
Oversubscribing GPU Unified Virtual Memory: Implications and
Suggestions

Chuanming Shao
Shanghai Jiao Tong University

Shanghai, China
cyunming@sjtu.edu.cn

Jinyang Guo
Shanghai Jiao Tong University

Shanghai, China
lazarus@sjtu.edu.cn

Pengyu Wang
Shanghai Jiao Tong University

Shanghai, China
wpybtw@sjtu.edu.cn

Jing Wang
Shanghai Jiao Tong University

Shanghai, China
jing618@sjtu.edu.cn

Chao Li
Shanghai Jiao Tong University

Shanghai, China
lichao@cs.sjtu.edu.cn

Minyi Guo
Shanghai Jiao Tong University

Shanghai, China
guo-my@cs.sjtu.edu.cn

ABSTRACT
Recent GPU architectures support unified virtual memory (UVM),
which offers great opportunities to solve larger problems by mem-
ory oversubscription. Although some studies are concerned over
the performance degradation under UVMoversubscription, the rea-
sons behind workloads’ diverse sensitivities to oversubscription
is still unclear. In this work, we take the first step to select vari-
ous benchmark applications and conduct rigorous experiments on
their performance under different oversubscription ratios. Specifi-
cally, we take into account the variety of memory access patterns
and explain applications’ diverse sensitivities to oversubscription.
We also consider prefetching and UVM hints, and discover their
complex impact under different oversubscription ratios. Moreover,
the strengths and pitfalls of UVM’s multi-GPU support are dis-
cussed. We expect that this paper will provide useful experiences
and insights for UVM system design.

CCS CONCEPTS
•Computer systems organization→ Single instruction, multiple
data; • Hardware→ External storage.

KEYWORDS
GPU, unified virtual memory, oversubscription, characterization,
resource sharing

ACM Reference Format:
Chuanming Shao, JinyangGuo, PengyuWang, JingWang, Chao Li, andMinyi
Guo. 2022. OversubscribingGPUUnifiedVirtualMemory: Implications and
Suggestions. In Proceedings of the 2022 ACM/SPEC International Conference
on Performance Engineering (ICPE ’22), April 9–13, 2022, Bejing, China.ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3489525.3511691

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’22, April 9–13, 2022, Bejing, China.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9143-6/22/04…$15.00
https://doi.org/10.1145/3489525.3511691

1 INTRODUCTION
Due to their massive thread-level parallelism capacities, Graphics
Processing Units (GPUs) are now playing an important role in ac-
celerating various real-world workloads, such as machine learn-
ing, graph processing, bioinformatics, etc. The rapid evolution of
GPU architectures [3] offers new GPUs with higher computing
ability and larger memory, making GPUs a promising computing
platform in the future. However, compared to common server ma-
chines equipped with hundreds of gigabytes or even terabytes of
memory, the memory capacity on a GPU is very limited. This re-
stricts the scale of problems that can be solved by GPUs, especially
for data-intensive applications such asmachine learning and graph
processing. For example, although many graph processing frame-
works [17, 22, 23] could accelerate graph algorithms on GPUs effi-
ciently, they can only solve problems with relatively small datasets.
Although this situation could be alleviated by carefully partition-
ing the dataset and swapping partitions between host and GPU
dynamically [20], it also increases programming difficulties.

Unified Virtual Memory (UVM) is a technology introduced by
GPU vendors on recent GPU architectures [2, 4]. As shown in Fig-
ure 1, UVM provides a single virtual address space between CPU
and GPUs, allowing automatic data migration via demand pag-
ing [7]. For example, when GPUs access pages that reside in the
host memory, GPU page fault occurs and the pages will be mi-
grated to GPUmemory from the host. Meanwhile, pages could also
be evicted to host when GPU memory is overwhelmed.

Although UVM induces overheads like address translation and
page fault handling, it has revolutionized the GPU program-
ming model, benefiting programmers in multiple ways. Firstly,
UVM simplifies GPU programming procedures and increases pro-
grammability. As shown in Figure 2, codes that use UVM are sim-
pler in syntax and more comprehensible. It is also straightforward
to modify existing codes to take advantage of UVM. Secondly,
UVM supportsmemory oversubscription, giving GPU programs the
ability to use a larger amount of memory than the physical mem-
ory, without worrying about the problem of memory shortage. By
utilizing UVM, existing programs can now solve larger problems
with minor code modification [21].

Advanced optimization techniques, mainly prefetching and
memory usage hints [1], can be used to fine-tune the performance
of UVM applications, mitigating the overheads caused by UVM.

https://doi.org/10.1145/3489525.3511691
https://doi.org/10.1145/3489525.3511691

GDDRGDDR GDDR

DDR CPU
PCIE / NVLink

GPU GPU GPU

UVM

CPU GPU GPU GPU

(a) (b)

Figure 1: (a) Multi-GPU memory model, and (b) UVM pro-
grammers’ view.

Figure 2: Comparison between the CUDA programs before
and after using UVM programming model.

