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Abstract—The emerging trend of autonomous embedded sys-
tems minimizing human intervention has raised new questions
about continuously maximizing system energy efficiency faced
with stochastic runtime variance, which is costly for resource-
constrained autonomous embedded systems. Considering het-
erogeneous hardware and variable software, we envision op-
portunities for vertical and horizontal shadow cycles within
the AES pipeline for management facilities. This paper intro-
duces SHEEO, a continuous energy efficiency optimizer that
exploits underutilized heterogeneous computing resources to
pursue variability-aware power management. To achieve this,
SHEEO constantly monitors inner and outer variances and
customizes reinforcement learning into two phases for stochastic
runtime variance. We implement and deploy SHEEO on a
commercial edge platform. The evaluation results show that
SHEEO harvests up to 88% shadow cycles and improves up
to 39% energy efficiency compared to state-of-the-art power
management techniques with negligible overheads.

Index Terms—Energy Efficiency, Continuous Learning,
Shadow Cycles, Autonomous Embedded System

I. INTRODUCTION

With an emphasis on intelligent systems minimizing hu-
man intervention, autonomous embedded systems (AES) have
recently become a promising trend in both academia [8]
and industry [16]. AES surpasses traditional human-involved
systems by sensing the environment, perceiving the objects,
and actuating the vehicle on highly integrated embedded
platforms [10]. Considering the ability of AES to reduce the
burden on people, many industry leaders such as Nvidia [16]
and Tesla [19] have invested large amounts of capital and
engineering power in developing such systems.

AES has three major differences from traditional well-
studied systems, as shown in Figure 1. Firstly, the underlying
architecture comprises heterogeneous hardware accelerators,
providing varied domain-specific computing capabilities [9].
Also, the hardware heterogeneity requires more comprehen-
sive and adaptive management facilities [4]. Secondly, the
mission-critical tasks of AES are organized into a three-stage
pipeline executing iteratively, i.e., sensing, perception, and
actuation [10]. The perception stage consists of a fixed number
of AI-based tasks that execute concurrently on heterogeneous
hardware [25]. Thirdly, AES faces more severe stochastic
runtime variance than before due to unpredictable execution
status and continuous interaction with the environment [6],
requiring variability-aware and intelligent power management
under severe energy budget [3].
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Fig. 1: Overview of autonomous embedded systems.

Faced with runtime variances, AES calls for a continu-
ous and intelligent energy efficiency optimizer. Practically,
the changing vehicle speed, outer environment surroundings,
and inner task complexity constitute the stochastic nature of
AES [8], which is ignored by current constraint-aware and
workload-aware efficiency optimizer [2], [12]. Therefore, AES
needs a variability-aware energy efficiency optimizer at the
granularity of each three-stage iteration. What’s worse, such
continuous efficiency optimizer frequently occupies normal
resources to make decisions, interfering with the mission-
critical tasks in the pipeline.

The heterogeneous hardware and variable software result
in underutilized heterogeneous computing resources in AES,
which are desirable for deploying management facilities. We
define the potential resource fragments in each three-stage
iteration as shadow cycles and divide them into two categories.
The Vertical Shadow Cycles (VSC) exist in the waiting time
of heterogeneous hardware within the perception stage, and
the Horizontal Shadow Cycles (HSC) exist in the sensing
and actuation stages with idle accelerators. Inherently, the
preemptive VSC and HSC are volatile and short-lived in du-
ration, respectively. Shadow cycles are valuable for resource-
constrained AES by enlarging the resource visibility, but it
is challenging to transparently utilize them. Normal mission-
critical tasks cannot be guaranteed on shadow cycles, but the
auxiliary management tasks could seize the opportunities.

