45] are web graph
snapshots. We generate edge weight ranging from 1 to 64
uniformly. The size of the datasets varies from 1.4GB to 38GB.

B. Experiment Result

1) Performance of Unbiased Workload.: Table III shows
the results of KnightKing, Graphwalker, NextDoor, and Sky-
walker. Skywalker outperforms the baselines across all test
cases. Specifically, Skywalker achieves up to 5894× and 641×
average speedup over Graphwalker on Deepwalk and PPR,
respectively. The surprising performance over Graphwalker is

because Graphwalker performs random walks on static graph
partitions which introduces scheduling overhead.

As for knightking, Skywalker achieves up to 641×, 142×
and 4157× average speedup over it on Deepwalk, PPR and
node2vec, respectively. Note that the speedup of Skywalker
on node2vec over knightking is larger than other algorithms.
This is because node2vec algorithm need to check the
connectivity of sampled vertices with previously sampled
vertex which is time-consuming and the straggler thread would
block the execution of all threads. Skywalker does not have
this issue as it schedules SMs to work independently.

NextDoor cannot process graphs larger than UK due to
its high memory requirement. Compared with NextDoor,
Skywalker achieves 49.8× and 5.2× average speedup on
node2vec and NeighborSampling.

2) Performance for Biased Workloads.: Figure 8 shows
the result of biased workloads. We normalize the result by
Skywalker’s runtime. Skywalker achieves 3.6∼21× speedup
on DeepWalk, 1.7∼38× speedup on PPR, and 2∼190×
speedup on node2vec over KnightKing.

As for C-SAW, Skywalker achieves 10∼93× speedup on
DeepWalk, 483∼5878× speedup on NeighborSampling.
The missing data of C-SAW on graphs larger than AB is
because the in-memory version needs to store the full graph
in GPU memory. Skywalker does not have this issue as it
can utilize the CPU main memory through the Unified Mem-
ory mechanism along with space-efficient designs. Besides,
the optimized memory management alleviates the overhead
caused by oversubscription of Unified Memory. Skywalker
outperforms C-SAW so much as Skywalker can utilize the
pre-computed alias table while C-SAW always needs to com-
pute the cumulative transition probability. Skywalker shows
higher speedup on NeighborSampling than DeepWalk
as Skywalker has lower overhead for sampling multiple items
without replacement for two reasons: firstly, sampling with
alias method is more efficient as it costs constant time while
the binary-search approach of C-SAW needs O(log n) time.
Secondly, the cost of handling selection collision is lower. The
cost of both collision detection and re-sampling on Skywalker
is much lower than on C-SAW.

Comparing with the most recent sampling frame-
work NextDoor, Skywalker achieves 2.6∼35× speedup on
DeepWalk and 2.5∼40× speedup on PPR.

3) Construction Alias Table for the Full-graph: Figure 9
compares the runtime of realtime and offline Deepwalk on
graph GG and OK with length 100. The runtimes of realtime

TABLE III: Result of unbiased workloads. ” ” indicates failures due to internal error. ”O.O.M” indicates out-of-memory error.

Workload Framework Runtime (ms) Average Speedup
of SkywalkerGG LJ OK AB UK SK FS

Deepwalk
Graphwalker 172 338 721 1719 1739 5894

Knightking 17 12 13 14 16 3 17 60
Skywalker 0.44 1.25 0.22 0.15 0.48 0.21 0.1 1

PPR
Graphwalker 29 40 30 73 109 641

Knightking 3 16 20 16 23 1 16 142
Skywalker 0.11 0.18 0.13 0.06 0.08 0.08 0.1 1

node2vec
Knightking 1189 1382 202 1033 2323 946 122 4157

Nextdoor 26 38 6.8 17.8 30.4 O.O.M O.O.M 49.8
Skywalker 1.11 1.98 0.45 0.11 1.04 0.07 0.07 1

Sampling
Nextdoor 1.7 1.97 2 1.7 1.7 O.O.M O.O.M 5.2

Skywalker 0.3 0.73 1.24 0.22 0.21 0.3 0.3 1

GG LJ OK AB UK SK FS
Deepwalk

100

101

102

N
or

m
al

iz
ed

 R
un

tim
e

GG LJ OK AB UK SK FS
PPR

100

101

GG LJ OK AB UK SK FS
node2vec

100

101

102

GG LJ OK AB UK SK FS
Neighbor Sampling

100

101

102

103

Knightking
C-SAW
NextDoor
Skywalker

Fig. 8: Results of biased workloads. The runtimes normalized by Skywalker’s runtime.