In this paper, we attempt to analyze and explain the implications
of GPU UVM oversubscription. Various benchmarks are selected,
and we inspect and explain the implications of oversubscription
to them. After that, we consider the implications of prefetching
and UVM hints under oversubscription. The possibility of utilizing
UVM to support multi-GPU computation is further explored.

In this paper, we made the following key contributions:
• At the lowest level, we explore the implications of oversub-
scription in detail. We propose the concept of “launch ratio”,
and attribute it to the existence of “FALL pages”. We give
suggestions on reducing the adverse effects of FALL pages.

• At the system level, we investigate prefetching and UVM
hints.We discover that keeping a direct mapping in the GPU
page table is helpful under oversubscription ratios above
launch ratio, but it is harmful otherwise. We give sugges-
tions on choosing the suitable UVM hints.

• At the highest application level, we further discuss the
multi-GPU support of UVM. We find that utilizing multi-
ple GPUs is possible to provide good speedup in certain sce-
narios, but it introduces memory-related inter-GPU inter-
ferences. We give suggestions on when using multi-GPU is
not appropriate.

The rest of this paper is organized as follows: Section 2 reviews
the previous studies on UVM. Section 3 summarizes the experimen-
tal methods. Section 4 presents experimental results and findings.
Section 5 concludes this paper.

2 RELATEDWORK
UVM greatly facilitates the programmers because it reduces pro-
gramming efforts and allows GPUs to process large datasets that
exceed GPU memory capacity. However, the performance degra-
dation of UVM under oversubscription should not be overlooked.
Several works analyzed the characteristics of UVM and proposed
techniques to improve it.

2.1 UVM Analysis
Landaverde et al. [12] first investigated UVM and noticed its signif-
icant performance overhead. Zheng et al. [25] compared the pros
and cons between UVMand traditional programmer directedmem-
ory management, and find the possibility of both leverage the ben-
efits of UVM and largely hide the performance overheads. Chien
et al. [7] compared the performance of several benchmark appli-
cations with these techniques enabled and found that these the ef-
fects of these techniques are not consistent: some techniques could
increase performance on one platform, but hurt performance on
other platforms. Xu et al. [24] devised a machine learning-based
approach to guide developers to determine the optimal memory
choices, such as the combinations of various memory advice hints.
Recently, Gu et al. [10] created a comprehensive benchmark suite
for UVM research namedUVMBench.They re-implemented awide
range of benchmarks from Rodinia [5] and Polybench [16] by em-
ploying UVM, and compared their performances with non-UVM.

2.2 UVMManagement
Necessary modifications to the underlying UVM mechanisms can
improve performance. For example, Ganguly et al. [8] investigated
the mechanism of the tree-based neighborhood prefetcher imple-
mented by NVIDIA CUDA driver, and proposed a tree-based pre-
eviction strategy as a better replacement for the default Least Re-
cently Used (LRU) eviction policy of NVIDIA GPUs. To mitigate
the overhead of page fault handling, Kim et al. [11] proposed a
hardware solution that could increase the batch size (the num-
ber of page faults handled together). They also introduced a CPU-
like thread block context switching mechanism to reduce the num-
ber of batches.

Some works mentioned that the regularity of memory access
could affect the application’s performance under UVM. Li et
al. [14] categorizes applications into regular and irregular applica-
tions, and applies three approaches (proactive eviction, memory-
aware throttling and capacity compression) differently to make
UVM more efficient for both regular and irregular applications.
The impact of UVM on various applications is further analyzed by
Ganguly et al. [9]. They discovered that under oversubscription,
the LRU policy tends to evict “hot pages” of irregular applications,
and they proposed a page migration policy based on access coun-
ters.

2.3 Summary of Prior Arts
To the best of our knowledge, no previous work provides a com-
prehensive analysis on the implications of UVM oversubscription.
Although some works [9, 14] mentioned the performance degra-
dation of applications under oversubscription, no analysis exists
to reveal the diversity in the trend of performance degradation as
oversubscription aggravates progressively. The general effects of
prefetching and UVM hints are discussed [7], but under oversub-
scription, the influences of each hint, as well as whether page faults
and data migration can be handled by prefetching and UVM hints
remain unclear.

Relying on multi-GPU is an attractive path to GPU performance
scaling [6, 15, 18], and multi-GPU memory management overhead

Table 1: GPU Benchmarks for Evaluation

Benchmark Short Description
2dconv 2D Convolution
2mm 2 Matrix Multiplication
3mm 3 Matrix Multiplication
atax Matrix Transpose & Vector Multiplication
backprop Backpropagation
bfs Breadth First Search
bicg BiCG Sub Kernel of BiCGStab Linear Solver
gaussian Gaussian Elimination
gemm Matrix-multiply
gesummv Scalar, Vector & Matrix Multiplication
gramschmidt Gram-Schmidt decomposition
mvt Matrix Vector Product & Transpose
nw Needleman-Wunsch
syr2k Symmetric rank-2k operations

acts as an important limitation [19]. We take the first step to in-
vestigate the possibility to utilize UVM to implement multi-GPU
computation.

