
SMG: A System-level Modality Gating Facility for
Fast and Energy-Efficient Multimodal Computing

Xiaofeng Hou1, Peng Tang1, Chao Li1, Jiacheng Liu2, Cheng Xu1, Kwang-Ting Cheng3, Minyi Guo1
1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2Department of Computer Science and Engineering, The Chinese University of Hong Kong, China

3Hong Kong University of Science and Technology, Hong Kong, China

Abstract—Achieving low-latency and high-efficiency multimodal
computing (MMC) is crucial for deploying high-performance
autonomous embedded systems (AES) that has limited energy bud-
gets. However, existing methods have mainly focused on optimizing
the computing phase and have overlooked the significant energy
and latency overhead during the sensing phase. Therefore, we
propose SMG, a system-level modality gating facility to optimize
this. Our approach introduces a software-defined DSP gating
technique that enables MMC tasks to bypass both the sensing and
computing phases of unimportant modalities. We also propose
a raw data-activated MMC mechanism that comprises a fast
modality tester and adaptive modality executor, which adapts to
the modality gating architecture and performs energy-efficient
MMC. To evaluate SMG, we implement a prototype of SMG by
integrating it into existing AES and analyze it with extensive
multimodal video recognition workloads. Our experimental results
show that SMG outperforms SOTA approaches by adaptively
gating some DSP operations, resulting in substantial improvements
in both energy consumption and task latency.

I. INTRODUCTION

Multimodal computing (MMC) has emerged as a critical
high-performance edge AI technology for building diverse
autonomous embedded systems (AES) [1]–[3], which play a
pivotal role in shaping future edge intelligence systems, such
as edge micro data centers. It has been shown to improve
the accuracy of intelligent tasks for a wide range of AES
applications by up to 30% [4]. Researchers are actively
developing energy-efficient MMC approaches to accelerate
the deployment of MMC in real-world AES applications that
are often interactive with the environment and operate under
limited energy budgets [2], [5], [6]. These approaches aim to
ensure situational robustness for safe and reliable operations
while adhering to strict energy budgets [1], [5], [7]. They
capitalize on the unique feature of MMC, where each modality
exhibits different importance to different tasks. By adapting
the number of computed modalities for different MMC tasks,
they can significantly improve the efficiency of AES [5], [8].

Nevertheless, the existing methods [5], [9], [10] significantly
overlook the overheads of the modality sensing phase, making
their benefits underutilized. Multimodal AES applications rely
on numerous sensors and sophisticated digital signal processing
(DSP) modules to collect and preprocess environmental data
in real-time [2], [11]. These modules account for the majority
of energy consumption and execution latency in a MMC
task. Our analysis in Section II shows that the sensing phase
consumes approximately 44% and 73% of the total energy

(a) Energy reduction (b) Latency improvement

Figure 1: Advantages of modality gating (MG) over the
conventional designs (CD) and the state-of-the-art situation-
aware approaches (SA): MG reduces more energy and latency
in the sensing phase (i.e., DSP) by 37.7% and 41%, respectively.

consumption and execution time in a MMC task, with DSP
modules responsible for approximately 58% and 52% of the
overall sensing energy and latency. This prompts us to think
about a question: is there a method to implement situation-
aware multimodal sensing and computing before DSP? The
answer lies in modality gating which we define as a technique
that enables flexible control and management of modality
sensing stages. As shown in Figure 1 (detailed in Section
II), modality gating (MG) shows great promise in reducing the
energy and latency of MMC than the existing methods.

Implementing modality gating for MMC is a non-trivial
task because many existing architectural features and system
mechanisms are not built for this purpose. Typically, the
modality sensing phase involves collecting the modality signal
at the front-end sensor array, directly feeding it into the DSP
modules, and storing it in DRAM for MMC tasks [12], [13].
To provide more powerful DSP capabilities and streamline
the sensors’ architecture, many AES have migrated the DSP
modules to the motherboard with dedicated interfaces and
kernels. For example, the mainstream AES boards such as
NVIDIA’s Jetson boards [14] and Raspberry pi
boards [15] have integrated various hardware DSP modules
to enhance the sensing phases of images and videos. In
addition, several general sensing control frameworks such
as gstreamer [16], libargus [17] and V4L2src [18]
have also been implemented in the existing systems to operate
and control different sensors. Although the DSP modules
have been decoupled at the bare-metal layer, the current
approach to modality sensing still relies on a unified, end-
to-end pipeline [19], [20]. This approach lacks interfaces for
upper applications to manage the sensing phase, which hinders
the ability to optimize the sensing phase for energy efficiency.

In addition, throttling the energy drain during the sensing

phase necessitates using raw data before the DSP to select the
appropriate modalities for different tasks, which has not been
extensively explored in prior work. Existing approaches rely
on empirical statistics or hand-crafted heuristics, progressively
computing more modality data based on feedback accuracy
during MMC task execution [21], [22]. However, these methods
may not be suitable for progressively sensing scenarios, as
performing DSP based on feedback information can signifi-
cantly increase response latency. Recently, a few works have
utilized machine learning methods to pre-analyze modality data
and select important modalities for different MMC tasks [8].
Nevertheless, these methods rely on pre-analysis of high-quality
input data, rather than raw data. Pre-analysis of raw data
requires more precise methods, as prediction errors can lead
to higher remediation overhead. Additionally, the pre-analysis
should not incur excessive overhead in the overall MMC task.

In this paper, we propose SMG, a system-level modality
gating facility that can be easily integrated into existing
AES without any additional hardware modifications. We
implement SMG using application-architecture co-designs. At
the architecture layer, we devise a software-controlled DSP
gating technique that allows the upper application to control
modality sensing phases. Its core module is a raw data buffer
that separates the energy-hungry DSP from the frontend sensor
array within the modality sensor pipeline. This buffer serves a
crucial role in enabling the upper-level application to efficiently
operate the DSP based on its specific task requirements.
Additionally, it also consists of a set of interfaces to control
the data flow of modality sensors. At the application layer,
we propose a raw data-activated MMC mechanism. To bypass
unnecessary modalities, we implement a fast modality tester to
select the modalities for different tasks based on the raw data.
Then, we leverage an adaptive modality executor to extract the
features of the selected modalities and make the final decision.
We integrate SMG into the mainstream industry AES board of
Jetson Xavier NX and show the great potentiality of SMG
in enabling low-latency, high-performance and energy-efficient
AES. In all, we make the following contributions:

1) We characterize the features of MMC and identify the
unexploited opportunities to improve the latency and
energy efficiency of MMC in the modality sensing phase.

2) We propose SMG, a novel system-level modality gating
facility that eliminates the DSP of unimportant modality
data for different MMC tasks by a fast and accurate pre-
analysis of raw modality data, thus reducing the latency
and improving energy efficiency.

3) We implement SMG with a software-controlled DSP
gating architecture without any need to upgrade the
existing hardware. Also, our design approach considers
the application-architecture co-designs, which optimizes
the system for situation-aware, energy-efficient MMC.

4) We build a prototype of SMG and verify it with extensive
real-world multimodal video recognition applications.
Our results demonstrate that SMG can significantly
reduce their latency and improve energy efficiency.

Figure 2: HW/SW features of multimodal AES.

