
Front.Comput.Sci.
DOI

REVIEW ARTICLE

Performance Optimization for Cloud Computing Systems in the
Microservice Era: State-of-the-Art and Research Opportunities

Rong Zeng, Xiaofeng Hou, Lu Zhang, Chao Li, Wenli Zheng, and Minyi Guo

Shanghai Jiao Tong University, Shanghai, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract With the demand of agile development and man-
agement, cloud applications today are moving towards a
more fine-grained microservice paradigm, where smaller
and simpler functioning parts are combined for providing
end-to-end services. In recent years, we have witnessed
many research efforts that strive to optimize the performance
of cloud computing system in this new era. This paper pro-
vides an overview of existing works on recent system per-
formance optimization techniques and classify them based
on their design focuses. We also identify open issues and
challenges in this important research direction.

Keywords Microservice, Cloud Computing System, Per-
formance Optimization, Challenges, Opportunities

1 Introduction

The cloud computing services today face stringent perfor-
mance requirements, and meeting these requirements in-
volves a variety of advanced techniques and significant re-
search efforts. In an effort for agile cloud management
and service development, many providers such as Netflix[1],
Amazon[2], and Microsoft[3] are shifting to a new design
paradigm — microservice. With microservice architecture,
software applications are dissected to smaller, simpler func-
tioning components that communicates with each other via
network requests. Microservices can be developed via differ-
ent programming models and languages, and deployed and
managed independently without affecting the normal func-
tions of each other[4][5].

E-mail: chaol@sjtu.edu.cn

Performance optimization of cloud computing system in
the microservice era is challenging for several reasons. First,
datacenters have grown in heterogeneity and disaggrega-
tion at the infrastructure layer due to the adoption of vari-
ous special hardware [6, 7], accelerators[8] and new server
architecture[9, 10]. Second, microservice-based applica-
tions have complex runtime dynamics. The service units
http://my.sjtu.edu.cn/are usually deployed in a distributed
manner with lightweight virtualization[11]. Consequently,
the complexity increases rapidly across all layers in the
cloud, making it increasingly difficult for performance pre-
diction, monitoring and resource provisioning decisions.
Third, microservice applications have stricter performance
requirements compared to the monolith. They show richer
diversity in system requirements, which requires careful re-
thinking of current controlling techniques at both system and
application level.

In this paper we compare recent techniques for microser-
vice performance optimization in the cloud. We categorize
performance optimization issues into three parts and investi-
gate the latest work of each part to provide a holistic view of
the problem. We mainly focus on techniques that address the
resource management issue of cloud systems for high perfor-
mance. We summarize the open issues and challenges posed
by the complexity of microservices.

1.1 Related Work

While microservices have been widely adopted, only a few
surveys have been conducted, and none of the prior sur-
veys specifically focus on the performance optimization is-
sue. Several literature reviews summarize recent work on
microservice architectures. For example, Taibi et al. [12]
presented the widely adopted architecture patterns and com-



2
R. Zeng, X. Hou, C. Li, et al., Performance Optimization for Microservice in the Cloud

pared the advantages and disadvantages of these patterns.
Alshuqayran et al. [13] discussed the key concerns for de-
signing architecture for microservice-based applications.

There are a few surveys on the security issues of microser-
vice applications. Almeida et al. [14] investigated the se-
curity implications and solutions for cloud microservices.
Yarygina et al. [15] collected the prior researches on secu-
rity issues and presented a taxonomy in terms of the layered
models and emergent practices.

One line of recent surveys has been focused on the study
of differences between monolithic and microservice appli-
cations. Villamizar et al. [16] investigated monolithic and
microservice for Web applications in cloud, with an empah-
sis on the architecture patterns. Vural et al. [17] looked at
the trend of microservices and discussed the research gaps as
well as the differences between microservice and SOA archi-
tecture. Gouigoux et al. [18] also compared the architecture
and designs in monolithic and microservice Web services.
As for production systems, Di Francesco et al. [19] summa-
rized a few key industrial practices of microservice systems.

Service management approach is an important direction.
Manvi et al. [20] presented the researches on the resource
management approaches and optimizations at the infrastruc-
ture layer. Vaquero et al. [21] addressed the service orches-
tration challenges upon the advent of various new technolo-
gies, such as edge computing, serverless computing and dis-
aggregated datacenters. Pahl et al. [22] presented the sur-
vey of microservices at the PaaS level. Our work distin-
guishes from these work in that we compare the latest work
specifically addressing the performance optimization issues
of clouding computing in the microservice era.

1.2 Contribution

It is important for researchers and developers to gain a deep
understanding of potential performance bottlenecks and re-
search challenges of microservice, as well as recent advance-
ment on performance optimization approaches. In this paper
we take the first step to extensively investigate various tech-
niques that aim to improve microservice performance. Over-
all, this paper makes the following contributions:

1) We provide a thorough comparison of important terms
and concepts that are closely related to cloud computing sys-
tem in the microservice era.

2) We categorize the performance optimization tech-
niques for microservice in the cloud, provide an analysis of
the pros and cons of exiting designs, and present the research
opportunities on these issues.

3) We summarize the open issues and challenges faced by
cloud microservice management.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background of microservice architec-
ture and related concepts, as well as the challenges and op-
portunities of performance optimization techniques. Sec-
tions 3, 4, and 5 provide an thorough review on performance
monitoring, resource provisioning, and system tuning, re-
spectively. Section 6 lists the open issues and challenges
of microservice performance and adoption in cloud. Finally,
Section 7 concludes the paper.

2 Background and Definition

This section provides an overview of microservice paradigm
and its comparison with other related concepts.

2.1 Microservice: A Brief Overview

The term microservice was firstly introduced as "fine-
grained" Service-Oriented Architecture (SOA) in 2012 [23],
faced with the distributed nature of cloud system and appli-
cations [24]. In general, microservice is defined as an archi-
tectural style for software design, as opposed to the "mono-
lithic" style [4]. In this paradigm, an application is composed
of multi-tier, simpler-functioning services, each running in
independent process and communicating through exposed
ports to provide end-to-end services. To be more specific,
the microservice architecture distinguishes itself from tradi-
tional cloud applications in the following aspects:

Decoupled Functionality. The applications are loosely
decoupled into simpler functionalities. In the microservice
paradigm each service is responsible for a pre-defined func-
tionality, involving business logic, data retrieval, data stor-
age, user request delivery, etc. The granularity and division
of a microservice-based application is typically dependent
on the process logic [4]. Here, the complete end-to-end func-
tionality for user services is achieved by the collaboration of
multiple microservice components through the network re-
quest of Remote Procedure Call (RPC) [25].

Independent Development. The microservice architec-
ture demonstrates independence both in interior develop-
ment approaches and communication methods. The de-
veloping of microservices usually involves the whole stack
work and teams responsible for different services possess
freedom in choosing languages and architecture patterns. It
is important to leverage this diversity to enable agile goal-
oriented software design.



Front. Comput. Sci.
3

Table 1
Comparison of Different Computing Paradigms

Paradigms Virtualization
Level

Communication
Mode

Language
Diversity

Autonomous
Management Stateless

Microservice C D Y Y Y
Service Oriented Architecture B C N N N

Serverless Computing C/V D/C Y Y Y
Event Driven Architecture V C Y N Y
Model Driven Architecture ? D/C N N ?

C - Container V - VM B-Bare-metal D - Decentralized C - Centralized Y - Yes N - No ? - Not specified

Decentralized Management. Guided by the principle of
"share as little as possible" microservices are typically self-
managed and distributed among virtual or physical resources
[26]. This decentralization is especially beneficial for large
systems since different parts of cloud could be scaled and
updated as needed without the involvement of others [27].
Moreover, for decoupled data management, the system de-
signers prefer individual database for each microservices.

2.2 Comparison of Related Concepts

The advent of microservice is a result of ubiquitous cloud
computing plus the demand of decentralized application
management and frequent service upgrade. Apart from the
term "microservice", some more architectural patterns for
software design and cloud management have been proposed.

SOA. Similar to microservices, Service-Oriented Archi-
tecture (SOA) features modularized design and message-
based communication [28]. For SOA, services carry out
small functions. An Enterprise Service Bus (ESB) is applied
to connect services and consumers and shares data among
all services, which makes SOA more like an integrated so-
lution [29]. Microservice is different from SOA in that it
is more decoupled: 1) In microservice architecture the ser-
vices mostly communicate with each other through more
lightweight network requests. Differently, in SOA the ESB is
mainly responsible for intra-communication. 2) In microser-
vice the data storage is decentralized as guided by the "share
as little as possible" principle. However, in SOA the ESB is
responsible for centralized data sharing. 3) The service com-
ponents in Microservice system have individual access port
for users and provide independent functions.