3 EVALUATION METHODOLOGY
3.1 Design Considerations
In order to study the impact of memory oversubscription, our
first step is to investigate the characteristics of individual applica-
tions. For the selected benchmarks, we are particularly interested
in their performance as the oversubscription ratio increases. To
this end, we need to limit the available memory on GPU according
to our needs.

3.2 Benchmark Application
As listed in Table 1, we use benchmarks provided by UVM-
Bench [10]. The selected applications are typical applications in
various domains such as machine learning, graph theory, linear al-
gebra, etc. Each of the applications runs a specific algorithm, and
most of them only run one or two kernels during execution. The
simplicity and representativeness of these applications make them
suitable for our research.

3.3 Platform and Profiling Tools
The experiments are performed on a server consisting of an Intel
Xeon Gold 6148 CPU with 40 physical cores, 252 GB DDR4 mem-
ory, and an NVIDIA GeForce RTX 2080 Ti card, which has 68 SMs
of the Turing GPU architecture and 11 GB of GDDR6 memory.The
system runs Ubuntu 16.04 OS and CUDA toolkit 11.0.

We use two NVIDIA’s official profiling tools to profile the per-
formance related data: Nsight Compute, which is used to collect
the performance metrics, and Nsight System, which is used to cap-
ture and visualize the trace of events occurred during runtime.

The execution time of kernels is retrieved by inserting
cudaEventRecord before and after each kernel invocation.
We measure application’s execution time by using the Linux
clock_gettime system call, which provides a reliable real-time

clock. For each application, the clock is started after all necessary
preparation steps (such as data loading, memory allocation and ini-
tialization) finish, and is stopped when all kernel invocations end.
The data is collected across multiple experiments and calculated by
average. We also eliminate nonessential CPU-side operations such
as performing the identical computations with GPU and checking
the inconsistency with GPU-side results. Therefore, the measured
execution time of an application is very close to the aggregated
execution time of its kernels.

3.4 Memory Oversubscription Emulation
In order to understand the behavior of applications under mem-
ory oversubscription, we run them on GPU with different over-
subscription ratios. To ensure consistent experimental results un-
der different oversubscription ratios, for each benchmark applica-
tion, we set a fixed workload by selecting a fixed dataset that is
large enough (consumes about 40% of GPU physical memory) for
the GPU hardware. To simulate different oversubscription ratios
without changing the dataset, we first start a “memory occupier”
process, which occupies a specific amount of memory on demand
before the application starts. The occupied memory is allocated by
cudaMalloc, thus this piece of memory is pinned on GPU during
the application’s execution.

4 RESULTS AND DISCUSSION
4.1 Sensitivity to Oversubscription
To reveal each application’s sensitivity to memory oversubscrip-
tion, we run applications under different oversubscription ratios
and compare their execution time.Oversubscription ratio is the frac-
tion of oversubscribed memory to total physical memory, which is
defined as:

Oversubscription Ratio =
UVM − Total Physical Memory

Total Physical Memory

As shown in Figure 3, oversubscription ratio has contrasting im-
pact on applications. Note that in order to better observe the grow-
ing tendency of each application’s execution time, we divide the
applications into three groups and adjust the scales of the axes.

Applications in (a) and (b) follow an interesting behavior as
oversubscription ratio increases. Specifically, the execution time
keeps steady at first, but a sudden and dramatic increase in execu-
tion time occurs at some oversubscription ratio. This is especially
obvious in (b), since the x-axis is more coarse-grained. This over-
subscription ratio is application-specific. In this paper, we refer to
this knee point as the launch ratio since the execution time stays
constant before it but rises suddenly afterwards. For example, the
launch ratio of gemm is about 2.

Applications in (c) show relative insensitivity to oversubscrip-
tion. The execution time of 2dconv grows slowly and has only 2.5
times of increase when the oversubscription ratio reaches 10. Sim-
ilarly, backprop and syr2k show little increase in execution time
even when the oversubscription ratio reaches 10.

The reason behind these behaviors is explained in section 4.2 by
analyzing the pattern of page fault. Page faults, as well as the data
migrations between host and GPU, comprise the major overheads

0 2 4 6 8 10
Oversubscription Ratio

1.0

1.4

1.8

2.2

2.6

3.0

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 T

im
e 2dconv

backprop
syr2k

0 1 2 3 4 5 6 7
Oversubscription Ratio

1

10

20

30

40

50

60

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 T

im
e gramschmidt

gemm
gaussian
bfs
3mm
2mm

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Oversubscription Ratio

1

100

200

300

400

500

600

700

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 T

im
e

bicg
nw
mvt
atax
gesummv

(a) (b) (c)

Figure 3:The execution time of benchmarks with regard to different oversubscription ratios, normalized to the execution time
when oversubscription ratio = 0.

of memory oversubscription. Figure 4 shows that as the oversub-
scription ratio increases, the time used for GPU page fault handling
and data migration also increases. Their growing tendency is con-
sistent with the increase of execution time in Figure 3. The time
consumed by data migration is strongly correlated to page fault
handling time, since each page fault induces data migration. When
the physical memory in GPU is not full, a page fault simply result
in data migration from host to GPU. Under oversubscription, the
GPU first evict pages (move pages from GPU to host) before mov-
ing pages in from the host.