II. MOTIVATIONS

A. Characterization of Multimodal Computing

MMC Hardware/Software Components: MMC combines
well-developed sensors and multimodal DNNs (MMDNNs) to
achieve high-performance edge AI computing. It has recently
attracted tremendous attention in a wide variety of AES
applications [4], [8], [23]. For instance, video processing
applications often rely on multiple modalities, such as RGB
frames and audio [8], while autonomous machines such as
unmanned aerial vehicles (UAVs) leverage multiple cameras,
GPS sensors, and Lidars [5], [11], [23] to improve their
operational correctness. As a result, MMC typically includes
a sensing phase and a computing phase, making it a more
complex process that goes beyond the conventional ones [1],
[5], [11]. In the sensing phase, it leverages a wide variety of
sensors to capture different environmental data and stores the
data in DRAM. In the computing phase, it feeds the sensing
data into perception modules that run multimodal deep neural
networks to generate insightful results. Figure 2 illustrates
the key hardware and software components of MMC. At the
hardware layer, MMC consists of a set of sensors that collect
different modality information and a powerful AES board that
processes the data. At the software layer, the key component of
MMC is two-stage MMDNNs [24]. In the first stage, parallel
“encoders” are employed to extract distinct features from multi-
modal data. The ensuing features are subsequently transmitted
to the second stage of the framework to perform feature “fusion”
and generate enhanced accuracy results.

MMC Features: We present a quantitative analysis and
comparison of the performance and energy characteristics of
MMC based on multimodal video recognition applications.
These applications commonly encompass prevalent modalities,
such as image and audio, and are frequently employed in
various AES, including in-vehicle infotainment systems and
online translation robots. Notably, image and audio modalities
make up over 71% of the current modality data [25]. To
conduct the following analysis, we leverage a well-known video
recognition dataset called UCF101 [26] and its details can be
found in Section IV. To examine the features of MMC tasks, we
first analyze three tasks with distinct situational requirements
under conventional design (CD) without any optimization,
existing situation-aware approaches (SA) that skip computing

(a) Energy consumption (b) Execution latency

Figure 3: Energy and latency under different MMC tasks.

Figure 4: Breakdown of energy consumption and execution
latency for different components.

phases of unimportant modalities, as depicted in Figure 3. Our
results indicate that different tasks require different modalities,
with some tasks solely relying on audio, some exclusively
utilizing images, and others necessitating data from both audio
and images. This highlights the significance of situational
features in MMC task performance and presents opportunities to
optimize the system efficiency. Thus, adopting situation-aware
MMC can notably reduce energy consumption and execution
delays, ultimately enhancing the overall efficiency of AES.

B. Analysis of Modality Sensing

Sensor Decoupling Architecture: The modality sensing
phase is an indispensable part of the MMC application, which
is responsible for real-time acquisition of information from
different modalities in the environment and providing the input
sources for the AES applications. This phase typically consists
of two main counterparts: 1) a sensor array that perceives the
environmental signals and transfers them into digital signals; 2)
a DSP (e.g., ISP for image [12] and CODEC for audio [13]) that
pre-processes the digital signals and generates formatted data
for the back-end MMDNN inference. Among them, the DSP
plays a critical role in the modality sensing phase by performing
essential operations such as noise reduction, filtering, and
compression to improve the quality and accuracy of the input
data. Traditionally, both the sensor array and DSP are placed in
a unified, static sensor architecture. In recent years, the trend
and benefits of modality pipeline reorganization have been
recognized. There is an increasing trend of sensor decoupling
architecture where the DSP component is moved from the
sensor part to the compute board [27]. Doing so provides the
AES applications with much more control over their energy
consumption and latency.

To further understand the modality sensors in MMC appli-
cations, we analyze the energy consumption and performance
characteristics of the modality sensing phase, which has been
notably overlooked in previous studies. The results of our

Figure 5: Battery depletion time with only DSP applied.

analysis, illustrated in Figure 4, reveal that the sensing phase
(the blue area in the figure) can consume up to 44% of the
energy and contribute to 73% of the task latency as shown in
Figure 4-(a), significantly impacting the overall performance
of the MMC system. We further divide the modality sensing
results into two components: the sensor array and DSP. Our
findings reveal that the DSP accounts for more than half of
the energy consumption and latency as shown in Figure 4-(b).
Additionally, in Figure 5, we measure the battery depletion
time of three popular commercial AES platforms with only
DSP applied. We consider one advanced hardware DSP method
and three software DSP methods. The results show that the
DSP alone can drain the batteries of these commercial AES
platforms quickly within a few hours. The results highlight the
critical importance of optimizing the sensing phase to enhance
the efficiency and improve the latency of AES applications.

C. Design Considerations

In Figure 1, we compare three MMC methods that optimize
different phases: CD that does not employ any optimizations,
SA that skips computing phases of unimportant modalities, and
modality gating (MG) that throttles the DSP parts to reduce DSP
computing. Compared with CD, SA can save 34.7% of energy
consumption and improve 13.9% of latency. It is remarkable
that throttling the DSP parts (MG) can save more energy by
37.7% and improve 41% latency compared with SA. The above
analysis suggests that throttling the DSP part appears to be a
promising approach to enhance the energy efficiency of AES.

While it is intuitive that one can turn off sensors dynamically
to conserve energy and improve response time, applying this
approach to MMC is challenging because doing so causes
MMC tasks to become blind to the associated modality
information, i.e., the modality data will be lost in the current
MMC task. In the absence of complete modality information,
one can hardly determine whether or not a typical MMC
task is to be executed. Additionally, in some unexpected
situations, for instance, if a task has already calculated a
portion of modalities but finds that it still does not meet
performance requirements, turning on the sensors of other
modalities can lead to incorrect data timestamps. Therefore, it
remains a non-trivial task that requires architectural support and
system management to achieve optimal efficiency, accuracy,
and latency. In the following sections, we provide an overview
of our design considerations and the overall system architecture.

1) A new sensing architecture is necessary to provide
control interfaces for MMC applications to bypass the
DSP. To reduce both the computing and sensing energy of
unimportant modalities for different MMC tasks, deactivating
the DSP for those modalities is desirable. However, directly

Figure 6: Technical overview of SMG, demonstrating the dataflow between the three modules.

turning off the sensors of unimportant modalities can cause
missing information and incorrect timestamps. Therefore, it is
essential to implement a sensing architecture that can deactivate
the DSP for unimportant modalities while maintaining task
situation awareness (raw data streaming).

2) A raw data-aware MMC mechanism that adapts to
the throttling energy drain of the DSP is necessary. In the
multimodal sensing phase, modalities must be selected and
determined for different MMC tasks based on the raw data
before DSP. This selection process should respond actively
to different tasks and lead to negligible overhead. In the
multimodal computing phase, the computing system should
be robust to different task scenarios with dynamically varying
numbers of modality inputs.

III. THE DESIGN OF SMG

A. Overview

In this paper, we propose SMG, a system-level modality
gating facility that enables highly energy-efficient AES. We
present SMG with several optimizations at both the application
and architecture layers to enhance the existing multimodal AES.
By carefully controlling the sensing and computing phases for
every data sample, SMG can improve the energy efficiency
of AES while maintaining the performance benefits of MMC.
Figure 6 provides an overview of SMG, which includes the
following key features:

• Software-Defined Gating Architecture: At the archi-
tecture layer, we incorporate a Software-defined DSP
Gating architecture to support adaptive modality sensing.
This architecture consists of a raw data buffer (RDB)
that separates the energy-hungry DSP in the modality
sensor pipeline from the frontend sensor array. This
allows the deactivation of the backends of unnecessary
modalities while temporarily reserving the associated raw
data to maintain situation awareness and data correctness.
It also implements several gating interfaces including
a pipeline handler (PH) and a set of RDB operators.
These gating interfaces provide upper-level applications
with the necessary control over the sensing phase. thus,

this architecture design enables partial throttling of the
modality sensor pipeline and adaptive modality sensing.