0

5

10

15

20

25

0 10

Ru
nt

im
e

(m
s)

2 4 6 8
% of vertices as number of

walker

Realtime Offline

(a) Result on GG.

0

20

40

60

80

100

0 5 10 15 20

R
u

n
ti

m
e

 (
m

s)

% of vertices as number of walker

Realtime Offline

(b) Result on OK.

Fig. 9: The runtime of realtime and online Deepwalk. The
x-axis means the number of walkers equal to |V | × n%.

workload grow proportionally to the number of walkers. For
offline workloads, Skywalker constructs the alias table for
all the vertices of such graph, and then performs sampling.
Invoking walkers with a number of about 2%|V | or 8%|V |
have similar runtimes on realtime or offline scenarios for
GG and OK, respectively. After such points, the runtimes of
offline scenarios grow very gently as Skywalker has signifi-
cantly higher throughput for offline workloads than realtime
workloads. Thus, Skywalker has the flexibility to allow users
to choose from realtime mode for the capability of handling
dynamic bias or offline mode for higher execution throughput.

4) Speedup Breakdown:

0
1
2
3
4
5
6

GG LJ OK AB UK SK FS GG LJ OK AB UK SK FS

Deepwalk node2vec

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Sync Semi-async

Fig. 10: The normalized performance with synchronous and
semi-asynchronous execution strategy.

a) Semi-asynchronous Execution: Figure 10 shows the
results of Skywalker using its semi-asynchronous or normal
synchronous execution strategy. With semi-asynchronous exe-
cution, Skywalker achieves 1.1∼5.2× and 1.2∼3.6× speedup
on Deepwalk and node2vec, respectively.

b) Speculative Execution: Figure 11 shows the results of
SKywalker with or without speculative execution. With specu-
lative execution, Skywalker achieves 1.2∼3.1× and 1.1∼1.6×
speedup on Deepwalk and Neighbor sampling, respectively.

c) Compressed Alias Table: Figure 12 shows the space
requirement for uncompressed and compressed alias array.
The compressed alias array saves over 66% spaces compared
with the original version on the evaluated graphs. This allows

0

1

2

3

4

GG LJ OK AB UK SK FS GG LJ OK AB UK SK FS

Deepwalk Neighbor Sampling

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

w/o Spec. Exe. w/ Spec. Exe.

Fig. 11: The normalized performance of Skywalker with and
without speculative execution.

0.25 0.27 0.31 0.30 0.27 0.28
0.34

0

0.2

0.4

0.6

0.8

1

GG LJ OK AB UK SK FS

N
o

rm
al

iz
e

d
 S

p
ac

e

Uncompressed Compressed

Fig. 12: The normalized space requirement for uncompressed
and compressed alias array.

Skywalker to process large graphs, sacrificing no or less
overhead of using unified memory or remote GPU memory.

V. RELATED WORKS

a) CPU-based Random Walk Systems: DrunkardMob [9]
is an out-of-core random walk framework based on
GraphChi [10]. It leverages the vertex-centric computational
model from graph computing frameworks. KnightKing [16] is
a distributed system dedicated to random walk algorithms. It
introduces techniques for rejection sampling to assist the alias
method. However, these techniques are highly dependent on
the distribution of bias. GraphWalker [15] is a recent recently
proposed framework while only supports unbiased random
walk. Similar to DrunkardMob, it leverages the out-of-core
processing capability of GraphChi, and is optimized for IO.