Serverless Computing. Serverless computing, is firstly
proposed for peer-to-peer software platform, and has been
attracting research focus since Amazon introduced the AWS
Lambda [30]. Generally it has two variants in the scenario
of cloud platform: “Function as a Service” (FaaS) rather
than “Backend as a Service” (BaaS) [31]. In serverless com-

puting, the developers and cloud users do not have to con-
sider the application deployment and environment config-
urations. The functions they run are registered by prede-
fined performance requirements [32]. The cloud manager is
responsible for deciding the proper infrastructure for each
service/function to provide satisfying performance and users
only pay for the number of executions of the functions and
the compute power it consumes [31]. As the diversity of
datacenter infrastructure increases, serverless computing can
hide the details of underlying hardware and facilitate the
cloud service deployment. According to the industrial sur-
vey [33], serverless computing is suitable for short-running
and event-driven jobs and services [21, 34]. Microservice
can be deployed in a serverless manner, and its difference
from a serverless function, is that a microservice can con-
sist of multiple functions [35]. While there are many explo-
rations to use serverless deployment for microservice in a
cost-effective and scalable way [36, 37], performance guar-
antee in this paradigm is a key research challenge [38].

Event Driven Architecture (EDA). The event-driven ar-
chitecture is considered to be the foundation of the Microser-
vice and FaaS [39]. In this model a service is evoked by
the function call or the request from another service or end
users. Services coordinate with each other by publishing and
subscribing the events instead of binding the threads to re-
quests throughout the whole execution process. Therefore,
this paradigm enables loose coupling and highly distributed
service rendering [40]. However, EDA brings challenges of
the tracing [41] and performance guarantee [5, 42] in dis-
tributed systems.

Model Driven Architecture (MDA). MDA is frequently
proposed in microservice development [43, 44]. It is firstly
introduced as a model driven development approach [45], in
which an abstraction of a system is used for designing a soft-
ware application [46]. A model is a set of statements on sys-
tem compositions and the relations with other systems [47].
In MDA, the microservice systems could be modeled by
specific languages at different levels of abstractions. Mean-



4
R. Zeng, X. Hou, C. Li, et al., Performance Optimization for Microservice in the Cloud

while, the software implementations could be automatically
generated by the description languages. Applying MDA in
SOA has been addressed by prior researches [48, 49]. Ac-
cording to prior work [44], when it comes to using MDA for
microservice development, there are some important design
issues, such as modeling languages and tools.

2.3 Performance Optimization: An Overview

Performance optimization techniques for cloud computing
systems in the microservice era are more challenging than
conventional monolith-centric designs. Especially in large
cloud systems, the performance states and request latency
of fine-grained microservices are hard to track and monitor
[5, 50]. Although cloud applications are discomposed into
simpler service units that can be developed and deployed in-
dependently, it is unavoidable that the behavior of one mi-
croservice affects the others. The factors that have impacts
on microservice performance can span across all layers, in-
cluding software architecture and application design, service
orchestration, resource capacity planning, runtime variation,
and dynamic configuration of underlying hardware system.
It is highly demanding to take an extensive investigation of
performance optimization techniques from different aspects
to provide a clear view of recent advances and research chal-
lenges. In this paper, we categorize the performance opti-
mization problem into three aspects: performance evaluation
and monitoring in the application layer, resource provision-
ing and management in the service layer, and system tuning
and coordination in the infrastructure layer. We thoroughly
review the proposed techniques and approaches in previous
papers and present research opportunities and challenges in
these three key areas, as shown in Figure 1.

Performance Evaluation and Monitoring. Microser-
vice applications have finer-grained architecture and rich di-
versity in software architecture, interaction mode, and run-
time environment. Understanding the impact of microser-
vice on software/hardware has been the subject of many
prior works. In this category, the research opportunities
lie in understanding the implications across different lay-
ers in various runtime environments. It is also necessary to
build efficient tools for performance monitoring and profil-
ing. The research challenges in this part are summarized in
Figure 1. First, due to the diversity and complexity of real-
world microservice system, it is challenging to build bench-
mark systems that simulate the production environment, and
uniform standards for performance evaluation. In addition,
the service-level profiling dataset can be enormous; how to
maintain and derive useful insights from the data is still an

open question.
Resource Provisioning and Management. For many

years resource provisioning in datacenters remains to be a
critical problem. To manage large-scale microservice sys-
tem, cloud providers propose various tools and platforms
to orchestrate applications and control resource allocation.
These platforms generally require the users to configure re-
source requirements, and apply only basic strategies for ser-
vice placement and resource adjustment. Moreover, in a
highly dynamic runtime environment, the performance of
some critical service can directly affect other services. Thus,
making fast resource boosting decisions to accelerate ser-
vices on the critical path is often critical. The research chal-
lenges in this part include understanding the diversified re-
source behaviors, analyzing service interactions, and build-
ing accurate models for performance prediction.

System Tuning and Optimization. Microservices have
shorter latency compared to traditional cloud services. For
system-level performance optimization, one of the research
opportunities is to reduce the OS and network overhead to
adapt to the microsecond-scale latency. Since many mi-
croservices are short-running tasks generally deployed in
containers, some research efforts have been devoted on re-
ducing the invocation cost. The research challenges in this
part include designing new architectures, building appro-
priate virtual runtime environment, and identifying system-
level performance bottlenecks.

3 Performance Evaluation and Monitoring

Prior work on performance evaluation and monitoring of mi-
croservices have different design focuses that largely fall into
three subcategories: benchmarking, analysis and characteri-
zation, monitoring and anomaly detection.

3.1 Benchmarking

Cloud service providers have developed simple open source
benchmarks to facilitate microservice research, such as [51,
52]. Since previous researches use simple benchmarks, their
results are not validated in production environment. There-
fore, more sophisticated benchmarks are needed [53]. The
benchmarks used for large system analysis and debugging,
should have multiple service tiers, complex architecture, and
meet basic business requirements. To facilitate the adop-
tion and performance optimization of microservice in cloud,
there is an urgent demand on the open source benchmarks
that are easily accessible to research community [54]. There



Front. Comput. Sci.
5

Fig. 1 Performance Optimization Techniques

are a few works that focus on the development and design of
microservice system for various research purposes.

Aderaldo et al. [54] discussed the key requirements for
cloud benchmark systems such as architecture patterns, ver-
sion control and automation. While the scale of existing
microservice system used by previous research is usually
small, they are limited for performance debugging in real
production environment. Towards more practical system de-
sign, Zhou et al. [55] developed a medium-size benchmark
TrainTicket, which covers three interaction modes and four
programming languages. Gan et al. [56] developed a bench-
mark suite, DeathStarBench. This suite includes five hetero-
geneous end-to-end microservice systems, consisting of tens
of services each. The authors use the benchmark systems to
explore the architectural implication of cloud microservices.

With the shift from the monolithic to microservices, mod-
ern On-Line Data Intensive (OLDI) applications are now
facing a new sub-millisecond latency requirements [57].
Kratzke et al. [58] first proposed a benchmark to study the
fundamental design for microservice. Sriraman et al. [59]
presented a benchmark: Suite, to analyze how OS/network
overheads affect the microservices which have sub-ms-scale
latency. For performance testing and data collection in pro-
duction deployment, Papapanagiotou et al. [60] proposed
NDBench, a benchmarking tool that can automatically test
the performance and system conditions at runtime.

3.2 Analysis and Characterization

The performance of a microservice application has differ-
ent patterns compared to its monolithic counterparts. On
the lower system layer, researches have been focused on

the characterization of microservices, including their fine-
grained performance metrics, resource behaviors, and archi-
tectural implications. On the virtualization layer, there is a
line of works that studies the performance impact of different
virtualization technologies. On the application layer, differ-
ent development options, such as architecture design, com-
munication protocol, thread model, and their impacts on the
application performance are addressed in some recent works.

System and Architecture Implications. Ueda et al. [61]
compared the throughput of monolithic and microservice ap-
plication, and also conducted experiments on the path length,
cache misses and cycles per instruction of microservice sys-
tem using different programming languages. Gan et al. [62]
conducted extensive characterization on the Movie Stream-
ing benchmark suite concerning the cycles distributions, in-
struction per second, and cache pressure. This analysis pro-
vides insight for cloud management as well as architectural
design in the infrastructure layer. Sriraman et al. [63] char-
acterized the top microservices used in Facebook clusters,
and disclosed profound diversity among varied services in
systems and architectural bottlenecks, such as hardware re-
source utilization, I/O interactions, and CPU stall behavior.
Liu et al. [64] focused on the resource sensitivity of co-
located microservices. The authors examined the QoS varia-
tion of widely used services under the allocation of different
number of threads, cores, and LLC ways.

Virtualization Method Comparision The overhead
brought by the virtualization layer prompted many re-
searchers to look at efficient virtualization environment.
Several popular virtualization platforms such as Unikernel,
Docker, KVM are compared and evaluated concerning the



6
R. Zeng, X. Hou, C. Li, et al., Performance Optimization for Microservice in the Cloud

efficiency of concurrent provisioning multiple instances [65]
. Saha et al. [66] evaluated the performance in a Docker de-
ployment and bare-metal deployment. Jaramillo et al. [67]
presented a case study for Docker applied in the microser-
vice architecture. In a recent report [68] the architecture pat-
terns leveraging the VM, container, and serverless platforms
are compared and key limitations of these technologies are
detailed. Kang et al. [69] compared the VM-based and con-
tainer approach, and also the stateful and stateless microser-
vice components. Lynn et al. presented the evolution of dif-
ferent virtualization technologies in [70] and conducted an
multi-level analysis of cloud computing systems that lever-
age serverless and FaaS model. Esposito et al. [71] presented
the designs of VM-based and container-based deployment
and discussed concerns of different approaches. Villamizar
et al. [72] compared the cost of different application pat-
terns: Lambda functions, monolithic and microservices. The
results show that, microservice pattern can help to reduce
infrastructure cost, and the Lambda with the more granular
provisioning, reduces the cost even more.