• Raw Data-Activated MMC Mechanism: At the ap-
plication layer, we propose a raw data-activated MMC
mechanism to manage the sensing and computing phases
for different MMC tasks. This mechanism ensures optimal
performance while reducing the sensing and computing
energy of unimportant modalities for different tasks. It
comprises two key modules: ① Fast Modality Tester: We
implement a fast modality tester to select an appropriate
number of modalities for different MMC tasks based on
raw data collected from sensors. It utilizes a lightweight
policy network that contains feature analysis layers and
fully-connected (FC) layers to pre-analyze raw data
from different modalities. This enables the selection of
appropriate modalities for different MMC tasks to achieve
accuracy while suspending the DSP of the unselected
modalities. ② Adaptive Modality Executor: We also
design an adaptive modality executor to support elastic
and adaptive multimodal computing. This executor can
elastically control and activate feature extractors that adapt
to a varying number of selected modalities. It is also
responsible for making the final decisions.

With a focus on practicality and ease of integration, we
implement SMG as a system-level facility that does not require
any additional hardware modifications as shown in Figure
7. This allows for seamless integration into existing AES,
providing a cost-effective solution for enhancing their energy
efficiency. To demonstrate the versatility of SMG, we deploy
and implement an instance of the system based on an AES
application for multimodal video analysis. We show that the
implementation is straightforward and that SMG can be easily
applied to various AES applications.

B. Software-Defined Gating Architecture
We propose a software-defined DSP gating architecture.

Figure 8 illustrates the differences between our proposed
architecture and traditional architecture. As shown in the figure,
in the traditional architecture, the sensor data interface receives
raw data from the sensor and transfers it directly to the DSP

Figure 7: The hardware-software stack of AES with SMG.

for preprocessing via the bus. Then, the DSP preprocesses
the raw data and produces high-quality data that is finally
stored in the modality data buffer. This process is holistic
and cannot be interrupted by higher-level applications. Instead,
the application can ultimately decide and control whether to
read the modality data from the buffer and execute it. In this
architecture, all modality data is preprocessed into high-quality
data, which is then selected and processed by the applications.
For some unimportant modality data, the energy and latency
of preprocessing are undoubtedly wasted.

In our proposed architecture, we choose to save the raw
modality data before the DSP instead of saving the high-quality
modality data after the DSP. This design enables AES to provide
flexible control over the sensing phases of different modalities,
thus improving energy efficiency while maintaining situational
awareness of all modalities. As shown in Figure 7, we design
the software-defined DSP gating architecture with two key
modules and deploy it into the existing kernel with system-
level interfaces such as libcamera [17] and pyaudio [28].
Firstly, we introduce a raw data buffer before the DSP to
temporarily store the raw data of each modality, allowing
upper-level applications to decide whether to perform the DSP.
Secondly, we implement a set of gating interfaces that include
a pipeline handler module and some RDB operators. These
interfaces provide the necessary functionality for upper-level
applications to control the DSP. Notably, both the RDB and
the gating interface are implemented as system functions at
the kernel layer, ensuring efficient and seamless integration
within the overall system architecture.

We implement a set of raw data buffer functions that enable
users to define and control their raw data buffers for different
modalities. Among them, the creatRDB(...) function is
the most critical function, which is used to define and create
the raw data buffer with user-defined size. By default, the

Figure 8: The DSP gating architecture.

function supports a maximum raw data buffer size of 20 MB
in its function stack, which can store raw data for at least 10
modalities. The available raw data buffer size for each modality
is set to 2 MB, which is sufficient to store the raw data of
a color image with a resolution of 1920*1080 pixels. This is
suitable for most modalities in real-world applications since
image data is often larger than the data of other modalities. In
the creatRDB(...) function, we call the existing system
interface alloc to allocate buffer addresses in DRAM. To
make efficient use of memory space, we recommend that users
define their own raw data buffer size based on their application
requirements. Furthermore, we also realize a series of RDB
operators such as storeRDB() and loadRDB() to support
other functions to store and load raw data from the buffer.
These interface functions provide users with a convenient way
to handle the raw data buffer.

The PH of the gating interfaces are several functions to
manage the operation modes of different hardware and software
components as well as control the data flow in AES. Its most
prominent function is switchSMGMode(...), in which we
define two modality gating modes, including suspending the
DSP (S) and resuming the DSP (R). Among them, the S mode
means that the raw data of the modality is stored in the raw data
buffer and temporarily bypasses the DSP to save energy, while
the R mode means resuming the raw data of the modality from
the raw data buffer and activating the DSP for preprocessing.
By setting the parameters of the switchSMGMode(...)
function, the user can control the energy-saving modes in
the modality sensing phase. In addition, the PH provides
several interfacing functions to manipulate the data flow among
different hardware components. For example, it leverages the
graspRAW() function to read raw data from the sensors.

C. Raw Data-Activated MMC Mechanism

After developing the architecture and system support for
the modality gating mechanism, the next step is to determine
how to execute situation-aware MMC tasks. This involves
allowing the upper layer application to choose the appropriate
modalities for the given task, pre-processing the associated
raw data using DSP, and analyzing and fusing features from
the selected modalities to make accurate decisions for the task
while reducing the DSP and computing energy consumption

of the overall AES application. While previous research has
proposed situation-aware multimodal computing optimization
methods, they cannot be directly applied to the modality gating
scenario as they mainly rely on high-fidelity modality data
after DSP. In this study, we propose implementing situation-
aware MMC tasks based on pre-analysis of the raw data before
DSP, which has not been previously explored. This approach
will allow for more energy-efficient MMC applications by
bypassing the DSP of unimportant modalities for each task.

To achieve this goal, we propose a raw data-activated MMC
mechanism at the application layer as shown in Figure 7 and
we deploy it into the existing kernel with system-level interface
ioctl [29]. This mechanism consists of two key modules: a
fast modality tester and an adaptive modality executor. The fast
modality tester module analyzes raw modality data before DSP
for each MMC task and selects the most important modalities to
achieve optimal task performance. This approach allows for the
efficient use of DSP and computing resources by prioritizing
the most relevant modalities. Meanwhile, the adaptive modality
executor module is designed to dynamically adapt to varying
numbers of appropriate modalities and handle unexpected cases
of performance penalty issues. This ensures that the system is
able to perform effectively in a variety of situations and can
handle any unexpected challenges that may arise.

In real-world AES applications, the appropriate modalities
can change stochastically with the tasks, making it difficult
to select modalities using empirical methods due to their
inefficiency in dynamic scenarios. To address this challenge,
we propose a lightly fast modality tester to dynamically select
appropriate modalities for different MMC tasks, as shown
in Figure 7. The fast modality tester consists of two key
components. Firstly, a set of modality analyzers (MA) is used to
quickly analyze the raw data of different modalities and extract
elementary modality features. Then, the extracted elementary
features are fed into the modality selector (MS). It consists of a
single modality fusion layer to federate the elementary features
and decides whether to preprocess or suspend an input modality.
It should be noted that in the fast modality tester, we leverage
shadow modality feature extraction networks to implement
the MA module according to the features of the modality or
the original encoders in the MMDNNs. For example, for the
image modality, we can use MobileNet [30] to conduct the
pre-analysis. Meanwhile, we use simple fusion operators, such
as the concatenate [31] to implement the single modality
fusion layer, and fully-connected layers to implement the MS
module. Therefore, the fast modality tester is lightweight and
will not lead to large overheads. Through the utilization of this
approach, the system is capable of attaining more precise and
adaptable modalities selection for diverse MMC tasks, thereby
enhancing the overall performance of the system.