Considering the potential of underutilized resources and
the need for runtime optimization, it is attractive to utilize
shadow cycles for continuous energy efficiency optimizers.
To this end, we propose SHEEO, a continuous Energy
Efficiency Optimizer with SHadow cycles, which exploits the
underutilized heterogeneous computing resources to enable
variability-aware power management every iteration. SHEEO
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Fig. 2: Hardware architecture and power management tuning
knobs of COTS embedded platforms.

is composed of two well-designed components to pursue
optimal energy efficiency. It monitors the external environment
dynamics and the internal execution status with Real-time
Monitor. The Continuous Learning Manager customizes rein-
forcement learning based on AES properties into two phases
to learn and optimize AES energy efficiency.

To evaluate SHEEO thoroughly, we implement and deploy
it on a commercial edge platform, Nvidia Jetson Orin. Under
various scenarios, we demonstrate that SHEEO harvests up to
88% shadow cycles within AES to deploy continuous energy
efficiency optimizers. Further, SHEEO improves up to 39%
and 27% energy consumption over state-of-the-art workload-
aware and learning-based power management baselines via
more aggressively tuning power with negligible overheads.

This paper makes the following key contributions:

1) Analysis: We envision the potential of shadow cycles
within the heterogeneous autonomous embedded sys-
tems and the urgent need for continuously optimizing
energy efficiency with runtime variances.

2) Design: We propose an intelligent continuous efficiency
optimizer on shadow cycles SHEEO and design two
components to learn and optimize AES efficiency.

3) Evaluation: We implement and deploy SHEEO on
edge platforms to prove its effectiveness in harvesting
shadow cycles and efficiency in improving AES energy
efficiency under various scenarios.

The rest of this paper is organized as follows: Section
II discusses the background and Section III introduces our
motivations. Section IV proposes our detailed designs and
Section V thoroughly evaluates SHEEO. Section VI presents
discussion and Section VII concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Researches of Autonomous Embedded Systems

Autonomous systems operate independently without requir-
ing human intervention, such as autonomous driving [16] and
unmanned aerial vehicles [5]. They mainly have two differ-
ences with traditional systems. On the architectural aspect,
unlike traditional systems deployed in large-scale datacenters
with clear workload division, autonomous systems are usually
deployed on edge embedded platforms such as commercial
off-the-shelf (COTS) Nvidia Jetson AGX Orin [15] as shown

in Figure 2. Such embedded platforms are equipped with abun-
dant heterogeneous computing units, which are integrated into
a single board and responsible for miscellaneous workloads.

Apart from architectural differences, AES exhibits distinct
software execution patterns. It executes a horizontal three-
stage pipeline iteratively, and diverse workloads run con-
currently in a single stage [10]. Firstly, it gathers the en-
vironment information with diverse real-time sensors in the
sensing stage [23]. Then, it performs concurrent processing
and prediction of the objects with various deep neural networks
to understand the external conditions in the perception stage.
Finally, it makes decisions based on the processed information
in the actuation stage. The perception stage mainly occupies
heterogeneous computing power while the other two stages
mainly occupy general computing power of CPU [9]. Every
three-stage iteration has a dynamic latency constraint, and
the AI-intensive perception stage takes up more than 90%
execution time within each iteration [8].

Prior works from academia and industry focus on archi-
tecting and scheduling the AES [14], [22]. Shi-Chieh and
Bo comprehensively present the architectural implications and
design considerations of AES [8], [23]. Soroush proposes a
predictable data-driven scheduler to manage the resources of
AES [1]. However, these works ignore the hidden hetero-
computing resource fragments due to the hardware and soft-
ware heterogeneity within AES.

B. Intelligent and Heterogeneous Power Management

Faced with more complex hardware and software, re-
searchers utilize machine learning methods to enhance tra-
ditional power management solutions. In cloud comput-
ing, workloads and runtime are more stable than AES,
and researchers use predictive models to learn energy effi-
ciency [11]–[13], [21], [24]. Such solutions target systems
with little stochastic runtime variance and occupy additional
hardware resources for learning and deciding. In the AES
scenario, there are a few prior works on intelligent power
management [2], [6], [17]. NeuOS is a latency-predictable
multi-dimensional optimization framework for multi-DNN
workloads in AES [2]. Such solutions pay more attention to the
characteristics of workloads while overlooking the stochastic
runtime variance and lacking real-time adaptation.