Some works focus on the system overhead and network
performance impact brought by various virtualization and
containerization technologies. Vastberg et al. [73] conducted
a study on the overhead and performance impact incurred
by Docker Amaral et al. [74] analyzed the network perfor-
mance concerning specifically to the traffic across hosts. The
authors compared several deployment models for microser-
vice: bare-metal, master-slave containerization, nested con-
tainerization and virtual machine. They also presented the
network stack of each mechanism. Similarly, Kratzke et al.
[75] proposed that the using containerized microservices can
have performance impact due to the cost of hypervisor and
software-defined networks(SDN). This paper presents exper-
iment results, of how different factors impact the microser-
vice networking performance, including the SDN, container-
ization, and encryption.

Application Architecture Evaluation. Microservice ar-
chitecture shows flexibility in system design among different
dimensions, including the communication methods and pro-
gramming environment. Taibi et al. [12] detailed and com-
pared several common communication patterns; further this
work conducts an extensive study on the adoption of differ-
ent patterns in cloud applications. Another survey on sev-
eral communication protocols in the industry is conducted
[76]. Saha et al. [66] evaluated the communication over vir-
tual network in a containerized deployment for HPC work-
load. Sriraman et al. [59] examined the performance of
different concurrency and communication model in OLDI

cloud applications. This paper also introduces a frame-
work that can autonomously alter between synchronous and
asynchronous models based on system load. Shadija et al.
[77] conducted experiments to compare the performance
of microservice application with different granularities and
demonstrated that the deployment method and network la-
tency have non-negligible impact on the balance between
granularity and performance. Hassan et al. [26] identified
the key factors considered by developers on the microser-
vice granularity, and proposed some abstraction and evalua-
tion approaches. Similarly, Lloyd et al. [78] investigated the
factors that affect the microservice performance in a server-
less deployment manner.

3.3 Monitoring and Anomaly Detection

Large cloud datacenters normally deploy performance mon-
itoring and anomaly tracing. These topics have been widely
studied in previous researches [79][80]. For microservice
based application, there are some new challenges that need
to be addressed. First, since microservice requests usually
span across multiple service tiers and each service has dif-
ferent state and behavior under various configurations, it is
necessary to devise new tools for tracing, profiling, and data
collection. Second, microservice applications generally have
complex architecture. We need mechanisms to derive in-
sights of service behaviour and performance anomaly. To
this end, some prior works have utilized sophisticated mod-
els for data trace analysis.

Gan et al. [5] presented an online monitoring and trac-
ing system for more predictable performance and QoS vio-
lation. This work points out that the complicated dependen-
cies among microservice components and the typical scale
of today’s large cloud systems often hinder performance pre-
diction and quick adjustment; it instead leverages monitored
large data and several machine learning models to predict the
anomalies and the culprits. Nicol et al. [81] presented an on-
line profiling tool; this proposed tool is compatible with dif-
ferent platforms, providing the collection of CPU and mem-
ory data in microservice-level and centralized data storage
and analysis. Recently, Cinque et al [82] proposed a tracing
tool, based on the analysis of REST message between mi-
croservices. Their method derives metrics from event logs,
and therefore it is application transparent, without extra in-
strumentation and knowledge of application topology.

Sambasivan et al. [83] focused on the workflow-centric
tracing and investigated the design space for tracing sys-
tems at different layers. In this work the authors pointed
out that the tracing adoption should be reconsidered with the



Front. Comput. Sci.
7

Table 2
Summary of Prior Works on Performance Evaluation and Monitoring

Categories Subcategories Prior Work
Benchmarking \ [53], [56], [57], [60], [54], [55],[58]

System and Architecture
Implications [61], [62], [63], [64]

Analysis and
Characterization

Virtualization Method
Evaluation

[65], [66], [67], [68], [69], [70], [71],
[72], [73], [74], [75]

Application Architecture
Evaluation [12], [76], [59], [77], [26]

Monitoring and
Anomaly Detection

Tools & Frameworks [83], [5], [81], [82]
Analysis & Detection [86], [87], [84], [85], [41]

infrastructure and different management tasks for best util-
ities. They delved the implementations of existing tracing
system, and conducted an extensive systematic analysis on
distributed services.

Performance anomaly detection and troubleshooting is
another important research direction [84, 85]. There are
studies that use graph model in microservice system to detect
the root cause of performance degradation [86]. It presents
an analysis framework which can perform troubleshooting
based on a library of anomalous graphs. Lin et al. [87]
leveraged the dependencies among services for detecting and
pinpointing the culprit of performance anomaly. This work
captures the network information and builds the connection
among services to tracing the anomaly causes. Ravichandi-
ran et al. [85] specifically focused on the resource consump-
tion behaviors. The authors monitored the resource usage
for services and built statistical model using the time series
prediction methods to detect the anomalous behaviors and
reduce the resource waste. Thalheim et al. [41] addressed
specifically the challenges of the large volumes of data and
high dimension of metrics, which hinders the cloud man-
ager to derive insights for resource efficiency. In this pa-
per, a framework is built to extract key metrics, reduce the
amounts of data, and analyze the dependencies among dis-
tributed software components.

4 Resource Provisioning and Management

Appropriate resource provisioning and management are the
key to ensure high performance. We group previous re-
searches into three subcategories: 1) modeling and predic-
tion, 2) placement and orchestration, 3) runtime adaptation.

4.1 Modeling and Prediction

One aspect of optimizing resource provisioning is to make
capacity planning decisions based on reliable prediction
models. This requires us to understand system performance
under different resource configurations. Oftentimes, latency-
sensitive services have wide workload runtime variation,
with large fraction of low to moderate demand [88], and
small fraction of peak loads [89]. Therefore, building ac-
curate workload prediction model can be a challenging task.

Bao et al. [90] treated request execution time as the main
performance metric. Specifically, this paper considers mul-
tiple factors that can contribute to response time, such as
database accessing, networking failure, etc. The authors di-
vided the execution into queuing, business processing and
transaction processing. They also take the function sequence
of executing a request into consideration, thereby deducting
a precise model for request response time prediction. Jindal
et al. [91] defined a performance metric MSC for detecting
SLO violation. Based on this metric, they built the perfor-
mance model by sandboxing a service and estimating MSC
under different orchestration configuration.

One important line of work is to build non-linear model
for performance prediction. For instances, Khazaei et
al. [92] divided the problem into two parts: microservice
platform analysis and macro-service infrastructure analysis.
This work builds a Markov Chain model for the microser-
vice platform, VM provisioning and PM provisioning, re-
spectively. For example, for the microservice platform sub-
model, it uses the number of requests, containers and VMs
to denote the system status. Gribaudo et al. [93] modeled the
microservice system as an oriented graph. They used Monte-
carlo simulation to generate random application topologies.
Then they derived the performance metrics for each gener-
ated scenario given VM allocation. Similarly Kannan et al
[94] proposed to model the microservice-based multi-stage
jobs as Directed Acyclic Graph (DAG), and used the DAGs



8
R. Zeng, X. Hou, C. Li, et al., Performance Optimization for Microservice in the Cloud

Table 3
Summary of Prior Works on Resource Provisioning and Management

Categories Subcategories Prior Work

Modeling & Prediction Linear Model [90], [91]
Non-Linear Model [95], [96], [92], [93], [94], [97], [85]

Placement and
Orchestration

Application Layer [99], [100], [96]
Platform Layer [69], [104], [105], [106]

Runtime Adaptation
Request Scheduling [97], [90], [94]

Resource Adjustment [5], [64], [112], [42]
Overload Control [114], [115], [116]

to estimate the completion time of requests.

Queuing model has also been used for microservice re-
sponse time prediction. For example, Correia et al. [95]
modeled the application as a multi-server queue system, and
the model can be used for resource planning with perfor-
mance guarantee. Similarly, Yu et al. [96] used the M/M/c
queue for the estimation of request processing time of a mi-
croservice. This work treats the request as a stream along
microservice chain, and uses Poisson process to model the
request arrival rate at each stage.

Note that request latency is not the only metric for per-
formance modeling. Yan et al. [97] used the queue length
of containers as the parameter of prediction model to derive
resource utilization and the load of containers. Using this
model the authors devised a decentralized strategy to sched-
ule the messages. Similarly, Ravichandiran et al. [85] fo-
cused on the resource consumption behaviors. The authors
monitored the resource usage for services and built statisti-
cal model using the time series prediction methods to detect
anomalous behaviors and reduce resource waste. Hou et al.
[98] built models for power consumptions of microservices
in power-constrained data center.