The adaptive modality executor is responsible for computing
the data of the modalities selected by the fast modality tester
and obtaining the prediction results that satisfy the application
performance. Like the original MMDNNs, it contains a feature
extractor (FE) and a decision maker (DM), the former mainly
using the feature extraction networks to extract the modality

Figure 9: Function calls between the three modules.

Figure 10: Prototype platform and system integration of SMG.

features and the latter mainly using the decision network to
execute the task results. However, it differs from the original
MMDNN in two aspects in order to perform situation-aware
multimodal computing. Firstly, it supports dynamically turning
on the feature extraction networks of the selected modalities
and turning off the ones of the unselected modalities. Secondly,
it can dynamically fuse the features of different numbers of
modalities and handle unexpected cases of performance penalty
issues. We show the technical details of the adaptive modality
executor in Figure 6. In Figures 7 and 9, we show the complete
flow of an MMC task under the proposed SMG approach: the
task ❶ starts, and it ❷ calls the reqRAW(...) function
to ❸ collect the raw data of the task modalities, which is
sent to the fast modality tester to ❹ select the appropriate
modalities; the fast modality tester ❺ sends the selected
modality information to the adaptive modality executor and
exits; after that, the adaptive modality executor ❻ requests the
DSP for the selected modalities and ❼ obtain the preprocessed
modality data from the software-defined gating module; finally,
the adaptive modality executor ❽ computes the dynamic
multimodal DNNs on the AES processor and ❾ generates
the final prediction results.

D. A Case Study: SMG for Multimodal Video Processing

Our proposed SMG approach is a versatile, hardware-
independent tool at the system level that can be easily deployed
on a variety of AES platforms. Due to constraints on page
length, here we use multimodal video processing applications
as a case study to demonstrate the effectiveness of SMG. We
choose video processing because it is one of the most common

Figure 11: Training platform for SMG.

multimodal computing tasks in real-world scenarios [8], [32]–
[34], involving image and audio modalities. Video processing
is widely used in numerous AES applications, such as online
translation robots and in-vehicle entertainment systems [24].
This technology facilitates real-time analysis of information
obtained from images and speech.

To validate our approach, we establish an AES platform,
as illustrated in Figure 10, and utilize the most popular com-
mercial AES board, Jetson Xavier NX [14], to process
different video processing tasks. Jetson Xavier NX is
widely used in edge AES scenarios, from AIoT to embedded
platforms, and we leverage the system-level interfaces such as
libcamera [17], [18] to deploy SMG on the linux4tegra
system, optimizing the energy efficiency of various video
processing applications. The video processing system we have
established uses a combination of hardware and software
components to enable real-time processing of video images and
audio data. The camera and microphone capture data in real-
time and transmit it to the Jetson onboard system through the
MIPI CSI [14] interface on the board. The software-defined
gating module receives the raw data of the modalities and
stores it in the raw data buffer while also forwarding it to the
application layer for selection. The fast modality tester in the
application layer selects the best modality for each segment of
the video based on input conditions, such as lighting conditions,
motion, and audio quality. The selected modalities are sent back
to the gating module, which calls the DSP to preprocess the raw
data of the selected modalities and transmits the preprocessed
modality data to the application layer for computing. Through
the use of SMG, we are able to achieve high performance and
low power consumption in video processing.

In the fast modality tester, we use ShuffleNetV2 [35] to
implement the image and audio modality analyzers. To enhance
the dynamics of the multimodal computing network and enable
it to adapt to varying numbers of modalities, we integrate
ResNet50 [36] and MobileNetV2 [30] into the original
video processing MMDNNs. Figure 11 depicts the training
framework used to train the proposed fast modality tester and
adaptive modality executor. The training process involves two
key factors. The first factor is the training and testing datasets
of raw data samples. However, there are currently no raw data-
based datasets for video processing. To overcome this, we use
conversion tools, such as CycleISP [37], from prior works
to transform the original video datasets into raw data-based
datasets. It is worth noting that previous research has established

Algorithm 1: SMG Training Algorithm
Input: Multimodal raw dataset RD, fast modality

tester PN , adaptive modality executor MMC,
modality number M , segment number T .

Output: PN ’s weights and MMC’s weights
1 Initialize MMC with {θm}Mm=1.
2 for epoch=1 to N do
3 for multi modal raw data {rdm}Mm=1 in RD do
4 Get PN predictions as s = PN({rdm}Mm=1, T).
5 Use DSP to process selected modalities as pred.
6 Get MMC prediction with selected modalities as

MMC(prd, T, s).
7 Calculate the loss with equation (1).
8 Backpropagate and update the parameters.

9 return PN , MMC.

raw data-based datasets, thus, we don’t worry about the lack
of available training and testing datasets. Data collection is not
the focus of this paper, thus, we utilize existing tools to directly
convert existing datasets. The second factor is an appropriate
loss function. In our approach, we train the fast modality tester
and the adaptive modality executor simultaneously. Therefore,
we define the loss function using the efficiency loss of the
fast modality tester and the performance loss of the adaptive
modality executor. We add the loss of both parts to get the
final loss depicted as in equation (1).

L = −
∑

y log(p) +

M∑
m=1

wm(
1

T

T∑
t=1

stm)2C + γ(1− C) (1)

where y is the one-hot encoded ground truth label and p
represents predicted probability. M represents the number of
modalities and wm represents the weight of each modality. T
represents the segment number of the video we split and stm
is the output (0 or 1) of the fast modality tester representing
whether to select the m-th modality of the t-th segment in
the video. C represents the indicator of the correctness of the
prediction and γ is the penalty when the prediction is not correct
(C = 0). However, the discrete nature of the fast modality
tester’s decisions makes the algorithm non-differentiable. To
address this issue, we adopt the Gumbel-Softmax trick [38] to
train the fast modality tester. The training process is outlined
in Algorithm 1. Firstly, training samples are obtained from
the converted raw data training set (Line 3). Next, each
training sample is inputted into the fast modality tester (Line
4). Subsequently, DSP is performed on the modality data
selected by the fast modality tester (Line 5). The adaptive
modality executor is then leveraged to compute the modality
data (Line 6). Further, the loss is computed and parameters
are updated accordingly (Lines 7,8). The aforementioned
steps are repeated until the network fits the data well.

IV. EXPERIMENTAL METHODOLOGIES

A. Multimodal Video Processing Workloads

We use two well-known datasets namely
Kinetics-Sounds [39] and UCF101 [26] that consist of
extensive video recognition workloads to train and validate

SMG. Among them, Kinetics-Sounds is a subset of
Kinetics [40] and comprises 28,268 videos for training and
1,512 videos for testing, across 31 action classes. UCF101
is an action recognition dataset of realistic action videos
collected from YouTube, containing 101 action categories, of
which we use 51 action categories in our study as we can
only extract audio from those categories. The 51 categories
have a total of 6,837 videos, and the authors provide three
ways to split the dataset. We select the first method, which
uses 4,941 videos for training and 1,896 videos for testing.
To present the results more clearly, we manually split the
Kinetics-Sounds test set into 15 workload groups and
split the UCF101 test set into 11 workload groups. Each
group consists of several video recognition tasks with similar
features, allowing for a comprehensive evaluation of the
performance of SMG in various task scenarios.