Further, power management for heterogeneous architectures
is much more challenging. Dynamic voltage and frequency
scaling (DVFS) for a single component often conflict when
performed independently by separate controllers [4]. Prior
works rely on empirical models to manage the power supply
of CPU-GPU systems [7], but such static methods fail to
grasp the changing behaviors of AES. Therefore, adaptive
and intelligent power management is crucial to pursuing the
efficiency optimals of heterogeneous AES.

III. MOTIVATION

A. Harvesting shadow cycles in AES

In autonomous embedded systems, diverse neural networks
execute on heterogeneous accelerators to understand the envi-
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Fig. 3: Different inferences exhibit much performance diver-
sity on heterogeneous hardware.

ronment [10], causing underutilized heterogeneous computing
resources within the pipeline. We characterize representative
workloads of AES [8], including object detection and ob-
ject tracking, on COTS edge platform Nvidia Jetson AGX
Orin [15]. We select three typical neural network inferences: 1)
ssd-mobilenet-v1 (SSD), 2) yolov3-tiny-416 (YOLO), and 3)
super-resolution-bsd500 (SRCNN) to constitute the perception
stage. We average the results of 100 repeated experiments for
each setting to reduce random biases.

Figure 3 reports the average performance, and we have two
key observations. On the one hand, Figure 3a presents the
inference time distribution of three tasks on GPU and deep
learning accelerator (DLA). We find that the inference time
varies among neural networks on different accelerators due
to varied model sizes and hardware capabilities. On the other
hand, Figure 3b shows the execution misalignment of various
tasks within the perception stage. We select four typical
mapping schemes that allocate different tasks to underlying
accelerators. Tasks allocated on GPU and DLA are executed
for varied duration and the unit that finishes ahead remains
idle until the latter finishes. The misalignment phenomenon
is widespread in AES with execution variability and is more
complex with more concurrent tasks in realistic scenarios.

Given the AES characterizations, we envision the potential
of underutilized heterogeneous computing resources within the
execution pipeline, termed as shadow cycles. In this paper, we
focus on the shadow GPU and DLA resources since they are
mostly utilized in AES. The shadow cycles are familiar in
traditional systems, such as multi-core CPUs that utilize idle
cores for work stealing. We discuss more in Section VI-B.
However, AES executes in a fixed and repetitive manner,
making shadow cycles more fragmented and variable. As
shown in Figure 4, we categorize two types of shadow cycles:

1) Vertical Shadow Cycles (VSC): The idle hetero-
computing resources within the waiting time until the
slowest task in the perception stage.

2) Horizontal Shadow Cycles (HSC): The idle hetero-
computing resources in the sensing and actuation stages
of the horizontal pipeline.

More specifically, shadow cycles are different from normal
heterogeneous computing resources. Firstly, the underutilized
resource fragments are preemptive since the normal function-

PerceptionSensing

Frame2

Frame2 Perc.

Localization

HSC

HSC

Actuation

Depth Estimation

VSCDetection

Localization

HSC

InitializationCPU

GPU

DLA

MEM

Perception Stage Actuation

HSC

Sensor Buffer Sensor BufferIntermediate Buffer

Decisions

···

Frame1 Frame2

Time

VSCTracking

Recognition
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execution pipeline of AES.

alities are most important. Secondly, VSC results from the
misaligned execution of concurrent tasks within the perception
stage, so it is volatile in its duration due to varied task and
hardware mappings. For example, the VSC in Figure 3b ranges
from 14-70 milliseconds, depending on the perception stage
settings. Thirdly, HSC results from the horizontal pipeline
with CPU-intensive actuation stages, so it is short-lived in its
duration since the actuation stage occupies a small proportion
in each iteration. For a typical 100ms end-to-end latency
constraint, the HSC exists around 5-10 milliseconds [8] in
every 100ms AES pipeline.