b) GPU-based Sampling Systems: C-SAW [18], a GPU-
based framework, supports both graph sampling and random
walk algorithms. It leverages a parallel scan algorithm [46]
to perform inverse transform sampling. It also optimizes for
out-of-memory and multi-GPU sampling, which are unfor-
tunately not shown in its open-source implementation [29].
NextDoor [8] is a GPU-based framework, utilizing the same
rejection sampling technique from KnightKing.

c) Algorithm-specific Optimizations: Lin [47] proposed
a distributed algorithm for PPR. Bender et al. [48] presented
alias algorithms on shared-memory and distributed-memory
machines in theory. It includes a straightforward parallel alias
algorithm for the shared-memory machines by splitting Large
and Small in advance. This cannot be directly adopted on
GPU as GPU has different architecture and much higher
parallelism that must be explicitly addressed.

d) Handling Large Graphs on GPUs: GTS [49] and
Graphie [50] process the graph in the streaming manner.
Garaph [51] leverages both the CPU and GPU to collab-
oratively process the graphs. EtaGraph [52] and Grus [53]
adopt Unified Memory to extend GPU memory capacity with
the main memory. Subway [54] asynchronously generates
the activate subgraphs on the CPU and then accelerates the
processing with the GPU.

e) Graph Compression: Besides the general lossless and
lossy data compression techniques [55], [56], graph compres-
sion techniques [45], [57], [58] compress the graph structure
data. However, these techniques need a time-consuming de-
compression procedure, which is not suitable for the frequently
looked-up alias table. Skywalker does not introduce new
general or graph-specific compression or coding techniques.
Instead, the alias table can be considered as edge values while
values of the alias array are the neighbors. Skywalker exploits
the fact that the neighbor indices are also stored in the CSR.
By this method, Skywalker can compress the alias array, which
allows being looked up with negligible overhead.

f) Summary: This paper attacks the problem of effec-
tively adopting the alias method on GPUs. The proposed
parallel algorithm allows to execute the alias method on GPUs
effectively. The speculative execution technique explicitly han-
dles the potential irregularity of bias distribution to improve
the SIMD efficiency. The execution engine addresses the
irregularity of graphs to fully utilize the massive parallelism
of GPUs. Besides these, we carefully design the buffer reuse
mechanism and compressed alias table to reduce the mem-
ory consumption and to improve the large graph processing
capability on resource-limited GPUs.

VI. CONCLUSION

This paper presents Skywalker, a novel graph sampling
system that supports a wide variety of unbiased/biased graph
sampling and random walk algorithms on GPUs. Specifically,
we introduce a parallel algorithm for alias table construction,
an efficient parallel execution engine, and a compressed alias
table strategy. Skywalker shows significant performance ad-
vantage compared to the state-of-the-art baseline systems for
a wide spectrum of scenarios including unbiased sampling,
unbiased sampling with static and dynamic bias.

ACKNOWLEDGMENT

We thank all the reviewers for their valuable comments
and suggestions. This work is supported by the National
Natural Science Foundation of China (No.61972247 and
No.62072297). Corresponding author is Chao Li from Shang-
hai Jiao Tong University.

REFERENCES

[1] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018.

[2] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. Lee, “Billion-
scale commodity embedding for e-commerce recommendation in al-
ibaba,” Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2018.

[3] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[4] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[6] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Accurate,
efficient and scalable graph embedding,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019,
pp. 462–471.

[7] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,” in 8th
International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
[Online]. Available: https://openreview.net/forum?id=BJe8pkHFwS

[8] A. Jangda, S. Polisetty, A. Guha, and M. Serafini, “Nextdoor:
Gpu-based graph sampling for graph machine learning,” ArXiv, vol.
abs/2009.06693, 2020.

[9] A. Kyrola, “Drunkardmob: billions of random walks on just a pc,”
Proceedings of the 7th ACM conference on Recommender systems, 2013.