B. Prototype Platform Setup

Warm-up Settings: Before deploying a system proto-
type, we first develop well-trained video recognition mod-
els. To achieve this, we initially train the image encoder
network, i.e., ResNet50, and the audio encoder network,
i.e., MobileNetV2, for 60 epochs. We use the weights of
the two pre-trained modality encoders to initialize the adaptive
modality executor and ”warm it up” for 5 epochs while fixing
the fast modality tester. Subsequently, we alternately train both
the fast modality tester and adaptive modality executor for 20
epochs. Finally, we fine-tune the adaptive modality executor for
10 epochs while fixing the fast modality tester. During training,
each video is segmented into 5 segments (T in Equation 1), and
the penalty is set to be 10 (γ in Equation 1). Furthermore, we
respectively use the Adam and SGD methods from AdaMML [8]
to train the fast modality tester and adaptive modality executor.

Prototype Platform Configurations: As shown in Figure
10, we implement a prototype platform for SMG to validate its
effectiveness. We conduct experiments on NVIDIA’s Jetson
Xavier NX board, which is a widely-used AES board with
rich sensor interfaces. We utilize a Laptop as our primary
device for video playback and we use Sony’s IMX219-77
camera and aigo K2 USB microphone to collect the raw
data of the image and audio modalities respectively. We
collect raw Bayer images with a resolution of 1920 × 1080
at 30fps. The Bayer images are converted to RGB images
using fast-openISP [41] based on the decisions of SMG
or other methods. Audio signals are captured at a sample rate of
20KHz, and corresponding spectrograms are extracted using the
Librosa tool [42]. We utilize software tools integrated into
the existing system to obtain the desired results, such as using
the INA3221 power monitor at I2C address 0x40 [43]
and python time module [44] to obtain the system power
and task execution latency respectively.

C. The State-of-the-Art Baselines

We compare SMG with the SOTA energy-efficient ap-
proaches for AES, as shown in Table I. Among them,
OriginMMC represents the traditional MMC method without

Table I: The compared state-of-the-art baselines.

Scheme Description
OriginMMC [8] Traditional MMC method that fuses all modalities directly.
LiteEval [45] SOTA situation-aware method that skip unimportant frames.
OrderMMC [46] SOTA method using heuristic-driven modality selection.
AdaMMC [8] SOTA method that only optimizes the computing phase.
IdealMMC Simulating an ideal scenario where computing overhead is 0.
LargeSMG Selecting modalities with a larger fast modality tester.

SMG Our method with a lightweight fast modality tester.

Table II: The performance effect of SMG on the two datasets.
Methods AudioUni ImageUni MultiMMC SMG

K
in

et
ic

s-
So

un
ds Selection

Ration(%)

None 0 0 0 8.21
Audio 100 0 0 46.34
Image 0 100 0 7.07
Both 0 0 100 38.38

Energy(mJ) Sense 2663.04 8946.61 9368.86 6421.78 (-31.4%)
Compute 580.36 7935.45 9165.51 3184.99 (-65.3%)

Latency(s) Sense 2.67 5.23 5.25 3.79 (-27.8%)
Compute 0.29 1.34 1.44 0.74 (-48.6%)

Accuracy(%) 52.82 61.29 84.1 82.47

U
C

F1
01

Selection
Ration(%)

None 0 0 0 19.57
Audio 100 0 0 19.57
Image 0 100 0 26.06
Both 0 0 100 31.86

Energy (mJ) Sense 2521.86 9026.61 9301.51 7379.89 (-20.7%)
Compute 639.81 8099.81 9120.45 4271.55 (-53.2%)

Latency(s) Sense 2.67 5.24 5.32 4.29 (-19.4%)
Compute 0.28 1.35 1.44 0.92 (-36.1%)

Accuracy(%) 30.33 83.91 87.76 87.76

any optimization [8]. LiteEval [45] is one of the most
representative efforts [45], [47]–[49] to reduce the computing
overhead of edge AI by skipping image frames. In contrast to
LiteEval, which reduces the modality data, OrderedMMC
and AdaMMC decrease the multimodal computing overheads by
reducing the number of modalities. OrderedMMC represents
the traditional heuristic-driven modality selection method [46],
while AdaMMC is a more advanced method that uses machine
learning [8]. To cover all traditional methods that use different
techniques such as quantization and pruning to optimize the
computation phases of MMC, we implement IdealMMC,
which simulates an ideal but impossible scenario where
computing consumption is optimized to zero, with only sensor
overhead considered. The key limitation of the above methods
is that they all overlook the overheads of the modality sensing
phase while only optimizing the inference phase. SMG is the
first approach to utilize sensor gating for energy-efficient edge
MMC. We also develop LargeSMG, an SMG-derived approach
to validate SMG. It utilizes a larger backbone (MobileNetV2)
to implement the fast modality tester, while SMG uses a smaller
backbone (ShuffleNetV2) to do this.

V. EVALUATION RESULTS

A. Effectiveness Validation

Demonstration of Situation-Aware Modality Gating:
We examine the ability SMG to perform situation-aware
modality gating for various MMC task scenarios. Figure
12 provides a demonstration of four different MMC task
scenarios in the playing instruments workload in the
Kinetics-Sounds dataset. In Scenario 1, no information
from either the image or audio modalities is required since no
instruments are being played. Scenario 2 requires analysis
of the image information because the sound features are
not obvious. In Scenario 3, the audio modality alone is
relied upon to determine the category of the instrument being
played. Scenario 4 is a more complex task that requires both

Figure 12: Demonstrating SMG ’s ability in situation-aware
modality sensing and computing for various MMC tasks.

Figure 13: Overheads vs. benefits of the fast modality tester.
TOTAL means the memory usage of the whole end-to-end
process; Reward means the energy and latency reduction of
SMG compared to the original MMC model.

sound and image analysis to make accurate judgments. We
observe that SMG adapts well to different task scenarios
to preprocess and compute the appropriate modalities, thus
reducing task processing delay and energy consumption without
any degradation in accuracy.

Performance Evaluation: Table II presents the performance
of SMG in optimizing the accuracy, execution delay, and
energy consumption of traditional uni-modal (AudioUni &
ImageUni) and (MultiMMC) AES applications. We analyze
the modality selection ratio and the optimization of associated
metrics for the evaluated datasets. Our results show that SMG
achieves significant reductions in energy consumption of the
modality sensing and computing phases by 31.4% and 65.3%
under the Kinetics-Sounds dataset, while reducing the
modality sensing and computing delay by 27.8% and 48.6%,
respectively. Similar performance improvements are observed
for the UCF101 dataset. These findings illustrate that SMG can
effectively select different modalities for various task scenarios,
perform adaptive modality gating and computing mechanisms,
and improve the overall performance of the applications.

Overhead Analysis: To evaluate the effectiveness of SMG, it
is crucial to ensure that its benefits outweigh the costs incurred
by its overhead. The design of SMG may introduce two types
of overhead: the overhead of the raw data buffer (RDB) and the
overhead of the fast modality tester. As the size of the raw data
is only one third of the frame data size, it is intuitive that SMG

results in a reduction of the AES buffer size for storing modality
data. In this context, we focus on evaluating the overheads
and benefits of the fast modality tester, as shown in Figure 13.
Our results illustrate that the fast modality tester increases the
floating point operations per second (FLOPs) and parameter size
of the MMC model lightly (Figure 13-(a)). Nevertheless, this
overhead contributes no more than 5% of the task execution
delay and energy consumption compared to the entire task
(Figure 13-(b)) while it reduces the task energy consumption
and execution latency by a factor of 21.7 and 12.5 respectively
(Figure 13-(d)). Furthermore, SMG effectively reduces the
memory usage overhead by 17.8% compared to original MMC
model (Figure 13-(c)).These findings demonstrate that SMG
can effectively improve the energy efficiency and reduce the
latency of MMC tasks with negligible overhead.