4.2 Placement and Orchestration

Microservices are generally deployed in light-weight virtual
machines (VMs) or containers. The placement and orches-
tration of services have a non-trivial impact on the perfor-
mance of the related application.

Some previous works mainly formulate microservice or-
chestration as an optimization problem, and use simulation
platform to evaluate the proposed approach. Guerrero et
al. [99] considered three key metrics in the orchestration
for containers and services in the multi-cloud environment:
operation cost, execution time, and repair time. This work
derives an algorithm to decide the virtual machine allocation
and container placement. Leng et al. [100] aimed to mini-
mize the number of nodes used for microservice under QoS

requirements. The key method is to predict the resource us-
age of computing nodes based on the historical data. It then
uses a pairwise ranking model to decide the service deploy-
ment. Yu et al [96] presented a scheme to jointly optimize
the datacenter energy cost and service time. It features a
three-stage method to search the decide the request routing
and service instance placement. Klock et al. [101] presented
a deployment scheme that utilizes the application features as
well as dynamic performance statistics.

Several researches aim to address the design challenges
on existing orchestration platforms or design new platforms.
Platforms such as OpenStack [102], Kubernetes [103], are
widely adopted for service orchestration in large environ-
ments. Kang et al. [69] mainly looked at the OpenStack plat-
form and designed a deployment framework as an integrated
component to enable service discovery. It redesigns the ser-
vice state management and exposes container interfaces for
accessing the device information. The qualification of this
framework is conducted for both stateful and stateless con-
tainerized applications. Monteiro et al. [104] proposed an
orchestration platform for complex event-driven microser-
vices and presented a language to abstract the management
option. Moreover, new platforms to ease cloud service or-
chestration are investigated as well [105, 106].

4.3 Runtime Adaptation

Performance optimization at runtime for microservices re-
quires a mixture of advanced resource adaptation techniques.
On the application layer, request scheduling has been ex-
plored with different latency formulation models. Over-
load control is another import aspect for services to main-
tain normal response or scale before saturation, including
mechanisms such as load shedding[107, 108] and resource
boosting[109]. On the underlying infrastructure layer, differ-
ent online schedulers have been proposed in recent years for
monolithic cloud services[110, 111]. Recent works start to
look at the various challenges posed by microservice appli-



Front. Comput. Sci.
9

cations, and use various models to make informed resource
management decisions.

Request Scheduling. Yan et al. [97] used the queue
length of containers as the parameter of prediction model to
derive the resource utilization and load of containers. On
top of this, the authors proposed a decentralized strategy
to schedule the real-time messages. Bao et al. [90] mod-
eled the user request as an execution of a directed acyclic
graph. The authors formulated the performance prediction
for each microservice based on its computing complexity.
The whole application is modeled as a network of multi-
ple functions, each of which could be executed inside a mi-
croservice instance. Thus, the request delay is formulated
as the accumulation of execution time of its workflow. The
authors then proposed several algorithm to solve the opti-
mal request scheduling strategy to optimize end-to-end re-
sponse time under pre-defined budget constraint. Kannan
et al. [94] presented a holistic framework to execute multi-
stage requests in microservice-based streamline application.
This framework firstly predicts request completion time at
each stage, and afterwards it uses the prediction to reorder re-
quests based on the service-level agreement (SLAs). It also
uses SLA-aware request batching to maximize throughput.

Resource Adjustment. Gan et al. [5] leveraged pre-
diction mechanisms for resource adjustment. The authors
utilized several machine learning models and large amount
of historical data to predict QoS violation and pinpoint the
culprit services. They proposed to re-allocate various hard-
ware resources to reduce the load level. By analyzing large
metric space and predicting the service state before the over-
load happens, this method effectively mitigates the QoS vi-
olation and precludes the cascading effects of service sat-
uration. Liu [64] presented a runtime resource scheduler
for microservice. The author uncovered the resource cliff
phenomenon, which means that QoS is very sensitive with
slight resource fluctuation. He conducted extensive analy-
sis on the performance bottlenecks of widely used microser-
vices, and used machine learning and reinforcement learn-
ing to make scheduling decisions. Alipour et al. [112] fo-
cused on the resource pattern for microservices and lever-
aged the machine learning for resource demand predication
to mitigate low utilization. Cui et al. [42] focused on the
asynchronous event-based service model. They presented a
solution to pinpoint the latency bottleneck using event de-
pendency graph and used an energy-efficient boosting tech-
noqiue to optimize the tail latency. The techniques proposed
by Chang et al. [113] aim to facilitate the automatic resource
adjustment. The authors conducted empirical measurements

on microservice performance by purposely throttling hard-
ware resources. They used resource-performance correlation
to pinpoint the resources that may benefit the service most.

Overload Control. Zhou et al. [114] proposed a control
scheme to address the key challenges in large scale microser-
vice backend system. The authors pointed out that monitor-
ing the states of each microservice in a highly dynamic dis-
tributed environment is intractable, and the service depen-
dencies make it hard to execute the control mechanism in-
dependently. The presented scheme tackles these challenges
using several techniques. First, it maintains an adaptive al-
gorithm and threshold at each microservice. Second, it exe-
cutes the load shedding to the upstream microservices. This
scheme is service agnostic and requires minimum coordi-
nation between services. Suresh et al. [115] also explored
practical solutions for overload control problem in the SOA
and microservice application where complex dependencies
exist. Moreover, this work addresses the multi-tenancy re-
source sharing in cloud applications. It models each re-
quest as a DAG, and applies two techniques: workflow level
rate limiting and request-level scheduling. The proposed
scheme tracks service utilization and request execution time.
It schedules request based on its latency slack to achieves a
desired trade-off between utilization and load shedding. Xu
et al. [116] used a brownout approach for large-scale pro-
duction environment. When the system is overloaded, this
approach deactivates part of the microservice components
and the remaining part is still functioning.

5 System Tuning and Coordination

The disaggregation at the application layer of microservice
results in diversified requirements for system and architec-
ture [63]. Meanwhile, microservice applications have much
shorter request service time, typically in the microsecond-
scale [117]. These factors call for re-thinking of system-
level designs that can enhance the efficiency of execution and
communication, and enable more agile system coordination
across the computing stack.

Tail latency is the primal design target of cloud data-
centers in many prior works [59, 117, 118]. The short la-
tency of microservice requests poses new challenges on ex-
isting power management frameworks. For millisecond-
scale services, conventional designs often take advantage
of the latency slack and the arrival intervals between re-
quests to control processor cores to run in different power
modes (frequency/voltage levels) [119, 120, 121]. However,



10
R. Zeng, X. Hou, C. Li, et al., Performance Optimization for Microservice in the Cloud

Table 4
Summary of Prior Works on System Tuning and Coordination

Optimization Target Ref. Methodology Main Results

[117] Coordinate CPU power state
and frequency scaling, to meet the

µs scale latency just in time

Achieve stable tail latency
and save CPU energy consumption

for microservice

Tail Latency [118] Extend the simultaneously
multi-threaded core to
schedule short requests

The proposed mechanism reduces
tail latency under moderate

and high load

[59] Automatically tuning the threading
model for mid-tier microservice

based on offline profiling

The proposed µTune shows
1.9 ×taillatencyspeedup

over static threading choices

Invocation Latency
[122] Using language-level isolation

and fast preemption to reduce the
invocation latency

Language-level isolation and
intra-process preemption can
be used for µs scale latency

[123] Using lightweight container
isolation and package-aware caching

to reduce the invocation latency

The proposed SOCK achieves
significant speedup over Docker

Communication
Overhead

[124] Using application sandboxing
and a hierarchical message bus

to speed up service communication

The proposed SAND achieves a
43% speedup over OpenWhisk

[125] Using a userspace networking
stack that constructs fast channels

between partner microservices

The proposed Docknet achieves
high throughput and low latency

these approaches may have very limited effectiveness, since
the microsecond-scale request interval results in fragmented
idle periods and insufficient time for power mode transition.
Chou et al. [117] discussed the challenges brought by the
microsecond-scale request arrival time and processing time.
This paper proposes to coordinate frequency scaling, request
packing, and power states techniques, to prolong the idle pe-
riods and guarantee performance. Differently, Mirhosseini at
al. [118] pointed out that the queuing process is a main part
of tail latency. The short tasks of microservices cause high
contention and synchronization costs in a scale-up system.
This paper proposes Express-Lane SMT (ESMT) to provide
shorter execution queue for short tasks. It does this by ex-
tending the simultaneously multithreaded (SMT) core to dis-
tribute tasks based on their length. The proposed ESMT en-
ables microservice tasks run in a scale-out architecture, and
minimizes queuing delay and tail latency.