0.05 0.06 0.07 0.08 0.09 0.10
Oversubscription Ratio

0

10

20

30

40

50

60

70

80

N
o
rm

a
liz

e
d
 E

v
e
n
t

D
u
ra

ti
o
n

page fault handling

HtoD

DtoH

(a) nw (b) mvt

N
o
rm

a
liz

e
d

 E
v
e
n

t
D

u
ra

ti
o
n

0.05 0.06 0.07 0.08 0.09 0.10
Oversubscription Ratio

0.0

0.5

1.0

1.5

2.0

2.5 page fault handling

HtoD

DtoH

Figure 4: Comparison of the time consumed by page fault
handling, host to device (HtoD) and device to host (DtoH)
data migration betweenmvt and nw, with oversubscription
ratio between 0.05 and 0.10. The time is normalized to over-
subscription ratio = 0.05.

4.2 Pattern of Page Fault under
Oversubscription

To understand the reason behind applications’ behaviors men-
tioned in the previous section, we analyze the cause of page faults
by studying the pattern of their memory access.

We select typical benchmarks and display the actual time and
page numbers when page faults occur, as shown in Figure 5. It is

evident that for all applications, as the oversubscription ratio in-
creases, the amount of page faults echos with Figure 3. If the over-
subscription ratio equals zero, the physical memory in GPUwill be
able to hold all the needed data, therefore each page is only faulted
once, at the time that the page is first accessed. Under oversubscrip-
tion, the size of the overall dataset is beyond the capacity of GPU
memory. Thus, some pages need to be swapped between GPU and
host and may fault multiple times.

However, for different applications, the patterns of page fault
have interesting diversity. For applications exceptmvt, we observe
sequential page fault activities and line-like segments. By compar-
ing with the source codes of these applications, we found that each
segment is corresponding to a separate data structure of the appli-
cation. For example, gemm is the benchmark performing matrix-
matrix multiplication 𝐶 = 𝐴𝐵, in the manner of:

for (i = 0 ; i < NI ; i ++)
for (j = 0 ; j < NJ ; j ++)

for (k = 0 ; k < NK ; k++)
C[i] [j] += A[i] [k] ∗ B [k] [j] ;

gemm allocates three arrays in GPUmemory: A_gpu, B_gpu, and
C_gpu, which correspond to the matrices 𝐴, 𝐵, and𝐶 , respectively.
It has three segments in Figure 5 (c0), corresponding to A_gpu,
B_gpu, and C_gpu from low to high memory address.

As oversubscription ratio increases, some page segments may
occur multiple times. For gemm, the number of page segments of
matrix 𝐵 grows as the oversubscription ratio increases. Although
each element in A_gpu, B_gpu and C_gpu is accessed once, the or-
der of accessing is different, which leads to different page fault
numbers. For𝐴 and𝐶 , the elements are accessed row-wise, but 𝐵 is
accessed column-wise. Assuming that𝐴, 𝐵 and𝐶 are all 1024×1024
matrix stored row-wise, and each page could contain 1024 ele-
ments. To calculate one element in𝐶 , one row in𝐴 and one column
in 𝐵 is accessed, therefore 1 page will fault on 𝐴 and 𝐶 , but 1024
pages will fault on 𝐵. This means that pages of 𝐵 are more likely to
fault.

Pages that have similar access patterns with the B_gpu in gemm
are harmful to applications’ performance since they trigger page
fault frequently, thus waste memory bandwidth. In this paper,

Figure 5: Patterns of applications’ page fault under different oversubscription ratios. Each sub-figure plots the time (the 𝑥 axes,
in ms) when a page (the 𝑦 axes) faults. Each page fault is represented by a dot, and the density of dots indicates the frequency
of page faults.

we refer to the pages that are frequently accessed but have low
locality as the FALL pages. The existence of FALL pages could be
observed by experiments, as the page faults of FALL pages increase
substantially above the launch ratio.

FALL pages are highly related to the performance of applica-
tions under oversubscription. Their proportion to GPU memory
determines the application’s sensitivity to oversubscription. For
example, as shown in Figure 5 (a1) and (b1) , nearly all pages of
nw and mvt are FALL pages, therefore they show high sensitiv-
ity under oversubscription. For gemm and 3mm, only part of their
pages are FALL pages. They have steady execution time when the
oversubscription ratio is low, because GPU could hold the FALL
pages in physical memory. Once under some oversubscription ra-
tio, where the physical memory is less than the size of FALL pages,
nearly each memory access would lead to a page fault. Pages keep
thrashing between GPU and host memory, severely hurting per-
formance. Moreover, by referring to Figure 3 (b), we find that at
launch ratio, the size of FALL pages is identical with the avail-
able memory.