B. Comparison with SOTA

We then compare the accuracy, task execution latency, and
energy consumption of SMG with the state-of-the-art (SOTA)
energy-efficient AES methods in different scenarios.

Accuracy: It is important that the energy-efficient design
does not compromise the accuracy benefits of MMC. Therefore,
we compare the accuracy of different workloads in the two
evaluated datasets under SMG and the SOTA approaches in
Figure 14. We consider the average accuracy across all methods
as the baseline value for fair comparison. This approach
is appropriate since SMG primarily aims to optimize the
system and architecture, rather than tuning parameters for
each MMC task model individually. As shown in the figures,
SMG achieves higher accuracy than the Baseline for all
the workloads. Although there are a few instances where the
accuracy under SMG is lower than that of certain individual
methods, such as LiteEval exhibiting higher accuracy than
SMG on a few specific workloads like guitar and stomp, the
differences observed are minimal and inconsistent. Moreover,
our following analysis results from Figure 15 to Figure 16 show
that SMG achieves better execution performance and efficiency
than other methods including LiteVal. Furthermore, it is
worth mentioning that the accuracy of SMG can be improved
through meticulous algorithmic optimization, such as extensive
parameter tuning. However, in the scope of this paper, we have
primarily focused on enhancing the system and architecture, and
algorithmic optimizations have not been extensively explored.
Future work could delve into these algorithmic optimizations
to maximize the accuracy potential of SMG.

Execution Latency: An important advantage of SMG is its
ability to reduce the latency of the modality sensing phase,
which decreases the execution latency of the entire MMC task.
Figure 15 displays the average processing latency of an MMC
task in the three main components - the sensor array, the DSP,
and inference (including all networks’ inference; for instance,
the inference of fast modality tester and adaptive modality
executor in SMG) - under SMG and the SOTA methods
using the UCF101 dataset. To facilitate a clear comparison, we
normalize the latency reduction of different methods relative
to OriginMMC. The results show that traditional schemes

(a) Accuracy of different workloads in the Kinetics-Sounds

(b) Accuracy of different workloads in the UCF101

Figure 14: Comparison of accuracy for SMG and the SOTA approaches.

Figure 15: Latency comparison under the UCF101 dataset.

Figure 16: Energy comparison under the UCF101 dataset.

exhibit zero, i.e., 0.0% reduction in DSP latency due to their
neglect of the sensing phase. In contrast, SMG excels in
optimizing both computing and sensing latency, resulting in a
substantially lower average end-to-end task latency compared
to all other schemes. Impressively, SMG achieves a remarkable
reduction of up to 23.1% compared to other methods. While it
is worth mentioning that LiteEval exhibits a slightly greater
reduction in inference latency than SMG due to its utilization
of fewer image frames as inputs, our method still achieves
significantly greater latency reduction in DSP and total task
latency. Additionally, it is important to note that the latency of
the sensor array remains the same for different scenarios, as all
scenarios require the collection of raw data to ensure that the
task is fully informed about the environment. Overall, SMG
effectively reduces the average modality inference latency per
task by up to 36.07% and the overall latency by up to 23.1%
compared to the existing schemes.

Energy Consumption: Figure 16 presents a detailed analysis
of how the modality gating technique reduces task-level energy
consumption. We compare energy consumption at different

stages of the task under various schemes using the UCF101
dataset. It is important to note that the measurements solely
consider dynamic execution energy consumption, as idle energy
is not accounted for due to the unavailability of appropriate
measurement tools. Nevertheless, it is reasonable to assume that
SMG consumes less idle energy compared to other methods
due to its shorter sensing latency, as demonstrated in Figure
15. In Figure 16, the energy results are consistent with the
latency results, with one exception: IdealMMC consumes less
total energy than SMG, as it assumes an ideal but impossible
state where computing consumption is optimized to zero and
only sensor overhead is considered. Nevertheless, our findings
reveal that SMG consumes less DSP energy than IdealMMC.
Furthermore, SMG can respectively achieve 32.81%, 2.3% and
9.7% more energy consumption reduction in DSP, inference
and total end-to-end task compared with LiteEval. Overall,
SMG reduces the average sensing energy consumption of the
task by up to 32.83%, the inference energy consumption by
up to 53.17%, and the overall energy consumption by up to
36.8% except for IdealMMC.

C. Real-world Verification

All the experiments conducted thus far have been carried
out with an adequate energy budget. However, it is important
to validate the benefits of SMG in real-world AES scenarios
where energy budgets are often constrained. To validate this,
we conduct experiments using three different battery capacities
commonly found in AES applications: the Microsoft Band
Battery (200 mAh, equivalent to 2520 Joules) [50], the
Google Glass Battery (600 mAh, equivalent to 7560
Joules) [51], and a 20%-Cell Phone Battery (3000
mAh, equivalent to 37,800 Joules) [52]. Due to the lack of
programmability in the target systems of these commercial
platforms, we are unable to directly deploy SMG onto them.
Instead, we connect batteries with the aforementioned capacities
to our experimental platform. This measurement gives an
impression of the relative power consumption, even though the
power distribution in AES target systems will somewhat deviate
from Jetson Xavier NX. In the results, we compare the
battery depletion time, throughput (i.e., the number of processed
frames), frame rate (i.e., frames per second or FPS), and energy
per frame (EPS) for the AES system built in our experiment

(a) Battery depletion time

(b) Frames, i.e., throughput

(c) Frame rate and energy per frame

Figure 17: Comparison of the performance for SMG and the
SOTA approaches in three real-world AES energy budgets.

under SMG and other schemes using the UCF101 dataset.
Our results demonstrate that SMG significantly reduces energy
consumption and extends battery depletion time by 20% to
22% across different batteries (Figure 17-(a)) while increasing
system throughput by 57% to 59% (Figure 17-(b)) and frame
rate by 3% to 32% (Figure 17-(c)) except for IdealMMC. It is
worth noting that the results of IdealMMC outperform those
of SMG for it ignores the computation overhead. However, our
results show that SMG almost approaches the IdealMMC’s.

VI. RELATED WORK

Multimodal Deep Neural Networks: Multimodal DNNs [1],
[34] have been demonstrated to outperform the unimodal
networks in many application fields [4], [34] recently. Most of
the current studies focus on finding more effective fusion or
representation methods of different modalities [1], [53], which
can be categorized into two main classes, namely early fusion
methods [31], [54] and late fusion methods [55], [56]. For ex-
ample, Zhou et al. use a multiple discriminant analysis scheme
to implement an early fusion approach that concatenates the
features from different modalities [31]. Although multimodal
DNN algorithms have been extensively studied, how to apply
them for practical AES has not been explored well. In particular,
they have excessive modality sensing and processing demand
that far exceeds the performance and energy constraints of
embedded systems. The objective of our approach is to enable
the deployment of multimodal DNNs in production applications
through cross-stack optimizations of data structures, algorithms,
systems, and architectures.

Sensor Pipeline Optimizations: With the increasing im-
portance of sensors, many research works have focused on

enhancing the capability of sensor pipelines with more powerful
algorithms [9], [57] and specialized accelerators [33], [58],
[59]. For example, DeepISP [9] is an end-to-end camera image
processing pipeline that leverages DNN model to improve
image quality. However, the higher energy consumption of more
powerful sensors has become a headache issue, particularly
for resource-constrained embedded systems. More recently,
energy-aware schemes are used to adaptively control the sensing
pipeline. They either reduce data streaming lines [60], [61]
or alleviate data computations [57], [62] at a high level.
For example, Kodukula et al. propose to only capture the
updated pixels with rhythmic pixel regions rather than the
new frame or region of interest (ROI), thus reducing the data
volume [62]. Recently, few works have focused on streamlining
the sensor pipelines themselves by adaptive data pre-processing
capabilities [63], [64]. Our approach is orthogonal to the
existing works that focus on architecture optimizations for
adaptive sensor pipelines.