Since microservices typically have sub-microsecond la-
tency latency requirement, the OS-level overhead——such
as thread invoking and context switch, become non-trivial
factors to tail latency. Sriraman et al. [59] explored the tail
latency improvement in distributed microservices, specifi-
cally, On-Line Data Intensive (OLDI) applications. This
work points out that modern microservices usually have sub-
microsecond latency SLOs since a user request typically in-
volves many services. Therefore the threading and concur-

rency model, which could have salient impacts on the re-
sponse latency, are more critical when it comes to microser-
vices. This paper does an thorough analysis on different con-
currency designs. It proposes a framework to automatically
switch the thread according to load variation, resulting in
improved tail latency for multi-tier microservices.

Several papers propose techniques to reduce invocation
latency, which refers to the cost to warm up a process or
container. Boucher et al. [122] observed two bottlenecks
that stall the microservices from achieving the microsecond-
scale latency: process-based isolation and millisecond pre-
emption. The authors proposed a language-based isolation
to secure the microservices executed in shared process, im-
proving the latency significantly; additionally they proposed
the fast preemption for intra-process microservices to im-
prove the latency and throughput further. Oakes et al. [123]
addressed the long start-up latency of containers. In this pa-
per, several key observations are made concerning the fac-
tors contributing to the long start-up. A container system
is implemented to address the latency issues by: 1) using
namespace and cgroup isolation to mitigate the performance
bottleneck; 2) using the full language repositories on worker
machines to avoid Python initialization cost; 3) designing a
multi-tier caching system. The presented system has signifi-
cant improvement in the cold-start latency and throughput.

Inter-service communication overhead has drawn much



Front. Comput. Sci.
11

Fig. 2 Open Issues in The Microservice Era

attention as distributed microservices often run across mul-
tiple containers or even involves multi-server coordination
[4]. Akkus et al. [124] pointed out two factors that could
affect the efficiency of container orchestration: the deploy-
ment of functions in container instance and the interaction
among functions in different instances. This work proposes
a two-level isolation scheme to facilitate the functions of the
same application. It also uses a hierarchical message queue
to reduce the inter-node communication cost. Luo et al.
[125] showed that the inter-service communication incurs
additional network pressure and that containerization has
brought inefficiency. They proposed a mechanism, DockNet,
aiming to improve the network performance. DockNet is a
userspace networking stack that uses rate limiters for perfor-
mance isolation between different containers. It constructs
fast channels between partner microservice to optimize the
inter-service communication.

6 Research Opportunities

Efficiently supporting microservice-based applications in the
cloud is a challenging task. In this section, we summarize
key open issues brought by microservice. In Figure 2, we
present the main challenges lied in different cloud computing
layers and discuss the potential solutions.

6.1 New Models and Abstractions

While the microservice architecture has brought great flex-
ibility in application development and deployment, it also
vitiates the effectiveness of existing system optimization ap-
proaches used for monolithic applications. For example,
applications face service components with various depen-

dencies, each of which can be written in different program-
ming frameworks and deployed in different container tech-
nologies. Since future applications exhibit drastically dif-
ferent workload patterns, techniques for microservice-level
modelling and workload prediction are required. More-
over, as we introduce more specified and disaggregated hard-
ware/accelerators, the heterogeneity of datacenter is inten-
sified. It is important to build new models to analyze the
interplay between applications and underlying resources

6.2 System Orchestration on µs-Scale

Microservice has brought the computer system into the "era
of the killer microseconds". It is easy for programmers
to mitigate event latency in the nanosecond and millisec-
ond time scales (such as DRAM accesses at tens or hun-
dreds of nanoseconds and disk I/O at a few milliseconds).
However, little work has been done in terms of supporting
for microsecond µs-scale events. Previous researches have
shown that the sub-millisecond system overhead (like thread
switching) has non-trivial impact on microservice latency.
Therefore, it is essential to design systems that can better
support concurrency, frequency scaling and I/O mechanism.
In particular, conventional power management in large-scale
systems incurs long latency. It is also of great interest to
quantify the latency of power management, identify the cul-
prit of performance degradation and eliminate latency.

6.3 Autonomous Resource Management

Designing system mechanisms that can adaptively and au-
tonomously manage the underlying computing resource to
meet the needs of microservices are becoming increasingly
important. Oftentimes, the operators and designers of a



12
R. Zeng, X. Hou, C. Li, et al., Performance Optimization for Microservice in the Cloud

cloud datacenter need to search for the desired machine con-
figuration and resource allocation. The performance require-
ments differ across various services and resources, and the
number of configurations can be huge. Without appropri-
ate design, searching for scheduling decisions under certain
performance constraints can be time-consuming. It would
be beneficial to leverage the state-of-the-art machine learn-
ing techniques to guide the management of the underlying
computing resources. In addition, the computing environ-
ments can quickly change as applications scale out or mi-
grate. To continuously make smart scheduling decisions in a
complex operating environment, novel autonomous control
techniques need to be developed. In other words, the system
designed for microservice-based applications needs to have
better self-managing capability.

6.4 Cross-Layer Design

Eventually, we expect that a microservice-oriented, cross-
layer coordination scheme is needed for datacenter-scale
computing in the near future. Today, various resource man-
agement techniques are applied separately at different lay-
ers of the cloud computing stack. While emerging hardware
components are deployed at the lower infrastructure level,
the upper level software systems are not able to leverage this
flexibility due to a lack of coordination. As we transition
from conventional monolith to microservices, it is crucial to
develop a deep understanding of resource sharing behavior
at different computing layers (hardware, architecture, oper-
ating system, middleware, etc.). In particular, designing ag-
ile and adaptive coordination mechanisms for fine-grained,
short-lived services is of great importance.

7 Conclusion

The burgeoning of various cloud applications continues to
push the advancement of datacenter-scale computing. Re-
cently with the maturity of virtualization technologies and
realization of microsecond-scale network latency, microser-
vice architecture has shown great promise in cloud applica-
tion development. Microservice not only brings new oppor-
tunities, but also renders it more challenging to meet the per-
formance requirements. In this article, we draw a detailed
review of the latest work on performance optimization for
microservice. We investigate key design considerations of
cloud microservices, summarize representative design ap-
proaches, and identify the open issues that need to be ad-
dressed. We hope that this survey can shed some light on

microservice research today and tomorrow.

Acknowledgements We thank all the reviewers for their valuable com-
ments and feedbacks. This work is sponsored by the National Natural Sci-
ence Foundation of China (No. 61972247). Corresponding author is Chao
Li from Shanghai Jiao Tong University.

References

[1] Adopting microservices at netflix: Lessons for team
and process design. https://www.nginx.com/
learn/microservices/.

[2] Microservices architectures on ama-
zon web services. https://docs.

aws.amazon.com/whitepapers/

latest/microservices-on-aws/

simple-microservices-architecture-on-aws.

html.

[3] Microservices in Azure. https://azure.

microsoft.com/en-us/solutions/

microservice-applications/.

[4] Microservices. https://martinfowler.com/
articles/microservices.html.

[5] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna
Pancholi, Dailun Cheng, and Christina Delimitrou.
Seer: Leveraging Big Data to Navigate the Complex-
ity of Performance Debugging in Cloud Microser-
vices. In Proceedings of the Twenty Fourth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), April 2019.

[6] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang,
Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhi-
wei Xu, Ninghui Sun, et al. Dadiannao: A machine-
learning supercomputer. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 609–622. IEEE Computer So-
ciety, 2014.

[7] Norman P Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor pro-
cessing unit. In 2017 ACM/IEEE 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA),
pages 1–12. IEEE, 2017.

https://www.nginx.com/learn/microservices/
https://www.nginx.com/learn/microservices/
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/simple-microservices-architecture-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/simple-microservices-architecture-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/simple-microservices-architecture-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/simple-microservices-architecture-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/simple-microservices-architecture-on-aws.html
https://azure.microsoft.com/en-us/solutions/microservice-applications/
https://azure.microsoft.com/en-us/solutions/microservice-applications/
https://azure.microsoft.com/en-us/solutions/microservice-applications/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html


Front. Comput. Sci.
13

[8] Eric Chung, Jeremy Fowers, Kalin Ovtcharov,
Michael Papamichael, Adrian Caulfield, Todd Mas-
sengill, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, et al. Serving dnns in real time
at datacenter scale with project brainwave. IEEE Mi-
cro, 38(2):8–20, 2018.

[9] Vlad Nitu, Boris Teabe, Alain Tchana, Canturk Isci,
and Daniel Hagimont. Welcome to zombieland. In
Proceedings of the Thirteenth EuroSys Conference on
- EuroSys ’18, pages 1–12, New York, New York,
USA, 2018. ACM Press.

[10] Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K Reinhardt,
and Thomas F Wenisch. Disaggregated memory
for expansion and sharing in blade servers. ACM
SIGARCH Computer Architecture News, 37(3):267,
2009.

[11] Serverless deployment. https://

microservices.io/patterns/

deployment/serverless-deployment.

html.

[12] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl.
Architectural patterns for microservices: A system-
atic mapping study. In CLOSER, pages 221–232,
2018.

[13] Nuha Alshuqayran, Nour Ali, and Roger Evans.
A systematic mapping study in microservice archi-
tecture. In 2016 IEEE 9th International Confer-
ence on Service-Oriented Computing and Applica-
tions (SOCA), pages 44–51. IEEE, 2016.