The proportion of FALL pages reflects the locality of applica-
tion’s memory access. GPU physical memory could be viewed as
another level in the memory hierarchy, where it acts as the “cache”
of the UVM.The “hit rate” in GPU physical memory has similar im-
pact with the cache hit rate in canonical cache hierarchy. The size

of physical memory, as well as the locality of application’s memory
access, both contribute to an application’s performance under over-
subscription. Oversubscribing UVM is suited for applications that
have high memory access locality such as 2dconv, but it greatly
harms the performance of irregular applications such as mvt.

Naturally, datasets have an influence on the size of application’s
FALL pages. Some irregular applications have a behavior that is
very data dependent. For example, the working set of graph ap-
plications such as BFS may be small even if the input graph is
very large. Obviously, when running with different datasets, the
size of FALL pages could change accordingly. Therefore the per-
formance (e.g. the launch ratio) of an application can be different
when different input datasets are selected.
Suggestions: Developers could reduce an application’s sensitiv-
ity to oversubscription by minimizing the adverse effects of FALL
pages. The first step is to locate the data structures that contain
FALL pages. Often this is simple, since FALL pages are charac-
terized by their frequent and random access. Profiling tools are
also helpful in this step. After that, the developer could try to op-
timize the code to enhance its locality in memory access. Another
straightforward option is to pin the FALL pages on GPU (using
non-UVM).

4.3 Impact of Prefetching and UVM Hints
In this section, we study the effects of prefetching and UVM
hints under memory oversubscription. Prefetching and UVM
hints are the major approaches provided by CUDA, with the
hope that page faults and memory thrashing could be prevented
by fine-tuning the behavior of UVM at runtime. By calling
cudaMemPrefetchAsync (PF), a memory block could be prefetched
to GPU. UVM hints provide informed decisions on page handling
by indicating the access patterns of data. Changing UVM hints is
done by invoking cudaMemAdvise with one of the following poli-
cies [7]:

• cudaMemAdviseSetAccessedBy (AB) implies that the de-
vice keeps a direct mapping in its page table. When the data
is migrated, the mapping is re-established.

• cudaMemAdviseSetPreferredLocation (PL) pins the data
and prevents the page to be migrated, which is useful when
the page is mainly accessed on one side.

• cudaMemAdviseSetReadMostly (RM) indicates the data re-
gion is read-intensive. It creates a read-only copy of the
page on the faulting side, allowing concurrent access on
both sides.

Only one policy (AB, PL, or RM) could be specified for each
memory block, but each policy can be used along with prefetch-
ing.Therefore, both prefetching and UVMhints could be combined
together, providing a wider design space for programmers.

In Figure 6, we compare the implications of various UVM hints
to nw, gemm and backprop. Note that for each application, only
one specific policy is set to all the allocated memory. In order to
be better viewed, under each oversubscription ratio, the execution
time is normalized to the time with UM (vanilla UVM).

It could be observed that for each application, policies have dif-
ferent impact on the performance. Clearly, under oversubscrip-
tion, prefetching and UVM hints do not always improve the per-
formance. Considering somememory blocks are not read-only, set-
ting them to RMwill hurt performance because once the read-only
property is violated, all copies need to be invalidated, resulting in
high overhead [7]. The observation that PL has little effect is likely
due to our evaluation platform (Intel + PCIe) cannot take advan-
tage of direct memory access like in NVLINK [13].

Interestingly, we observe that AB have opposite effects when
running below and above the launch ratio. When oversubscription
ratio is under launch ratio (0.06 for nw, 2 for gemm), the execu-
tion time with AB enabled is much longer than the execution time
with vanilla UVM. However, when oversubscription ratio is above
the launch ratio, AB shows to be a preferable policy. For example,
when the oversubscription ratio is 0, nw runs 7 times slower with
AB than with UM, but AB becomes 5 times faster than UM when
the oversubscription ratio is 0.08. AB also has a similar effect on
gemm. Since backprop is insensitive to oversubscription and does
not have an obvious launch ratio, AB continues to hurt its perfor-
mance under oversubscription.

The above discussions apply one hint to all data structures,
which is inherently unfair, since each memory block may have
different patterns of memory accessing, only one or some of the
hints are appropriate. In a real-world scenario, in order to receive

0 0.04 0.08
0.0

0.5

1.0

1.5
nw

UM PF AB PL RM PF+AB PF+PL PF+RM

0 1.5 2.5
0.0

0.5

1.0

1.5
gemm

0 5 10
Oversubscription Ratio

0.0

0.5

1.0

1.5

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 T

im
e

backprop

7 469 7 498 84 89 13 14

>500 2 >500 7

532056125320551252205512

>500 >500 >500>500

Figure 6: Implications of prefetching and UVM hints to the
execution time of nw, gemm and backprop, under differ-
ent oversubscription ratios. The execution time is normal-
ized to the execution time using vanilla UVM (UM). Overly
high bars are truncated and the corresponding numbers are
labeled above.

the optimal performance, programmers need to set different poli-
cies for each memory block, which seems to be a costly process.
Therefore, a natural question is: how large is the performance gap
between the combinations of these policies? Moreover, does the op-
timal policy change under different oversubscription ratios? To an-
swer these questions, we investigate gemm by isolating the effects
of different combinations of hints.