Design of Energy-efficient AES: There is an increasing
interest in applying DNN models for practical autonomous em-
bedded systems (AES) to achieve ubiquitous intelligence. Due
to the resource constraints of AES, a number of energy-efficient
designs have been proposed to better trade-off performance
and efficiency in different scenarios. Typically, researchers
have studied several DNN compression approaches such as
quantization [65], and pruning [66]. These approaches perform
adaptive DNN execution by increasing or decreasing the
accuracy under various energy constraints. A more general
method is conditional computing which progressively computes
a complicated DNN model. For example, early exit [67],
SkipNet [68], etc., are representative works that dynamically
find the optimal trade-offs between computation and perfor-
mance. There have emerged several adaptive multimodal neural
architectures [8], [21] to enable adaptive multimodal learning
and fusion for different applications. For example, FrameExit
applies conditional early exiting for efficient video recognition
based on the complexity of frame context [21]. Inspired by
these works, our approach presents a holistic execution engine
that facilitates adaptive multimodal sensing and computing at
both the system and architecture levels.

VII. CONCLUSION

Multimodal computing (MMC) holds significant potential for
a wide range of AES applications. In this paper, we propose
SMG, a novel modality gating technique that enables low-
latency and high-efficiency MMC. We integrate SMG into the
existing AES as a system-level facility. It can pre-analyze
task scenarios based on raw data before DSP and adaptively
determine the DSP and computing of appropriate modalities
for different tasks. SMG is a versatile, hardware-independent
system-level tool that is applicable to a variety of multimodal
computing applications and AES platforms. Our work aims
to facilitate the development of future high-performance edge
intelligent systems, e.g., edge micro data centers.

VIII. ACKNOWLEDGEMENTS

We sincerely thank our shepherd and all the anonymous
reviewers for their valuable comments that helped us to
improve the paper. This work is supported by the National
Natural Science Foundation of China (No. 62122053). The
corresponding author is Chao Li.

REFERENCES

[1] C. Zhang, Z. Yang, X. He, and L. Deng, “Multimodal intelligence:
Representation learning, information fusion, and applications,” in IEEE
Journal of Selected Topics in Signal Processing (JSTSP), 2020.

[2] S. Krishnan, Z. Wan, K. Bhardwaj, P. N. Whatmough, A. Faust, S. M.
Neuman, G.-Y. Wei, D. M. Brooks, and V. J. Reddi, “Automatic
domain-specific soc design for autonomous unmanned aerial vehicles,”
International Symposium on Microarchitecture (MICRO), 2022.

[3] T. Baltrušaitis, C. Ahuja, and L. Morency, “Multimodal machine learning:
A survey and taxonomy,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 2018.

[4] P. Liang, Y. Lyu, X. Fan, Z. Wu, Y. Cheng, J. Wu, L. Chen, P. Wu,
M. Lee, and Y. Zhu, “Multibench: Multiscale benchmarks for multimodal
representation learning,” Conference on Neural Information Processing
Systems (NeurIPS), 2021.

[5] D. Roy, Y. Li, T. Jian, P. Tian, K. R. Chowdhury, and S. Ioannidis,
“Multi-modality sensing and data fusion for multi-vehicle detection,”
IEEE Transactions on Multimedia (TOM), 2022.

[6] X. Hou, J. Liu, X. Tang, C. Li, K.-T. Cheng, L. Li, and M. Guo,
“Mmexit: Enabling fast and efficient multi-modal dnn inference with
adaptive network exits,” in European Conference on Parallel Processing
(Euro-par), 2023.

[7] J. Arevalo, T. Solorio, M. Montes-y Gómez, and F. González, “Gated
multimodal units for information fusion,” in International Conference
on Learning Representations (ICLR), 2017.

[8] R. Panda, C.-F. Chen, Q. Fan, X. Sun, K. Saenko, A. Oliva, and R. S. Feris,
“Adamml: Adaptive multi-modal learning for efficient video recognition,”
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

[9] E. Schwartz, R. Giryes, and A. M. Bronstein, “Deepisp: Toward learning
an end-to-end image processing pipeline,” IEEE Transactions on Image
Processing (TIP), 2018.

[10] R. Panda, C.-F. Chen, Q. Fan, X. Sun, K. Saenko, A. Oliva, and
R. Feris, “AdaMML: Adaptive Multi-Modal Learning for Efficient Video
Recognition,” in International Conference on Computer Vision (ICCV),
2021.

[11] B. Yu, W. Hu, L. Xu, J. Tang, S. Liu, and Y. Zhu, “Building the computing
system for autonomous micromobility vehicles: Design constraints and
architectural optimizations,” IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2020.

[12] R. Likamwa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl, “Energy
characterization and optimization of image sensing toward continuous
mobile vision,” International Conference on Mobile Systems, Applications,
and Services (MobiSys), 2013.

[13] C.-T. Chiang, C.-H. Wang, and C.-Y. Wu, “A cmos mems audio transducer
implemented by silicon condenser microphone with analog front-end
circuits of audio codec,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2012.

[14] Nvidia, “Nvidia jetson nano developer kit.” https://developer.nvidia.com/
zh-cn/embedded/learn/get-started-jetson-nano-devkit, 2020.

[15] R. P. T. Ltd, “Raspberry pi 4 model b.” https://tinyurl.com/w5hyyhf4,
2020.

[16] Gitlab, “Gstreamer: a flexible, fast and multiplatform multimedia frame-
work.” https://gstreamer.freedesktop.org/documentation/?gi-language=c,
2023.

[17] Nvidia, “Libargus camera api.” https://docs.nvidia.com/jetson/
l4t-multimedia/group LibargusAPI.html, 2023.

[18] L. API, “v4l2src.” https://thiblahute.github.io/GStreamer-doc/
video4linux2-1.0/v4l2src.html?gi-language=c, 2023.

[19] M. Urbina, T. Acosta, J. Lázaro, A. Astarloa, and U. Bidarte, “Smart
sensor: Soc architecture for the industrial internet of things,” in IEEE
Internet of Things Journal (IoTJ), 2019.

[20] I. Cevik, X. Huang, H. Yu, M. Yan, and S. U. Ay, “An ultra-low
power cmos image sensor with on-chip energy harvesting and power
management capability,” Sensors, 2015.

[21] A. Ghodrati, B. E. Bejnordi, and A. Habibian, “Frameexit: Conditional
early exiting for efficient video recognition,” IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[22] Z. Weng, Z. Wu, H. Li, J. Chen, and Y.-G. Jiang, “Hcms: Hierarchical
and conditional modality selection for efficient video recognition,”
ACM Transactions on Multimedia Computing, Communications and
Applications (TMCCA), 2021.

[23] Y. Gan, Y. Bo, B. Tian, L. Xu, W. Hu, S. Liu, Q. Liu, Y. Zhang, J. Tang,
and Y. Zhu, “Eudoxus: Characterizing and accelerating localization
in autonomous machines industry track paper,” IEEE International
Symposium on High-Performance Computer Architecture (HPCA), 2020.