[10] A. Kyrola, G. E. Blelloch, and C. Guestrin, “Graphchi: Large-scale
graph computation on just a PC,” in 10th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2012,
Hollywood, CA, USA, October 8-10, 2012, 2012, pp. 31–46. [Online].
Available: https://www.usenix.org/conference/osdi12/technical-sessions/
presentation/kyrola

[11] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma et al., “Deep graph library: Towards efficient and
scalable deep learning on graphs,” arXiv preprint arXiv:1909.01315,
2019.

[12] Y. Wang, A. A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: a high-performance graph processing library on the GPU,”
in Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, San Francisco,
CA, USA, February 7-11, 2015, 2015, pp. 265–266. [Online]. Available:
http://doi.acm.org/10.1145/2688500.2688538

[13] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale
graph processing,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010, 2010, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184

[14] A. H. N. Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming irregular
graphs for gpu-friendly graph processing,” in Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2018,
Williamsburg, VA, USA, March 24-28, 2018, 2018, pp. 622–636.
[Online]. Available: http://doi.acm.org/10.1145/3173162.3173180

[15] R. Wang, Y. Li, H. Xie, Y. Xu, and J. Lui, “Graphwalker: An i/o-efficient
and resource-friendly graph analytic system for fast and scalable random
walks,” in USENIX Annual Technical Conference, 2020.

[16] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang, “Knightking:
a fast distributed graph random walk engine,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, SOSP
2019, Huntsville, ON, Canada, October 27-30, 2019, T. Brecht and
C. Williamson, Eds. ACM, 2019, pp. 524–537. [Online]. Available:
https://doi.org/10.1145/3341301.3359634

[17] A. J. Walker, “An efficient method for generating discrete random vari-
ables with general distributions,” ACM Transactions on Mathematical
Software (TOMS), vol. 3, no. 3, pp. 253–256, 1977.

[18] S. Pandey, L. Li, A. Hoisie, X. S. Li, and H. Liu, “C-saw: A framework
for graph sampling and random walk on gpus,” 2020.

[19] S. Olver and A. Townsend, “Fast inverse transform sampling in one and
two dimensions,” arXiv: Numerical Analysis, 2013.

[20] J. Shi, R. Yang, T. Jin, X. Xiao, and Y. Yang, “Realtime top-k
personalized pagerank over large graphs on gpus,” Proc. VLDB Endow.,
vol. 13, pp. 15–28, 2019.

[21] A. Stivala, J. Koskinen, D. Rolls, P. Wang, and G. Robins, “Snowball
sampling for estimating exponential random graph models for large
networks,” Soc. Networks, vol. 47, pp. 167–188, 2016.

[22] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
Densification laws, shrinking diameters and possible explanations,” in
Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, ser. KDD ’05. New York,
NY, USA: Association for Computing Machinery, 2005, p. 177–187.
[Online]. Available: https://doi.org/10.1145/1081870.1081893

[23] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2006, pp. 631–636.

[24] D. Fogaras and B. Rácz, “Towards scaling fully personalized pagerank,”
in WAW, 2004.

[25] Q. Liu, Z. Li, J. Lui, and J. Cheng, “Powerwalk: Scalable personalized
pagerank via random walks with vertex-centric decomposition,” Pro-
ceedings of the 25th ACM International on Conference on Information
and Knowledge Management, 2016.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking : Bringing order to the web,” in WWW 1999, 1999.

[27] M. Cochez, P. Ristoski, S. P. Ponzetto, and H. Paulheim, “Biased graph
walks for rdf graph embeddings,” Proceedings of the 7th International
Conference on Web Intelligence, Mining and Semantics, 2017.

[28] D. J. MacKay and D. J. Mac Kay, Information theory, inference and
learning algorithms. Cambridge university press, 2003.

[29] “concept-inversion/c-saw: A framework for graph sampling and random
walk on gpus.” https://github.com/concept-inversion/C-SAW.

[30] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional
networks,” Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2018.

[31] Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, “Graphnas: Graph
neural architecture search with reinforcement learning,” 2019.

[32] Z. Wei, X. He, X. Xiao, S. Wang, S. Shang, and J.-R. Wen, “Topppr:
Top-k personalized pagerank queries with precision guarantees on large
graphs,” Proceedings of the 2018 International Conference on Manage-
ment of Data, 2018.