As previously described in section 4.2, 𝐴, 𝐵 and 𝐶 are the mem-
ory blocks allocated by gemm. We iterate over the combinations
of policies on them, and compare their impact on the execution
time. Since many policies have similar effects, we picked typical
policies involving AB and RM.The execution time of gemm under
different policies and oversubscription ratios are listed in Table 2.
For each ratio, the policies that have relative good performance
are highlighted in the table. Each policy is represented in the for-
mat of(𝑝𝑎, 𝑝𝑏, 𝑝𝑐), where 𝑝𝑎, 𝑝𝑏, 𝑝𝑐 are the policies of 𝐴, 𝐵, and
𝐶 , respectively.

It is clear that, without oversubscription (ratio = 0), the gap be-
tween the policies is almost negligible. Under oversubscription, the
policies that have good performance below launch ratio (ratio = 2)
turn out to have the worst performance above launch ratio. Specif-
ically, when oversubscription ratio = 2.5, the execution time that
use policies (UM, AB, UM), (AB, AB, UM), or (AB, AB, AB) are
extremely lower than other policies, while when oversubscription
ratio ≤ 2, they behave much slower than the other three policies.
Moreover, they have the same characteristic: they all set the policy
AB to 𝐵, the array that FALL pages reside.

Overall, the effect of hint AB varies in different situations.
Specifically, when oversubscription ratio is higher than the launch
ratio, setting the hint of FALL pages to AB is an effective strategy,
but it harms the application’s performance when oversubscription

Table 2: The execution time (in seconds) of gemm under dif-
ferent combinations of UVM hints and oversubscription ra-
tios

Oversubscription Ratio
Policy 0 0.5 1.0 1.5 2.0 2.5

(UM, UM, UM) 75.0 77.3 80.1 83.6 103.6 7911.3
(AB, UM, UM) 75.6 77.6 80.0 84.1 104.6 7982.7
(UM, AB, UM) 75.2 126.9 185.3 235.7 266.8 288.9
(UM, UM, AB) 75.6 77.5 79.8 83.7 104.4 8020.7
(AB, AB, UM) 75.2 127.1 186.6 233.7 267.4 287.4
(AB, AB, AB) 75.8 126.7 187.9 235.6 266.1 290.1
(RM, RM, UM) 76.4 79.1 80.8 83.2 105.4 8190.0
(RM, AB, UM) 77.1 134.4 203.1 244.4 272.1 291.4

is not high enough. The reason lies in that the hint AB could effec-
tively reduce the thrashing. By establishing a direct mapping of the
FALL pages in the page table, page faults, as well as the subsequent
page migrations are both avoided. Although in this situation data
must be retrived through the slower host-GPU connection, it pays
off under page thrashing.

Other obvious options include using RM for 𝐴 and/or 𝐵, given
that they are read-only on the GPU side. As shown in the last two
rows in Table 2, setting 𝐴 and 𝐵 to RM does not have particular
advantage over other options, and has the same slowdown when
oversubscription is overly high.
Suggestions: To ensure performance under all oversubscription
conditions, programmer needs to choose the UVM hints dynami-
cally based on the application’s memory usage and available GPU
memory. As a prerequisite, the size of the FALL pages needs to be
estimated or measured by experiment. Before kernel launch, the
program should first check the size of available GPU memory (e.g.
via the cudaMemGetInfo API). If no oversubscription will happen,
or the available memory is larger than the size of FALL pages, the
programmer could set hints based on the conclusions provided by
related researches [24]. Otherwise, based on our findings, applying
the hint AB is a preferable choice.

4.4 Multi-GPU Support
Theabove discussions are limited to the single-GPU scenario. By al-
lowing GPUs to access the same memory location simultaneously,
multi-GPU programming is thus naturally supported by UVM. By
distributing a program onmultiple GPUs, the headache of oversub-
scription could be possibly alleviated. In this section, we demon-
strate the effects of UVM under the multi-GPU setup.

It is straightforward to transform the original single-GPU pro-
gram to adapt to multi-GPU. Under UVM, GPUs share the same
address space, and the memory coherence when GPUs access the
same memory location is ensured. Therefore by splitting a CUDA
kernel function into multiple kernels, where each kernel is exe-
cuted on one GPU and handles a proportion of the original job, a
single-GPU problem could be transformed into a multi-GPU prob-
lem without losing correctness. To facilitate this transformation,

(a) gemm 0% (b) gemm 200%

Figure 7: The pattern of gemm’s page faults, under oversub-
scription ratios 0 and 2.0, using 4 GPUs.

we provide a sample programming library, available at a repos-
itory 1. This library provides functionality to “splits” the thread
blocks in a CUDA grid, and then distributes them to GPUs. We use
gemm as an example.