[24] X. Hou, C. Xu, J. Liu, X. Tang, L. Sun, C. Li, and K.-T. Cheng, “Char-
acterizing and understanding end-to-end multi-modal neural networks
on gpus,” IEEE Computer Architecture Letters (CAL), 2022.

[25] W. C. Sleeman IV, R. Kapoor, and P. Ghosh, “Multimodal classification:
Current landscape, taxonomy and future directions,” ACM Computing
Surveys, vol. 55, no. 7, pp. 1–31, 2022.

[26] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,
2012.

[27] X. Hou, J. Liu, X. Tang, C. Li, J. Chen, L. Liang, K.-T. Cheng, and
M. Guo, “Architecting efficient multi-modal aiot systems,” International
Symposium on Computer Architecture (ISCA), 2023.

[28] Python, “Pyaudio,” 2023.
[29] T. kernel development community, “Ioctl based interfaces,” 2023.
[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 4510–4520, 2018.

[31] Z. Xiaoli and B. Bir, “Feature fusion of side face and gait for video-based
human identification,” Pattern Recognition, 2008.

[32] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, S. Misailovic, and S. Bagchi,
“Videochef: Efficient approximation for streaming video processing
pipelines,” in USENIX Annual Technical Conference (Usenix ATC), 2018.

[33] Z. Song, Z. Yu, N. Jing, and X. Liang, “E2sr: an end-to-end video codec
assisted system for super resolution acceleration,” ACM/IEEE Design
Automation Conference (DAC), 2022.

[34] Z. Sun, P. Sarma, W. Sethares, and Y. Liang, “Learning relationships
between text, audio, and video via deep canonical correlation for
multimodal language analysis,” AAAI Conference on Artificial Intelligence
(AAAI), 2020.

[35] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), pp. 116–131, 2018.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[37] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and
L. Shao, “Cycleisp: Real image restoration via improved data synthesis,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2696–2705, 2020.

[38] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[39] R. Arandjelovic and A. Zisserman, “Look, listen and learn,” CoRR,
vol. abs/1705.08168, 2017.

[40] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al., “The kinetics
human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

[41] QiuJueqin, “A faster re-implementation of the openisp project,” 2020.
[42] Python, “Librosa: Audio and music processing in python,” 2023.
[43] Nvidia, “Nvidia jetson linux developer guide,” 2021.
[44] Python, “Python time module,” 2023.
[45] Z. Wu, C. Xiong, Y.-G. Jiang, and L. S. Davis, “Liteeval: A coarse-to-fine

framework for resource efficient video recognition,” Advances in neural
information processing systems, vol. 32, 2019.

[46] Z. Weng, Z. Wu, H. Li, and Y.-G. Jiang, “Hms: Hierarchical modality se-
lection for efficient video recognition,” arXiv preprint arXiv:2104.09760,
2021.

[47] Z. Wu, C. Xiong, C.-Y. Ma, R. Socher, and L. S. Davis, “Adaframe:
Adaptive frame selection for fast video recognition,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1278–1287, 2019.

https://developer.nvidia.com/zh-cn/embedded/learn/get-started-jetson-nano-devkit
https://developer.nvidia.com/zh-cn/embedded/learn/get-started-jetson-nano-devkit
https://tinyurl.com/w5hyyhf4
https://gstreamer.freedesktop.org/documentation/?gi-language=c
https://docs.nvidia.com/jetson/l4t-multimedia/group__LibargusAPI.html
https://docs.nvidia.com/jetson/l4t-multimedia/group__LibargusAPI.html
https://thiblahute.github.io/GStreamer-doc/video4linux2-1.0/v4l2src.html?gi-language=c
https://thiblahute.github.io/GStreamer-doc/video4linux2-1.0/v4l2src.html?gi-language=c

[48] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei, “End-to-end learning
of action detection from frame glimpses in videos,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2678–
2687, 2016.

[49] R. Gao, T.-H. Oh, K. Grauman, and L. Torresani, “Listen to look: Action
recognition by previewing audio,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10457–
10467, 2020.

[50] Wiki, “Microsoft band,” 2023.
[51] Wiki, “Google glass,” 2023.
[52] Apple, “Cell phone battery,” 2023.
[53] W. Wang, D. Tran, and M. Feiszli, “What makes training multi-modal

classification networks hard?,” Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[54] N. Natalia, W. Christian, W. Graham, and N. Florian, “Multi-scale deep
learning for gesture detection and localization,” European Conference
on Computer Vision (ECCV), 2014.

[55] Y. Wu, E. Chang, K. Chang, and J. Smith, “Optimal multimodal fusion for
multimedia data analysis,” ACM International Conference on Multimedia
(ACMMM), 2004.

[56] F. Bach, G. Lanckriet, and M. Jordan, “Multiple kernel learning, conic
duality, and the smo algorithm,” International Conference on Machine
Learning (ICML), 2004.

[57] A. Mosleh, A. Sharma, E. Onzon, F. Mannan, N. Robidoux, and
F. Heide, “Hardware-in-the-loop end-to-end optimization of camera image
processing pipelines,” IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[58] M. Buckler, P. Bedoukian, S. Jayasuriya, and A. Sampson, “Eva²:
Exploiting temporal redundancy in live computer vision,” International
Symposium on Computer Architecture (ISCA), 2018.

[59] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky,
and M. Horowitz, “Evaluating programmable architectures for imag-
ing and vision applications,” IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016.

[60] S. Naderiparizi, P. Zhang, M. Philipose, B. Priyantha, J. Liu, and
D. Ganesan, “Glimpse: A programmable early-discard camera architecture
for continuous mobile vision,” International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2017.

[61] M. Xu, T. Xu, Y. Liu, and F. X. Lin, “Video analytics with zero-streaming
cameras,” USENIX Annual Technical Conference (Usenix ATC), 2019.

[62] V. Kodukula, A. Shearer, V. Nguyen, S. Lingutla, Y. Liu, and R. Likamwa,
“Rhythmic pixel regions: multi-resolution visual sensing system towards
high-precision visual computing at low power,” International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2021.

[63] X. Fu, T. Ghaffar, J. C. Davis, and D. Lee, “Edgewise: A better stream
processing engine for the edge,” USENIX Annual Technical Conference
(Usenix ATC), 2019.

[64] F. Zhang, L. Yang, S. Zhang, B. He, W. Lu, and X. Du, “Finestream:
Fine-grained window-based stream processing on cpu-gpu integrated
architectures,” USENIX Annual Technical Conference (Usenix ATC),
2020.

[65] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[66] Y. Wu, Z. Wang, Z. Jia, Y. Shi, and J. Hu, “Intermittent inference with
nonuniformly compressed multi-exit neural network for energy harvesting
powered devices,” ACM/IEEE Design Automation Conference (DAC),
2020.

[67] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” International
Conference on Pattern Recognition (ICPR), 2016.

[68] X. Wang, F. Yu, Z.-Y. Dou, and J. Gonzalez, “Skipnet: Learning dynamic
routing in convolutional networks,” European Conference on Computer
Vision (ECCV), 2017.

	Introduction
	Motivations
	Characterization of Multimodal Computing
	Analysis of Modality Sensing
	Design Considerations

	The Design of SMG
	Overview
	Software-Defined Gating Architecture
	Raw Data-Activated MMC Mechanism
	A Case Study: SMG for Multimodal Video Processing

	Experimental Methodologies
	Multimodal Video Processing Workloads
	Prototype Platform Setup
	The State-of-the-Art Baselines

	Evaluation Results
	Effectiveness Validation
	Comparison with SOTA
	Real-world Verification

	Related Work
	Conclusion
	Acknowledgements
	References