[33] M. D. Vose, “A linear algorithm for generating random numbers with
a given distribution,” IEEE Trans. Software Eng., vol. 17, no. 9, pp.
972–975, 1991. [Online]. Available: https://doi.org/10.1109/32.92917

[34] Nvidia, “Programming Guide :: CUDA Toolkit Documentation,” https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[35] “Volta Tuning Guide :: CUDA Toolkit Documentation.” [Online].
Available: https://docs.nvidia.com/cuda/volta-tuning-guide/index.html

[36] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating
CUDA graph algorithms at maximum warp,” in Proceedings of
the 16th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 2011, San Antonio, TX, USA,
February 12-16, 2011, 2011, pp. 267–276. [Online]. Available:
https://doi.org/10.1145/1941553.1941590

[37] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph
traversal,” SIGPLAN Not., vol. 47, no. 8, pp. 117–128, Feb. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2370036.2145832

[38] K. Gupta, J. A. Stuart, and J. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” 2012 Innovative Parallel
Computing (InPar), pp. 1–14, 2012.

[39] “NVIDIA A100 — NVIDIA,” https://www.nvidia.com/en-us/
data-center/a100/.

[40] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W. Hwu, “Xmalloc: A
scalable lock-free dynamic memory allocator for many-core machines,”
2010 10th IEEE International Conference on Computer and Information
Technology, pp. 1134–1139, 2010.

[41] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg, “Scatteralloc:
Massively parallel dynamic memory allocation for the gpu,” 2012
Innovative Parallel Computing (InPar), pp. 1–10, 2012.

[42] M. Winter, D. Mlakar, M. Parger, and M. Steinberger, “Ouroboros: virtu-
alized queues for dynamic memory management on gpus,” Proceedings
of the 34th ACM International Conference on Supercomputing, 2020.

[43] H. T. Kung, “Synchronized and asynchronous parallel algorithms for
multiprocessors,” New Directions and Recent Results in. Algorithms and
Complexity, 6 2011.

https://openreview.net/forum?id=BJe8pkHFwS
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/kyrola
http://doi.acm.org/10.1145/2688500.2688538
http://doi.acm.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/3173162.3173180
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/1081870.1081893
https://github.com/concept-inversion/C-SAW
https://doi.org/10.1109/32.92917
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/volta-tuning-guide/index.html
https://doi.org/10.1145/1941553.1941590
http://doi.acm.org/10.1145/2370036.2145832
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/

[44] J. Yang and J. Leskovec, “Defining and evaluating network
communities based on ground-truth,” in 12th IEEE International
Conference on Data Mining, ICDM 2012, Brussels, Belgium,
December 10-13, 2012, 2012, pp. 745–754. [Online]. Available:
https://doi.org/10.1109/ICDM.2012.138

[45] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595–601.

[46] A. Grimshaw and D. Merrill, “Parallel scan for stream architectures,”
University of Virginia, Department of Computer Science, Tech. Rep.,
2012.

[47] W. Lin, “Distributed algorithms for fully personalized pagerank on large
graphs,” in The World Wide Web Conference, 2019, pp. 1084–1094.

[48] L. Hübschle-Schneider and P. Sanders, “Parallel weighted random
sampling,” in 27th Annual European Symposium on Algorithms, ESA
2019, September 9-11, 2019, Munich/Garching, Germany, ser. LIPIcs,
M. A. Bender, O. Svensson, and G. Herman, Eds., vol. 144. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 59:1–59:24.
[Online]. Available: https://doi.org/10.4230/LIPIcs.ESA.2019.59

[49] M. Kim, K. An, H. Park, H. Seo, and J. Kim, “GTS: A fast
and scalable graph processing method based on streaming topology
to gpus,” in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, 2016, pp. 447–461. [Online]. Available:
http://doi.acm.org/10.1145/2882903.2915204