Under multi-GPU systems, RM allows each GPU to keep a du-
plication of the data, making GPUs to simultaneously access the
data without interference. Since 𝐴 and 𝐵 in gemm are read-only
memory, applying the hint RM on them is quite straightforward.
We measure the performances of gemm under the policy (RM, RM,
UM) with different number of GPUs and the result is shown in Ta-
ble 3.

We could discover that using multiple GPUs provides impres-
sive speedup. For consistency, under each oversubscription ratio,
each GPU has the same amount of physical memory with the sin-
gle GPU scenario. Under oversubscription ratios from 0 to 2.0, com-
pared with the single GPU system, gemm has nearly 4x speedup
when running on 4 GPUs. When the oversubscription ratio is 2.5,
which is above the launch ratio, the speedup becomes lower, in-
dicating that the inter-GPU interference become higher. We also
notice that (RM, RM, AB) have severe slowdown above the launch
ratio, identical as in Table 2. The slowdown also comes from the
FALL pages in 𝐵, which is revealed in Figure 7. The pages in 𝐵 in-
cur more faults as oversubscription ratio increases, while the pages
in 𝐴 and 𝐶 fault once, like in the single-GPU system.

Since the policy (RM, RM, AB) is not suitable for multi-GPU
system when oversubscription ratio is overly high, we further ex-
periment with UVM hints other than RM, for𝐴 and 𝐵. Considering
that some UVM hints could be designated to GPUs separately, we
explore some promising combinations of the hints in the design
space. Intuitively, some UVM hints are reasonable in this scenario,
including:

• Setting 𝐵 to AB on all GPUs. Since AB eliminate page faults
by keeping a direct mapping in each GPU.

• Setting 𝐵 to PL on one GPU, and to AB on other GPUs. Since
PL set the preferred location for the data, this could possibly
reduce inter-GPU page thrashing.

However, based on our experiments, all of these policies bring
unfavorable slowdown compared with the single-GPU system,
even under no oversubscription.We identify that undermulti-GPU
setup, page faults caused by the FALL pages become more detri-
mental. For example, when using a moderate-sized dataset, under
1https://github.com/shawcm/GemmExample

Table 3:The execution time (in seconds) of gemmwith UVM
policy (RM, RM, UM) under multi-GPU setup

Oversubscription Ratio
GPU 0 0.5 1.0 1.5 2.0 2.5

1 76.4 79.1 80.8 83.2 105.4 8190.0
2 39.7 40.2 41.0 42.5 49.6 6309.6
3 27.6 28.1 30.9 35.6 40.1 4276.2
4 21.0 21.1 21.3 22.1 26.4 3377.1

no oversubscription and setting 𝐵 to AB on all two GPUs, 401723
host-GPU and 688434 GPU-GPU page faults occur, while only 1976
host-GPU page faults occur when it is running on one GPU. The
page faults mainly happen when GPUs are accessing the matrix 𝐵,
while the page faults caused by 𝐴 and 𝐶 are largely constant and
negligible. Although PL is said to be able to pin the data, we do not
observe this behavior on our platform (Intel + PCIe), since pages
keep thrashing between GPUs when we set them to PL on one
GPU. Its behavior on platforms such as NVLINK should be further
studied.

Therefore, UVM is not always beneficial on multi-GPU systems.
To make UVM useful, a job needs to have enough thread blocks
to utilize the computation capacity of the GPUs, and have little
memory interference (e.g. simultaneously access to the same page)
between GPUs, or the interferenced pages are read-only.
Suggestions: Multi-GPU support is an attractive feature of UVM,
and we do observe that it brings good speedup (e.g. when set RM
to all read-only data of gemm). Since UVM hints do not guarantee
to “pin” the pages on one GPU, using multiple GPUs seems not
appropriate when FALL pages contain mutable data.

5 CONCLUSION AND FUTUREWORK
In this paper, we analyze the impact of UVM oversubscription in
different aspects. 1) We observe that applications have different
sensitivity to oversubscription. Further analysis shows that the
memory access pattern is the major cause of the sensitivity. We
find that the existence of “FALL pages” is guilty of causing the ex-
ecution time to suddenly rise at the “launch ratio”. 2) We inspect
the effects of prefetching and UVM hints, discovering that AB is an
especially significant UVM hint that could both hinder or facilitate
an application’s performance under oversubscription. 3) We show
the speedup obtained by transforming a single-GPU program into
a multi-GPU program with the help of UVM, although UVM intro-
duces inter-GPU page faults when an application have FALL pages.

Our findings are beneficial to the design and optimization of
UVM applications. The phenomenon related to “launch ratio” and
the underlying reasons provide the understanding to avoid the
worst-case. The effects of prefetching and UVM hints are helpful
for building robust applications. We also reveal that UVM intro-
duces new opportunities to multi-GPU computation.