In resource-constrained AES, utilizing shadow cycles is
both valuable and challenging. Exploiting these underutilized
resources could fully release the heterogeneous computing
power in AES but faces two key challenges. (1) How to
capture shadow cycles efficiently? Given the volatile VSC
and short-lived HSC, it is crucial to capture and organize
them for utilization quickly. (2) How to exploit shadow cycles
transparently? Even if we could manage shadow cycles as
wished, the preemptive property makes it suitable to deploy
auxiliary tasks on them instead of normal mission-critical
tasks. We analyze that VSC fits tasks executing adaptively in
length while HSC fits tasks executing rapidly and demanding
little hardware resources.

B. Continuous Learning for Energy-Efficient AES

Running AES is a dynamic system continuously changing
and interacting with the environment, requiring an adaptive
energy efficiency optimizer. The runtime dynamics mainly
contain three parts: 1) vehicle speed, which changes with
time and influences the latency constraints of AES [23]; 2)
surrounding changes, which denotes the external environment
variation and determines the understanding complexity for
AES [5]; 3) task complexity, which varies in each iteration
based on AES status. Such dynamic factors exist continuously
such that the current constraint-aware efficiency optimizer [2]
fails to make optimal power management decisions.

As shown in Figure 5, for a running AES, case 1 is straight-
forward, and the optimal decision is to decrease the power
supply (i.e., decrease V/F level). However, AES in case 2 and
3 experiences runtime dynamics, and the traditional method
fails to make continuous adaptations. Latency constraints in
case 4 are tight, but reducing power supply is safe and energy-
efficient in such scenarios with an understanding of current
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surroundings. In summary, AES calls for a continuous and
intelligent energy efficiency optimizer.

Considering the analysis of shadow cycles and runtime
dynamics of AES, it is necessary and suitable to utilize
shadow cycles for continuous efficiency optimizer. Firstly,
the optimal power management adapting to runtime dynam-
ics is continuous learning, which learns behaviors through
trial-and-error interactions with the environment and easily
scales to heterogeneous hardware management. However, it is
costly to occupy normal heterogeneous computing resources
in every iteration [12]. Thus, deploying the continuous effi-
ciency optimizer with shadow cycles is necessary for resource-
constrained AES. Secondly, continuous learning fits well with
shadow cycles within the AES pipeline. VSC is suitable for the
training (learning) process that is preemptive on heterogeneous
computing units and can be performed in variable sizes. HSC
is suitable for the inference (control) process that is relatively
lightweight and performed in every iteration.

IV. DESIGN

Based on the above analysis, it is of great help for au-
tonomous embedded systems to exploit shadow cycles for
continuously optimizing energy efficiency. In this work, we
propose SHEEO, a continuous Energy Efficiency Optimizer
with SHadow cycles, which exploits the underutilized het-
erogeneous computing resources to perform variability-aware
power management at iteration granularity. SHEEO automates
the above process through a real-time monitor and a continu-
ous learning manager, as shown in Figure 6.

A. Real-time Monitor

SHEEO abstracts away the complexity of the external
environment and internal software and hardware through the
real-time monitor. During runtime, it observes both the un-
derutilized periods and the execution conditions with several
ready-to-use systems interfaces and methods. Firstly, it closely
monitors the execution pipeline of AES. We modify the tasks
of AES to report their start time and end time to the monitor
in real-time. When an individual task in the perception stage
finishes without subsequent candidates, the monitor marks the
start of VSC periods for the continuous learning manager.
When the slowest task of the perception stage finishes, the
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Fig. 6: Workflow of the two components of SHEEO.

monitor marks the end of VSC periods. In other stages, the
monitor marks HSC periods until the start of perception tasks.

In addition, the real-time monitor is responsible for in-
teracting with the environment and system. It monitors the
vehicle speed and environment changes as runtime dynamics
and records the metadata of executing workloads for every
iteration by collecting the computing and memory utilization
through the jetson stat tool. The collected information is
organized into an ordered array indexed by iteration and
fed into the continuous learning manager to make decisions.
Equipped with the monitor, SHEEO can harvest shadow cycles
accurately and continuously optimize AES energy efficiency.