[50] W. Han, D. Mawhirter, B. Wu, and M. Buland, “Graphie: Large-scale
asynchronous graph traversals on just a GPU,” in 26th International
Conference on Parallel Architectures and Compilation Techniques,
PACT 2017, Portland, OR, USA, September 9-13, 2017, 2017, pp.
233–245. [Online]. Available: https://doi.org/10.1109/PACT.2017.41

[51] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph: Efficient
gpu-accelerated graph processing on a single machine with balanced
replication,” in 2017 USENIX Annual Technical Conference, USENIX
ATC 2017, Santa Clara, CA, USA, July 12-14, 2017., 2017, pp.
195–207. [Online]. Available: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/ma

[52] P. Wang, L. Zhang, C. Li, and M. Guo, “Excavating the potential
of GPU for accelerating graph traversal,” in 2019 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2019, Rio
de Janeiro, Brazil, May 20-24, 2019, 2019, pp. 221–230. [Online].
Available: https://doi.org/10.1109/IPDPS.2019.00032

[53] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo, “Grus: Toward
unified-memory-efficient high-performance graph processing on gpu,”
ACM Trans. Archit. Code Optim., vol. 18, no. 2, Feb. 2021. [Online].
Available: https://doi.org/10.1145/3444844

[54] A. H. N. Sabet, Z. Zhao, and R. Gupta, “Subway: minimizing
data transfer during out-of-gpu-memory graph processing,” in EuroSys
’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020, 2020, pp. 12:1–12:16. [Online]. Available: https:
//doi.org/10.1145/3342195.3387537

[55] J. Gilchrist, “Parallel data compression with bzip2,” in Proceedings of
the 16th IASTED international conference on parallel and distributed
computing and systems, vol. 16, no. 2004. Citeseer, 2004, pp. 559–564.

[56] S. T. Klein and Y. Wiseman, “Parallel lempel ziv coding,” Discrete
Applied Mathematics, vol. 146, no. 2, pp. 180–191, 2005.

[57] G. Buehrer and K. Chellapilla, “A scalable pattern mining approach to
web graph compression with communities,” in Proceedings of the 2008
International Conference on Web Search and Data Mining, 2008, pp.
95–106.

[58] F. Claude and G. Navarro, “Fast and compact web graph representa-
tions,” ACM Transactions on the Web (TWEB), vol. 4, no. 4, pp. 1–31,
2010.

https://doi.org/10.1109/ICDM.2012.138
https://doi.org/10.4230/LIPIcs.ESA.2019.59
http://doi.acm.org/10.1145/2882903.2915204
https://doi.org/10.1109/PACT.2017.41
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ma
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ma
https://doi.org/10.1109/IPDPS.2019.00032
https://doi.org/10.1145/3444844
https://doi.org/10.1145/3342195.3387537
https://doi.org/10.1145/3342195.3387537

APPENDIX

A. Abstract

This artifact contains the source code for Skywalker and
shell scripts to set up the environment and perform the
evaluation. We describe how to obtain the source code and
build the Skywalker project. We illustrate how to download
and preprocess the datasets for Skywalker. This artifact also
includes the example dataset for baseline systems and Sky-
walker.

B. Artifact check-list (meta-information)
• Program: Biased and unbiased version of Deepwalk, PPR,
node2vec and NeighborSampling

• Compilation: NVCC 11.0 (g++ version 7.5.0), CMake 3.15,
• Data set: web-Google , LiveJournal, Orkut, Arabic-

2005, UK-2005, Friendster and SK-2005 from SNAP
(http://snap.stanford.edu/data/index.html) and Webgraph
(http://law.di.unimi.it/datasets.php).

• Run-time environment: Ubuntu 16.04 with Linux kernel
4.15.0

• Hardware: Turing or newer GPU.
• Metrics: Runtime (and sampled edges).
• Output: Console and log file.
• Experiments: Biased and unbiased version of Deepwalk,
PPR, node2vec and NeighborSampling. We use batch
size as 40000 for most of experiments. The shell scripts to
perform evaluation Table 3 and Figure 8 are in ./scripts.