[14] Washington Henrique Carvalho Almeida, Luciano
de Aguiar Monteiro, Raphael Rodrigues Hazin, An-
derson Cavalcanti de Lima, and Felipe Silva Ferraz.
Survey on microservice architecture-security, privacy
and standardization on cloud computing environment.
ICSEA 2017, page 210, 2017.

[15] Tetiana Yarygina and Anya Helene Bagge. Overcom-
ing security challenges in microservice architectures.
In 2018 IEEE Symposium on Service-Oriented System
Engineering (SOSE), pages 11–20. IEEE, 2018.

[16] Mario Villamizar, Oscar Garces, Harold Castro,
Mauricio Verano, Lorena Salamanca, Rubby Casal-
las, and Santiago Gil. Evaluating the monolithic and
the microservice architecture pattern to deploy web

applications in the cloud. In 2015 10th Comput-
ing Colombian Conference (10CCC), pages 583–590.
IEEE, sep 2015.

[17] Hulya Vural, Murat Koyuncu, and Sinem Guney. A
systematic literature review on microservices. In
International Conference on Computational Science
and Its Applications, pages 203–217. Springer, 2017.

[18] Jean-Philippe Gouigoux and Dalila Tamzalit. From
monolith to microservices: Lessons learned on an in-
dustrial migration to a web oriented architecture. In
2017 IEEE International Conference on Software Ar-
chitecture Workshops (ICSAW), pages 62–65. IEEE,
2017.

[19] Paolo Di Francesco, Patricia Lago, and Ivano Mala-
volta. Migrating Towards Microservice Architectures:
An Industrial Survey. In 2018 IEEE International
Conference on Software Architecture (ICSA), pages
29–2909. IEEE, apr 2018.

[20] Sunilkumar S Manvi and Krishna Shyam. Resource
management for Infrastructure as a Service (IaaS) in
cloud computing: A survey. 2014.

[21] Jorge Bernal-Bernabe, Satish N. Srirama, Luis M. Va-
quero, Mohamed Faten Zhani, Yehia Elkhatib, and
Felix Cuadrado. Research challenges in nextgen ser-
vice orchestration. Future Generation Computer Sys-
tems, 90:20–38, 2018.

[22] Claus Pahl and Pooyan Jamshidi. Microservices: A
systematic mapping study. In CLOSER (1), pages
137–146, 2016.

[23] James Lewis. Main sponsor Micro Services-Java the
Unix way. Technical report.

[24] Learn from SOA: 5 lessons for the microser-
vices era. https://www.infoworld.com/

article/3080611/.

[25] Apache thrift. https://thrift.apache.

org/.

[26] Sara Hassan and Rami Bahsoon. Microservices and
Their Design Trade-Offs: A Self-Adaptive Roadmap.
In 2016 IEEE International Conference on Services
Computing (SCC), pages 813–818. IEEE, jun 2016.

[27] Giovanni Toffetti, Sandro Brunner, Martin Blöch-
linger, Florian Dudouet, and Andrew Edmonds. An

https://microservices.io/patterns/deployment/serverless-deployment.html
https://microservices.io/patterns/deployment/serverless-deployment.html
https://microservices.io/patterns/deployment/serverless-deployment.html
https://microservices.io/patterns/deployment/serverless-deployment.html
https://www.infoworld.com/article/3080611/
https://www.infoworld.com/article/3080611/
https://thrift.apache.org/
https://thrift.apache.org/


14
R. Zeng, X. Hou, C. Li, et al., Performance Optimization for Microservice in the Cloud

architecture for self-managing microservices. In Pro-
ceedings of the 1st International Workshop on Auto-
mated Incident Management in Cloud, pages 19–24.
ACM, 2015.

[28] Bob Familiar. Microservice Architecture. In Mi-
croservices, IoT, and Azure, pages 21–31. 2015.

[29] Pooyan Jamshidi, Claus Pahl, Nabor C Mendonça,
James Lewis, and Stefan Tilkov. Microservices: The
journey so far and challenges ahead. IEEE Software,
35(3):24–35, 2018.

[30] NEW LAUNCH: Getting Started with AWS Lambda
- YouTube.

[31] Microservice and Serverless Comput-
ing. https://www.endava.com/

en/blog/Engineering/2019/

Microservices-and-Serverless-Computing.

[32] Ioana Baldini, Paul Castro, Kerry Chang, Perry
Cheng, Stephen Fink, Vatche Ishakian, Nick Mitchell,
Vinod Muthusamy, Rodric Rabbah, Aleksander
Slominski, et al. Serverless computing: Current
trends and open problems. In Research Advances in
Cloud Computing, pages 1–20. Springer, 2017.

[33] Geoffrey C Fox, Vatche Ishakian, Vinod Muthusamy,
and Aleksander Slominski. Status of serverless com-
puting and function-as-a-service (faas) in industry and
research. arXiv preprint arXiv:1708.08028, 2017.

[34] Paul Castro, Vatche Ishakian, Vinod Muthusamy,
and Aleksander Slominski. Serverless Programming
(Function as a Service). In 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 2658–2659. IEEE, jun 2017.

[35] What Is a Serverless Microservice?
https://www.cloudflare.com/

learning/serverless/glossary/

serverless-microservice/.

[36] Mengting Yan, Paul Castro, Perry Cheng, and Vatche
Ishakian. Building a chatbot with serverless comput-
ing. pages 1–4, 12 2016.

[37] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving deep learning models in a server-
less platform. CoRR, abs/1710.08460, 2017.

[38] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. The rise of serverless comput-
ing. Commun. ACM, 62(12):44–54, November 2019.

[39] Geoffrey C. Fox, Vatche Ishakian, Vinod Muthusamy,
and Aleksander Slominski. Status of serverless com-
puting and function-as-a-service(faas) in industry and
research. CoRR, abs/1708.08028, 2017.

[40] Brenda M Michelson. Event-driven architecture
overview. Patricia Seybold Group, 2(12):10–1571,
2006.

[41] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin
Akkus, Pramod Bhatotia, Ruichuan Chen, Bimal
Viswanath, Lei Jiao, and Christof Fetzer. Sieve:
actionable insights from monitored metrics in dis-
tributed systems. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, pages
14–27. ACM, 2017.

[42] Wenzhi Cui, Daniel Richins, Yuhao Zhu, and Vi-
jay Janapa Reddi. Tail latency in node.js: Energy effi-
cient turbo boosting for long latency requests in event-
driven web services. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments, VEE 2019, pages 152–
164, New York, NY, USA, 2019. ACM.

[43] Branko Terzić, Vladimir Dimitrieski, Slavica Ko-
rdić (Aleksić, and Ivan Luković. A model-driven
approach to microservice software architecture estab-
lishment. pages 73–80, 09 2018.

[44] Florian Rademacher, Sabine Sachweh, and Albert
Zündorf. Differences between model-driven develop-
ment of service-oriented and microservice architec-
ture. In 2017 IEEE International Conference on Soft-
ware Architecture Workshops (ICSAW), pages 38–45.
IEEE, 2017.

[45] Richard Soley et al. Model driven architecture. OMG
white paper, 308(308):5, 2000.

[46] Alberto Rodrigues da Silva. Model-driven engineer-
ing: A survey supported by the unified conceptual
model. Computer Languages, Systems Structures,
43:139 – 155, 2015.

[47] Edwin Seidewitz. What models mean. IEEE software,
20(5):26–32, 2003.

https://www.endava.com/en/blog/Engineering/2019/Microservices-and-Serverless-Computing
https://www.endava.com/en/blog/Engineering/2019/Microservices-and-Serverless-Computing
https://www.endava.com/en/blog/Engineering/2019/Microservices-and-Serverless-Computing
https://www.cloudflare.com/learning/serverless/glossary/serverless-microservice/
https://www.cloudflare.com/learning/serverless/glossary/serverless-microservice/
https://www.cloudflare.com/learning/serverless/glossary/serverless-microservice/


Front. Comput. Sci.
15

[48] Ken Laskey, Jeff A Estefan, Francis G McCabe, and
D Thornton. Reference architecture foundation for
service oriented architecture version 1.0. Oasis, Com-
mittee Draft, 2:26, 2009.

[49] David Ameller, Xavier Burgués, Oriol Collell, Do-
lors Costal, Xavier Franch, and Mike P Papazoglou.
Development of service-oriented architectures using
model-driven development: A mapping study. Infor-
mation and Software Technology, 62:42–66, 2015.

[50] Rajiv Ranjan, Chang Liu, Lydia Chen, Maria Fazio,
Massimo Villari, and Antonio Celesti. Open Issues in
Scheduling Microservices in the Cloud. IEEE Cloud
Computing, 3(5):81–88, 2016.

[51] Socks shop – a microservices demo application.
https://microservices-demo.github.

io/.

[52] Sample musicstore application. https:

//github.com/aspnet/MusicStore.

[53] Nuha Alshuqayran, Nour Ali, and Roger Evans. A
systematic mapping study in microservice architec-
ture. In Proceedings - 2016 IEEE 9th International
Conference on Service-Oriented Computing and Ap-
plications, SOCA 2016, pages 44–51. IEEE, nov
2016.