B. Continuous Learning Manager

The continuous learning manager of SHEEO takes into
account real-time knowledge to manage energy efficiency.
Among the various reinforcement learning methods, such as
Q-learning, TD-learning, and deep-RL, we choose Q-learning
for the continuous efficiency optimizer since it employs a
lookup table to find the best action with low overhead. We
implement the continuous learning manager by Q-learning
with value function Q(S,A), which takes state S and action
A as parameters and is called a Q-Table. To fully utilize the
historical information with shadow cycles, we design a Store
Table to record the unexploited data.

As shown in Figure 6, the monitor ➀ observes the envi-
ronment status and system states and stores them in the Store
Table. During VSC periods, the manager ➁ updates the Q-
Table according to historical information in the store table.
During HSC periods, the manager ➂ selects the optimal power
management actions with the best energy efficiency based on
the Q-table. After the execution is completed, the manager ➃
gets feedback from the observing objects and calculates the
reward to the store table. The continuous learning manager is
composed of three key components (state, action, reward) and
two well-designed algorithms.

State: As shown in Table Ia, the multi-dimensional state
contains workload features and runtime features. For neural
network inference tasks, the number of convolutional layers
(CONV) SCONV , fully-connected layers (FC) SFC , and re-
current layers (RC) SRC is deeply correlated with the energy
efficiency and performance of inference execution. Based on



TABLE I: Design details of continuous learning manager.

(a) Multi-dimensional state-related features

State Descriptions Discrete Values

Workload
Features

SCONV Number of CONV layers L (<30), M (<50), H (≥50)
SFC Number of FC layers L (<10), H (≥10)
SRC Number of RC layers L (<10), H (≥10)

Runtime
Dynamics

SSpeed Current vehicle speed L (<10mph), M (<40mph), H (≥40mph)
SVar Variation from last execution L (<10%), M (<30%), H (≥30%)
SCom Computing units’ utilization L (<25%), M (<75%), H (≥75%)
SMem Memory utilization L (<25%), M (<75%), H (≥75%)

(b) Power tuning actions

Actions Descriptions
SX Turn On/Off Component X

NCPU Number of Active Core
FCPU V/F Level of CPU Core
FGPU V/F Level of GPU
FDLA1 V/F Level of DLA1
FDLA2 V/F Level of DLA2
FMEM V/F Level of Memory

the analysis above, the fluctuated vehicle speed SSpeed and
the surrounding changes SV ar (represented by the variation
between adjacent perceptions) represent stochastic runtime
variance. In addition, the current utilization of computing units
SCom and memorySMem is vital for future energy efficiency
decisions. We summarize the above into a seven-tuple state
and set the discrete values for each feature based on prior
characterization and analysis.

Action: Table Ib lists the power tuning actions of the
manager, which represent the adjustable knobs of heteroge-
neous hardware in AES. NCPU denotes the core throttling
mechanism to shut down the idle cores. FX denotes the DVFS
mechanism on different components. The actions constitute a
six-tuple for each iteration to decide the configuration for each
component. The tuning range for each knob is determined by
the power mode configurations and is restricted by the overall
power supply of AES (e.g., maximum 50W for Orin). For
example, if the latency constraints are satisfied in the last
iteration and the environment becomes easier to understand, it
is possible to shut down some computing units and reduce the
frequency of active units to save energy. The set of actions
is determined at the hardware layer for now and can be
augmented by considering more software tuning knobs.

Reward: The reward determines the optimization objectives
in each iteration, and we design a two-fold reward R to pursue
optimal energy efficiency under latency constraints. We define
the reward of SHEEO as the weighted sum of performance
reward Rlatency and efficiency reward Renergy. Rl is the
measured latency of the perception stage for selected actions
from the real-time monitor. Re is the measured energy usage
of the targeted hardware defined as below. Here we demon-
strate Nvidia Jetson AGX Orin, where VDD GPU SOC and
VDD CPU CV represent the power of all targeted hardware
units and Tb (Te) represents the begin (end) time.