• How much disk space required (approximately)?: 51 GB
for Skywalker’s dataset. 500 GB for the full evaluation.

• How much time is needed to prepare workflow (approx-
imately)?: One hour for compilation. One day for datasets
downloading and transformation.

• How much time is needed to complete experiments (approx-
imately)?: One day.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache Licenses
• Data licenses (if publicly available)?: No
• Workflow framework used?: No
• Archived (provide DOI)?: Yes. Available at

https://doi.org/10.5281/zenodo.5118306

C. Description
1) How to access: A repository that contains the

Skywalker code and evaluation scripts can be found in:
https://doi.org/10.5281/zenodo.5118306

2) Hardware dependencies: Skywalker requires an NVIDIA
GPU with compute capability at least 7.0. An NVIDIA RTX 2080Ti
GPU is used to generated sample output.

3) Software dependencies: To compile Skywalker, G++ 7.5,
CMake 3.15, and CUDA 10.0 are needed. Later versions might be
used not tested by authors.

Skywalker depends on gflags. The baseline systems for comparison
include GraphWalker, Knightking, Nextdoor and C-SAW. Please
install them following their detailed instructions for a full evaluation.
Their repositories are as following:

• https://github.com/rwang067/GraphWalker
• https://github.com/KnightKingWalk/KnightKing
• https://github.com/plasma-umass/NextDoor
• https://github.com/concept-inversion/C-SAW
4) Data sets: Web-Google, LiveJournal, Orkut, Arabic-2005,

UK-2005, Friendster and SK-2005 from SNAP, and Webgraph are
used in the evaluation. Those datasets need to be transformed into
.gr format of Galois. Do the following for datasets from SNAP:

1 wget http://snap.stanford.edu/data/wiki-Vote.txt.gz
2 gzip -d wiki-Vote.txt.gz
3 $GALOIS_PATH/build/tools/graph-convert/graph-convert

-edgelist2gr ˜/data/wiki-Vote.txt ˜/data/wiki
-Vote.gr

For datasets from Webgraph, do:

1 wget http://data.law.di.unimi.it/webdata/uk-2005/uk
-2005.graph

2 wget http://data.law.di.unimi.it/webdata/uk-2005/uk
-2005.properties

3 java -cp "*" it.unimi.dsi.webgraph.ArcListASCIIGraph
./uk-2005 ./uk-2005

4 $GALOIS_PATH/build/tools/graph-convert/graph-convert
-edgelist2gr ./uk-2005 ./uk-2005.gr

GraphWalker, KnightKing, Nextdoor and C-SAW also require their
dedicated data formats. Please follow their instructions to prepare
the datasets. Various preprocessed formats of an example dataset
(LiveJournal) are included in dataset.

D. Installation
• Download artifact from https://doi.org/10.5281/zenodo.5118306

.
• Run setup.sh.

E. Experiment workflow
Two shell scripts, table3_unbiased.sh and

fig8_biased.sh, contains the steps to get results for
Table 3 and Figure 8 in paper. Edit the install locations of
baslines (GraphWalker DIR, KnightKing DIR and CSAW DIR)
in table3_unbiased.sh and fig8_biased.sh. Then, run
those scripts to get the results.

F. Evaluation and expected results
Example output files for the experiments are in ./result.

	Introduction
	Background
	Graph Sampling and Random Walk
	Key Operations of Sampling
	Limitations of the State-of-the-Art
	Design Opportunities and Challenges

	Skywalker
	System Overview
	Exploiting Intra-instance Parallelism
	Exploiting Inter-instance Parallelism
	Versatile Sampler
	Semi-asynchronous Execution
	Selecting Vertices

	Memory Optimizations
	Accelerating Alias Table Construction with Shared Memory Buffer
	Compressed Alias Table

	Evaluation
	Methodology
	Experiment Result
	Performance of Unbiased Workload.
	Performance for Biased Workloads.
	Construction Alias Table for the Full-graph
	Speedup Breakdown

	Related Works
	Conclusion
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results