[54] Carlos M. Aderaldo, Nabor C. Mendonça, Claus Pahl,
and Pooyan Jamshidi. Benchmark Requirements
for Microservices Architecture Research. Proceed-
ings - 2017 IEEE/ACM 1st International Workshop
on Establishing the Community-Wide Infrastructure
for Architecture-Based Software Engineering, ECASE
2017, pages 8–13, 2017.

[55] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji,
Wenhai Li, and Dan Ding. Fault Analysis and De-
bugging of Microservice Systems: Industrial Sur-
vey, Benchmark System, and Empirical Study. IEEE
Transactions on Software Engineering, pages 1–1,
2018.

[56] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-
source benchmark suite for microservices and their
hardware-software implications for cloud & edge sys-
tems. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages
3–18. ACM, 2019.

[57] A. Sriraman and T. F. Wenisch. µsuite: A benchmark
suite for microservices. In 2018 IEEE International
Symposium on Workload Characterization (IISWC),
pages 1–12, Sep. 2018.

[58] Nane Kratzke and Peter-Christian Quint. Ppbench. In
Proceedings of the 6th International Conference on
Cloud Computing and Services Science - Volume 1
and 2, CLOSER 2016, page 223–231, Setubal, PRT,
2016. SCITEPRESS - Science and Technology Publi-
cations, Lda.

[59] Akshitha Sriraman and Thomas F. Wenisch. tune:
Auto-tuned threading for OLDI microservices. In
13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 177–194,
Carlsbad, CA, 2018. USENIX Association.

[60] Ioannis Papapanagiotou and Vinay Chella. Nd-
bench: Benchmarking microservices at scale. CoRR,
abs/1807.10792, 2018.

[61] T. Ueda, T. Nakaike, and M. Ohara. Workload char-
acterization for microservices. In 2016 IEEE Inter-
national Symposium on Workload Characterization
(IISWC), pages 1–10, Sep. 2016.

[62] Yu Gan and Christina Delimitrou. The Architectural
Implications of Cloud Microservices. IEEE Computer
Architecture Letters, 17(2):155–158, 2018.

[63] Akshitha Sriraman, Abhishek Dhanotia, and
Thomas F Wenisch. Softsku: optimizing server
architectures for microservice diversity@ scale. In
Proceedings of the 46th International Symposium on
Computer Architecture, pages 513–526. ACM, 2019.

[64] Lei Liu. Qos-aware machine learning-based multiple
resources scheduling for microservices in cloud envi-
ronment. arXiv preprint arXiv:1911.13208, 2019.

[65] Bruno Xavier, Tiago Ferreto, and Luis Jersak.
Time Provisioning Evaluation of KVM, Docker and
Unikernels in a Cloud Platform. In Proceedings -
2016 16th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, CCGrid 2016,
pages 277–280, 2016.

https://microservices-demo.github.io/
https://microservices-demo.github.io/
https://github.com/aspnet/MusicStore
https://github.com/aspnet/MusicStore


16
R. Zeng, X. Hou, C. Li, et al., Performance Optimization for Microservice in the Cloud

[66] Pankaj Saha, Angel Beltre, Piotr Uminski, and Mad-
husudhan Govindaraju. Evaluation of Docker Con-
tainers for Scientific Workloads in the Cloud. pages
1–8, 2018.

[67] David Jaramillo, Duy V Nguyen, and Robert
Smart. Leveraging microservices architecture by us-
ing docker technology. In SoutheastCon 2016, pages
1–5. IEEE, 2016.

[68] Evolution of Server Computing: VMs to Containers
to Serverless - Which to Use When?

[69] Hui Kang, Michael Le, and Shu Tao. Container
and microservice driven design for cloud infrastruc-
ture devops. In 2016 IEEE International Conference
on Cloud Engineering (IC2E), pages 202–211. IEEE,
2016.

[70] Theo Lynn, Pierangelo Rosati, Arnaud Lejeune, and
Vincent Emeakaroha. A preliminary review of en-
terprise serverless cloud computing (function-as-a-
service) platforms. In 2017 IEEE International Con-
ference on Cloud Computing Technology and Science
(CloudCom), pages 162–169. IEEE, 2017.

[71] Christian Esposito, Aniello Castiglione, and Kim-
Kwang Raymond Choo. Challenges in delivering
software in the cloud as microservices. IEEE Cloud
Computing, 3(5):10–14, 2016.

[72] Mario Villamizar, Oscar Garces, Lina Ochoa, Harold
Castro, Lorena Salamanca, Mauricio Verano, Rubby
Casallas, Santiago Gil, Carlos Valencia, Angee Zam-
brano, et al. Infrastructure cost comparison of running
web applications in the cloud using aws lambda and
monolithic and microservice architectures. In 2016
16th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), pages 179–
182. IEEE, 2016.

[73] Anders Västberg. Container overhead in microservice
systems Container overhead in microservice systems.
2018.

[74] Marcelo Amaral, Jordà Polo, David Carrera, Iqbal
Mohomed, Merve Unuvar, and Malgorzata Stein-
der. Performance evaluation of microservices archi-
tectures using containers. In Proceedings - 2015 IEEE
14th International Symposium on Network Comput-
ing and Applications, NCA 2015, pages 27–34. IEEE,
sep 2016.

[75] Nane Kratzke. About microservices, containers and
their underestimated impact on network performance.
CoRR, abs/1710.04049, 2017.

[76] Felipe Osses, Gastón Márquez, and Hernán As-
tudillo. Exploration of academic and industrial evi-
dence about architectural tactics and patterns in mi-
croservices. pages 256–257, 2018.

[77] Dharmendra Shadija, Mo Rezai, and Richard Hill.
Microservices: Granularity vs. Performance. Tech-
nical report.

[78] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati,
Lan Ly, and Shrideep Pallickara. Serverless comput-
ing: An investigation of factors influencing microser-
vice performance. In 2018 IEEE International Con-
ference on Cloud Engineering (IC2E), pages 159–
169. IEEE, 2018.

[79] Hyunwook Baek, Abhinav Srivastava, and Jacobus
Van der Merwe. Cloudsight: A tenant-oriented
transparency framework for cross-layer cloud trou-
bleshooting. In Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, pages 268–273. IEEE Press, 2017.

[80] Guilherme Da Cunha Rodrigues, Rodrigo N Cal-
heiros, Vinicius Tavares Guimaraes, Glederson
Lessa dos Santos, Marcio Barbosa De Carvalho,
Lisandro Zambenedetti Granville, Liane Mar-
garida Rockenbach Tarouco, and Rajkumar Buyya.
Monitoring of cloud computing environments: con-
cepts, solutions, trends, and future directions. In
Proceedings of the 31st Annual ACM Symposium on
Applied Computing, pages 378–383. ACM, 2016.

[81] John Nicol, Chen Li, Peinan Chen, Tao Feng, and
Haricharan Ramachandra. ODP: An Infrastructure for
On-Demand Service Profiling. In ICPE, 2018.

[82] Marcello Cinque, Raffaele Della Corte, and Antonio
Pecchia. Microservices monitoring with event logs
and black box execution tracing. IEEE Transactions
on Services Computing, 2019.

[83] Raja R. Sambasivan, Ilari Shafer, Jonathan Mace,
Benjamin H. Sigelman, Rodrigo Fonseca, and Gre-
gory R. Ganger. Principled workflow-centric tracing
of distributed systems. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, SoCC ’16,
pages 401–414, New York, NY, USA, 2016. ACM.



Front. Comput. Sci.
17

[84] Thomas F Düllmann. Performance anomaly detec-
tion in microservice architectures under continuous
change. Master’s thesis, 2017.

[85] Rajsimman Ravichandiran, Hadi Bannazadeh, and
Alberto Leon-Garcia. Anomaly Detection using Re-
source Behaviour Analysis for Autoscaling systems.
2018 4th IEEE Conference on Network Softwariza-
tion and Workshops, NetSoft 2018, (NetSoft):267–
271, 2018.

[86] Álvaro Brandón, Marc Solé, Alberto Huélamo, David
Solans, María S Pérez, and Victor Muntés-Mulero.
Graph-based root cause analysis for service-oriented
and microservice architectures. Journal of Systems
and Software, 159:110432, 2020.

[87] Jinjin Lin, Pengfei Chen, and Zibin Zheng. Mi-
croscope: Pinpoint performance issues with causal
graphs in micro-service environments. Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 11236 LNCS:3–20, 2018.

[88] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jna-
gal, Vrigo Gokhale, and John Wilkes. Cpi 2: Cpu
performance isolation for shared compute clusters. In
Proceedings of the 8th ACM European Conference on
Computer Systems, pages 379–391. ACM, 2013.

[89] Artemiy Margaritov, Siddharth Gupta, Rekai
Gonzalez-Alberquilla, and Boris Grot. Stretch:
Balancing qos and throughput for colocated server
workloads on smt cores. In 2019 IEEE Interna-
tional Symposium on High Performance Computer
Architecture (HPCA), pages 15–27. IEEE, 2019.