R = aRlatency + bRenergy s.t. Rl ≤ Constraint
Rlatency = max

t∈Perception
T t
end − Tstart

Renergy =
∑
i

Ei
Unit =

∑
i

∫ Te

Tb

Pfδt+ Pidle × tidle

Aside from three elements, the continuous learning manager
pursues agile decision-making and uses Q-learning to exploit
the low decision latency. We carefully design a continuous
learning algorithm to utilize the VSC and HSC. Algorithm 1

Algorithm 1: Algorithm for continuous learning
Input: Pre-trained Q-table Q(S,A), learning rate α,

discount factor γ, exploration probability ϵ
Output: Fine-tuned Q-table and Action A for each

iteration
1 while ∃ VSC periods and ∃ Store Table do
2 Calculate recorded reward Renergy and Rlatency;
3 For consecutive S and S′ and chosen action A;
4 Choose action A′ with the largest Q(S′, A′);
5 Q(S,A)← Q(S,A)+α[R+γQ(S′, A′)−Q(S,A)];
6 S ← S′

7 end
8 foreach HSC periods do
9 Gather S and locate in Q(S,A);

10 if rand() < ϵ then
11 Choose action A randomly;
12 else
13 Choose action A with the largest Q(S,A);
14 end
15 Store Table ← (A, S’) ;
16 end

shows the process of continuously training the Q-table within
VSC periods. It inputs a pre-trained Q-table Q(S,A), learning
rate α denoting the importance of rewards, and discount factor
γ denoting the relationship between consecutive states. It will
iteratively fine-tune the Q-table until the VSC period ends or
historical information is all used. For each iteration within
VSC periods (line 1), it calculates the reward (line 2), gets
consecutive information from the store table (line 3), chooses
the corresponding action (line 4), updates the Q(S,A) based
on the equation (line 5). With algorithm 1, SHEEO can utilize
vertical shadow cycles adaptively and fine-tune the Q-table for
more accurate decisions constantly.

Concerning HSC, Algorithm 1 shows the details for select-
ing actions maximizing energy efficiency. To deal with the
exploitation versus exploration dilemma, SHEEO employs the
epsilon-greedy method with parameter ϵ, which chooses the
action with the highest reward or a uniformly random action
based on an exploration probability. For the observed S in the
Q-table (line 9), it evaluates a random value compared with ϵ
(line 10). If the random value is smaller than ϵ, the algorithm
chooses A randomly for exploration (line 11). Otherwise, it



TABLE II: Evaluation platform specifications.

Device Nvidia Jetson AGX Orin Module
CPU 8-core ARM Cortex-A78 v8.2
GPU 1792-core Ampere GPU with 56 tensor cores

Memory 32GB 256-bit LPDDR5
Accelerator 2x NVDLA v2, 1x PVA v2

System Linux 5.10.104-tegra with Jetpack 5.1.1
Software CUDA 11.4 and TensorRT 8.5.2

chooses A with the largest Q(S,A) (line 13). After that, the
information is recorded in the store table for future usage (line
15). SHEEO can select actions agilely with maximized energy
efficiency, and the decision process fits HSC perfectly.

V. EVALUATION

In this section, we thoroughly evaluate SHEEO. Specifically,
we want to answer three questions:

1) How can SHEEO harvest shadow cycles in AES?
2) How can SHEEO continuously optimize efficiency?
3) How about the deployment overhead of SHEEO?

A. Evaluation Methodology

Implementations To evaluate SHEEO in realistic AES, we
implement a prototype of the two components in Python. As
for the hyperparameters in SHEEO, we set the learning rate
α as 0.9 to reflect the reward more to the Q values and the
discount factor γ as 0.1 to decrease the relationship between
consecutive states due to the stochastic nature of AES. Also,
we empirically set the exploration probability ϵ as 0.1 to prefer
exploitation instead of exploration.
Specifications: We perform the evaluations on a typical COTS
embedded platform, Nvidia Jetson AGX Orin [15], and Table
II summarizes the platform specifications. We focus on the
shadow cycles on GPU and NVDLA since they are mostly
used for AES inference tasks. During the execution, we record
the hardware utilization with jetson stat tool and measure the
power with the onboard power meter updated at 5ms intervals
to calculate energy consumption. We overwrite the default
power mode setting to set 12 frequency levels for both GPU
and DLA. As for the software, we take three typical neural
networks: SSD, YOLO, and SRCNN with FP16 precision, as
detailed in Section III-A, and we combine them together to
mimic the perception stage of the AES pipeline.
Baselines: To fully evaluate SHEEO, we compare it with two
types of state-of-the-art (SOTA) baselines: Workload-Aware
Control (WAC) methods [2] and Learning-Based Control
(LBC) methods [12]. The former relies on the static model
to profile workloads and makes power management decisions
based on the system constraints (e.g., LAG analysis). The latter
uses a machine learning model and historical statistics to make
optimal power management decisions. We compare the SOTA
works of the two categories with SHEEO.

B. Evaluation Results

1) Effectiveness (RQ1): The primary goal of SHEEO is har-
vesting the underutilized resources within autonomous embed-
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ded systems. Figure 7 shows an example iteration in the three-
stage AES pipeline, composed of sensing, perception, and ac-
tuation stages. We present the effectiveness by comparing the
heterogeneous hardware utilization with and without SHEEO,
especially GPU since it finishes later than DLA here. With
SHEEO in the blue line, AES utilizes the virtual and horizontal
shadow cycles in the pipeline to finish the power management
training and inference. On average, the VSC periods harvest
more than 70% resources, and the HSC periods harvest around
40% resources since Q-learning inference is lightweight and
agile. SHEEO rescues resource-constrained AES from ignor-
ing hetero-computing power within the pipeline and wasting
normal resources for power management functionalities.

Moreover, Figure 8 presents the harvesting ratio of SHEEO
under different scenarios. The harvesting ratio is defined as
the average improved utilization within shadow cycle periods
compared to that without SHEEO. SHEEO harvests 41%,
72%, 84.1%, and 88% VSC for different runtime variances
and 51% HSC on average. We have three key findings.
Firstly, the harvesting ratio is higher under high vehicle speed
scenarios. The tighter latency constraints leave shorter VSC
periods with processing the same perception tasks. Secondly,
the harvesting ratio is higher with more significant runtime
variance, which requires more frequent Q-table training. The
standard deviation under such scenarios is higher than that of
others since the duration of VSC periods is unstable. Thirdly,
the low vehicle speed and low runtime variance scenarios
have more shadow cycles, which presents opportunities for
heavier management functionalities. Overall, SHEEO makes
use of underutilized hetero-computing resources within normal
execution instead of occupying additional hardware resources
for continuous power management.
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Fig. 9: RQ2: SHEEO reduces the energy consumption of AES
execution under various scenarios.
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Fig. 10: RQ2: SHEEO optimizes energy consumption with
little cost of execution latency.

2) Efficiency (RQ2): With harvested shadow cycles,
SHEEO aims to provide a more agile and accurate power
management solution. Figure 9 presents the comparison of
energy consumption via different power management schemes.
The Oracle denotes ideally offline power management, making
optimal energy under all scenarios. All results are normalized
to the WAC baseline. On average, SHEEO outperforms WAC
and LBC by 9.4% and 3% with low runtime variance, where
the surrounding changes are less for adaptive management.
With high runtime variance, SHEEO outperforms the two
baselines by 21% and 16%, respectively, since the baselines
are ignorant of the changing conditions. In addition, we have
two findings. Firstly, with low runtime variance, power man-
agement with workload awareness is adequate for near-optimal
AES energy efficiency. Secondly, the best 27% improvement
of SHEEO happens with medium vehicle speed and high
runtime variance since the tight latency constraints under high
speed leave little power tuning space for SHEEO.