[90] Liang Bao, Chase Wu, Xiaoxuan Bu, Nana Ren, and
Mengqing Shen. Performance Modeling and Work-
flow Scheduling of Microservice-based Applications
in Clouds. IEEE Transactions on Parallel and Dis-
tributed Systems, 2019.

[91] Anshul Jindal, Vladimir Podolskiy, and Michael
Gerndt. Performance Modeling for Cloud Microser-
vice Applications.

[92] Hamzeh Khazaei, Cornel Barna, and Marin Litoiu.
Performance Modeling of Microservice Platforms
Considering the Dynamics of the underlying Cloud
Infrastructure. 2019.

[93] Marco Gribaudo, Mauro Iacono, and Daniele Manini.
Performance Evaluation Of Massively Distributed
Microservices Based Applications. 6(Cd):598–604,
2017.

[94] Ram Srivatsa Kannan, Lavanya Subramanian, Ash-
win Raju, Jeongseob Ahn, Jason Mars, and Lingjia
Tang. Grandslam: Guaranteeing slas for jobs in
microservices execution frameworks. In Proceed-
ings of the Fourteenth EuroSys Conference 2019, Eu-
roSys ’19, New York, NY, USA, 2019. Association
for Computing Machinery.

[95] Jaime Correia, Fabio Ribeiro, Ricardo Filipe, Filipe
Araujo, and Jorge Cardoso. Response time charac-
terization of microservice-based systems. NCA 2018
- 2018 IEEE 17th International Symposium on Net-
work Computing and Applications, 2018.

[96] Yinbo Yu, Jianfeng Yang, Chengcheng Guo, Hong
Zheng, and Jiancheng He. Joint optimization of ser-
vice request routing and instance placement in the mi-
croservice system. Journal of Network and Computer
Applications, 147:102441, 2019.

[97] Chengxin Yan, Ningjiang Chen, and Zhang Shuo.
High-performance elastic management for cloud con-
tainers based on predictive message scheduling. Fu-
ture Internet, 9(4), 2017.

[98] Xiaofeng Hou, Jiacheng Liu, Chao Li, and Minyi
Guo. Unleashing the scalability potential of power-
constrained data center in the microservice era. In
Proceedings of the 48th International Conference on
Parallel Processing, ICPP 2019, New York, NY,
USA, 2019. Association for Computing Machinery.

[99] Carlos Guerrero, Isaac Lera, and Carlos Juiz. Re-
source optimization of container orchestration: a
case study in multi-cloud microservices-based appli-
cations. Journal of Supercomputing, 74(7):2956–
2983, 2018.

[100] Xue Leng, Tzung-Han Juang, Yan Chen, and Han
Liu. Aomo: An ai-aided optimizer for microser-
vices orchestration. In Proceedings of the ACM SIG-
COMM 2019 Conference Posters and Demos, pages
1–2, 2019.

[101] Sander Klock, Jan Martijn E. M. Van Der Werf,
Jan Pieter Guelen, and Slinger Jansen. Workload-
Based Clustering of Coherent Feature Sets in Mi-
croservice Architectures. In 2017 IEEE International



18
R. Zeng, X. Hou, C. Li, et al., Performance Optimization for Microservice in the Cloud

Conference on Software Architecture (ICSA), pages
11–20. IEEE, apr 2017.

[102] OpenStack. https://www.openstack.org/.

[103] Kubernetes: Production-grade container orchestra-
tion. https://kubernetes.io/.

[104] Davi Monteiro, Rômulo Gadelha, Paulo Henrique M.
Maia, Lincoln S. Rocha, and Nabor C. Mendonça.
Beethoven: An event-driven lightweight platform for
microservice orchestration. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 11048 LNCS:191–199, 2018.

[105] Dong Guo, Wei Wang, Guosun Zeng, and Zerong
Wei. Microservices Architecture Based Cloudware
Deployment Platform for Service Computing. In 2016
IEEE Symposium on Service-Oriented System Engi-
neering (SOSE), pages 358–363. IEEE, mar 2016.

[106] Joao Rufino, Muhammad Alam, Joaquim Ferreira,
Abdur Rehman, and Kim Fung Tsang. Orchestration
of containerized microservices for IIoT using Docker.
In Proceedings of the IEEE International Conference
on Industrial Technology, pages 1532–1536. IEEE,
mar 2017.

[107] Pieter J. Meulenhoff, Dennis R. Ostendorf, Miroslav
Živković, Hendrik B. Meeuwissen, and Bart M. M.
Gijsen. Intelligent overload control for composite
web services. In Luciano Baresi, Chi-Hung Chi,
and Jun Suzuki, editors, Service-Oriented Comput-
ing, pages 34–49, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[108] Ben Christensen. Application resilience in a service-
oriented architecture. June 10, 2013.

[109] Matt Welsh, David Culler, and Eric Brewer. Seda:
An architecture for well-conditioned, scalable internet
services. In PROC. SYMP. OPERATING SYSTEMS
PRINCIPLES, pages 230–243, 2001.

[110] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia
Tang. Bubble-flux: Precise online qos management
for increased utilization in warehouse scale comput-
ers. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture, ISCA
’13, pages 607–618, New York, NY, USA, 2013.
ACM.

[111] Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and qos-aware cluster management.
In ACM SIGARCH Computer Architecture News, vol-
ume 42, pages 127–144. ACM, 2014.

[112] H. Alipour and Y. Liu. Online machine learning for
cloud resource provisioning of microservice backend
systems. In 2017 IEEE International Conference on
Big Data (Big Data), pages 2433–2441, Dec 2017.

[113] Michael Alan Chang, Aurojit Panda, Yuan-Cheng
Tsai, Hantao Wang, and Scott Shenker. Throttlebot -
performance without insight. CoRR, abs/1711.00618,
2017.

[114] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xi-
aobin She, Sifan Liu, Rui Gu, Beng Chin Ooi, and
Junfeng Yang. Overload control for scaling wechat
microservices. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’18, pages 149–
161, New York, NY, USA, 2018. ACM.

[115] Lalith Suresh, Peter Bodik, Ishai Menache, Marco
Canini, and Florin Ciucu. Distributed resource man-
agement across process boundaries. pages 611–623,
2017.

[116] M. Xu, A. N. Toosi, and R. Buyya. ibrownout: An in-
tegrated approach for managing energy and brownout
in container-based clouds. IEEE Transactions on Sus-
tainable Computing, 4(1):53–66, Jan 2019.

[117] Chih-Hsun Chou, Laxmi N Bhuyan, and Daniel
Wong. µdpm: Dynamic power management for the
microsecond era. In 2019 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 120–132. IEEE, 2019.

[118] Amirhossein Mirhosseini, Akshitha Sriraman, and
Thomas F Wenisch. Enhancing server efficiency in
the face of killer microseconds. In 2019 IEEE Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 185–198. IEEE, 2019.

[119] Harshad Kasture, Davide B Bartolini, Nathan Beck-
mann, and Daniel Sanchez. Rubik: Fast analytical
power management for latency-critical systems. In
2015 48th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 598–610.
IEEE, 2015.

https://www.openstack.org/
https://kubernetes.io/


Front. Comput. Sci.
19

[120] David Lo, Liqun Cheng, Rama Govindaraju, Luiz An-
dré Barroso, and Christos Kozyrakis. Towards energy
proportionality for large-scale latency-critical work-
loads. In 2014 ACM/IEEE 41st International Sympo-
sium on Computer Architecture (ISCA), pages 301–
312. IEEE, 2014.

[121] Yanpei Liu, Stark C Draper, and Nam Sung Kim.
Sleepscale: Runtime joint speed scaling and sleep
states management for power efficient datacenters.
In 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pages 313–324. IEEE,
2014.

[122] Sol Boucher, Anuj Kalia, David G. Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), pages 645–650, Boston,
MA, 2018. USENIX Association.

[123] Edward Oakes, Leon Yang, Dennis Zhou, Kevin

Houck, Tyler Harter, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. {SOCK}: Rapid task
provisioning with serverless-optimized containers.
In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pages 57–70, 2018.

[124] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paari-
jaat Aditya, and Volker Hilt. Sand: Towards high-
performance serverless computing. In 2018Annual
Technical Conference (ATC 18), pages 923–935,
2018.

[125] Xiaohui Luo, Fengyuan Ren, and Tong Zhang. High
performance userspace networking for containerized
microservices. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 11236
LNCS:57–72, 2018.


	Introduction
	Related Work
	Contribution

	Background and Definition
	Microservice: A Brief Overview
	Comparison of Related Concepts
	Performance Optimization: An Overview

	Performance Evaluation and Monitoring
	Benchmarking
	Analysis and Characterization
	Monitoring and Anomaly Detection

	Resource Provisioning and Management
	Modeling and Prediction
	Placement and Orchestration
	Runtime Adaptation 

	System Tuning and Coordination
	Research Opportunities
	New Models and Abstractions
	System Orchestration on s-Scale 
	Autonomous Resource Management
	Cross-Layer Design

	Conclusion