Moreover, Figure 10 presents the energy-delay product
(EDP) of SHEEO to further evaluate the efficiency. EDP
is mostly used as a more comprehensive metric to evaluate
both energy efficiency and performance. On average, SHEEO
outperforms WAC by 19.7% and LBC by 7.6%, respectively.
Combined with energy consumption results, we find that
SHEEO tends to sacrifice a little execution latency for better
energy efficiency. With high runtime variance, SHEEO can
adapt to the changes on the latency constraints, surrounding
changes, and workload complexity.

Further, we present the frequency tuning process as shown
in Figure 11 to investigate the energy efficiency improvements
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Fig. 11: RQ2: SHEEO tunes hardware frequency with
variability-awareness to optimize energy consumption.

of SHEEO. We modify the default power mode of Orin to
set 12 optional frequency levels for GPU and DLA. The
GPU frequency can be adjusted from 306MHz to 1.3GHz.
Figure 11 contains three different phases to represent realistic
AES execution environments. In the No RV phase, SHEEO
performs similarly to LBC since they both learn the AES
behaviors. In the Speed Changing phase with changing latency
constraints, SHEEO makes similar decisions with WAC but
tunes the frequency more to speed up or slow down the
execution more aggressively. In the Surrounding Changing
phase, there are more runtime variances, and SHEEO makes
more varied frequency tuning decisions to make the optimal
decision in the current status, resulting in reduced energy
consumption. However, the reduced frequency could sacrifice
a little execution latency for the pursuit of energy efficiency,
like iteration 7.

3) Overhead (RQ3): Another critical aspect of SHEEO is
the deployment overhead in resource-constrained AES. The
overhead contains two parts: training overhead and control
overhead. The training utilizes VSC, and the inference utilizes
HSC, which has no latency effect on the AES pipeline. As for
energy overhead, SHEEO consumes 4.5 mJ for each training
epoch and 1.7 mJ for each control process, corresponding to
less than 1% reduced energy. Baseline power management
schemes require normal resources and incur both latency
and energy overheads. Moreover, the memory requirement of
SHEEO is 1.3MB, translating to only 0.01% of the 32 GB
DRAM capacity of the evaluated COTS AES platform.

VI. DISCUSSION

A. Broader Utilization of Shadow Cycles

In this paper, we envision the underutilized shadow cycle
opportunity in AES to expand the resource visibility of sophis-
ticated designs on normal resources [1], [18], [20]. However,
continuous learning energy efficiency is just a suitable and
necessary management functionality that can be offloaded to
shadow cycles, and this opportunity could be seized by more
costly middleware in the resource-constrained AES. Except for
normal mission-critical tasks with the highest priorities, the
management tasks (e.g., power management, task mapping,
cloud synchronization) can be offloaded to the volatile VSC
and short-lived HSC. Therefore, SHEEO acts as an enlighten-
ing case for the broader utilization of shadow cycles.
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B. Foresight of Shadow Cycles

Shadow cycles of AES result from misalignment in nature,
which is a long-lasting topic in different system architectures.
As shown in Figure 12, the work-stealing mechanism aims
for unbalanced multi-core processors, and time-consuming
tasks could be offloaded to GPU in CPU-GPU architecture.
In resource-constrained AES, shadow cycles exhibit unique
properties and are properly utilized by SHEEO. Future plat-
forms will be equipped with more diverse domain-specific
accelerators (DSA), offering varied computing capabilities
for various tasks. With more heterogeneous hardware and
variable software, the potential of underutilized and misaligned
resources is even more worth exploring.

VII. CONCLUSION

This paper analyzes the potential of underutilized shadow
cycles in AES and the need for variability-aware energy
efficiency optimizers faced with runtime variance. We propose
SHEEO to exploit shadow cycles for continuously optimizing
energy efficiency. The evaluations show that SHEEO harvests
up to 88% shadow cycles and improves up to 39% energy effi-
ciency compared with SOTA works with negligible overheads.
We expect SHEEO could motivate broader resource visibility
for the management facilities of AES.
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