Improving data locality (minimizing the number of FALL pages)
is the key to avoid performance degradation under oversubscrip-
tion. Relevant innovations, such as novel alogrithms, compile- and
run-time optimization techniques are invaluable for improving the
overall performance of UVM.

We reveal the implications of UVM oversubscription mainly by
focusing on the GPU-side activities of some micro-benchmarks.
However, for real-world applications, the interactions between
GPU and host can be more complex, leading to various efficiency
issues. Therefore, to further understand the performance-power
characteristics of UVM oversubscription, more researches are re-
quired.

ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China (No.61972247) and Shanghai S&T Committee
Rising-Star Program (No.21QA1404400). We thank all the anony-
mous reviewers for their valuable feedback. Corresponding author
is Chao Li from Shanghai Jiao Tong University.

REFERENCES
[1] [n.d.]. CUDA C++ programming guide. http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html
[2] [n.d.]. GCN architecture. https://www.amd.com/en/technologies/gcn
[3] [n.d.]. List of Nvidia Graphics Processing Units. https://en.wikipedia.org/wiki/

List_of_Nvidia_graphics_processing_units
[4] [n.d.]. NVIDIA Pascal GPU architecture. https://www.nvidia.com/en-us/data-

center/pascal-gpu-architecture/
[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron. 2009.

Rodinia: a benchmark suite for heterogeneous computing. In 2009 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). 44–54.

[6] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R. Gao. 2010. Dy-
namic load balancing on single- and multi-GPU systems. In 2010 IEEE Inter-
national Symposium on Parallel Distributed Processing (IPDPS). 1–12. https:
//doi.org/10.1109/IPDPS.2010.5470413

[7] Steven W. D. Chien, Ivy B. Peng, and Stefano Markidis. 2019. Performance eval-
uation of advanced features in CUDA unified memory. 2019 IEEE/ACM Work-
shop on Memory Centric High Performance Computing (MCHPC) (2019), 50–57.
https://doi.org/10.1109/MCHPC49590.2019.00014 arXiv:1910.09598

[8] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. 2019. Interplay
between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified
Virtual Memory. In Proceedings of the 46th International Symposium on Computer
Architecture (Phoenix Arizona). ACM, 224–235. https://doi.org/10.1145/3307650.
3322224

[9] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. 2020. Adaptive
page migration for irregular data-intensive applications under GPU memory
oversubscription. In 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 451–461. https://doi.org/10.1109/IPDPS47924.2020.00054

[10] Yongbin Gu, Wenxuan Wu, Yunfan Li, and Lizhong Chen. 2020. UVMBench:
A Comprehensive Benchmark Suite for Researching Unified Virtual Memory in
GPUs. arXiv preprint arXiv:2007.09822 (2020).

[11] Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad Hadidi, and Hyesoon Kim.
2020. Batch-aware unified memory management in GPUs for irregular work-
loads. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne Switzer-
land). ACM, 1357–1370. https://doi.org/10.1145/3373376.3378529

[12] Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin Herbordt.
2014. An investigation of unified memory access performance in cuda. In 2014
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–6.

[13] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker. 2020. Evalu-
ating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDi-
rect. IEEE Transactions on Parallel and Distributed Systems 31, 1 (2020), 94–110.
https://doi.org/10.1109/TPDS.2019.2928289

[14] Chen Li, Rachata Ausavarungnirun, Christopher J. Rossbach, Youtao Zhang,
Onur Mutlu, Yang Guo, and Jun Yang. 2019. A framework for memory oversub-
scriptionmanagement in graphics processing units. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (New York, NY, USA) (ASPLOS ’19). Association
for Computing Machinery, 49–63. https://doi.org/10.1145/3297858.3304044

[15] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D. Owens. 2017.
Multi-GPU Graph Analytics. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 479–490. https://doi.org/10.1109/IPDPS.2017.117

[16] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark suite.
URL: http://www.cs.ucla.edu/pouchet/software/polybench 437 (2012).

[17] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr: trans-
forming irregular Graphs for GPU-Friendly Graph Processing. ACM SIGPLAN

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.amd.com/en/technologies/gcn
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/
https://doi.org/10.1109/IPDPS.2010.5470413
https://doi.org/10.1109/IPDPS.2010.5470413
https://doi.org/10.1109/MCHPC49590.2019.00014
https://arxiv.org/abs/1910.09598
https://doi.org/10.1145/3307650.3322224
https://doi.org/10.1145/3307650.3322224
https://doi.org/10.1109/IPDPS47924.2020.00054
https://doi.org/10.1145/3373376.3378529
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1145/3297858.3304044
https://doi.org/10.1109/IPDPS.2017.117

Notices 53, 2 (2018), 622–636. https://doi.org/10.1145/3173162.3173180
[18] Jeff A. Stuart and John D. Owens. 2011. Multi-GPU MapReduce on GPU Clus-

ters. In 2011 IEEE International Parallel Distributed Processing Symposium (IPDPS).
1068–1079. https://doi.org/10.1109/IPDPS.2011.102

[19] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, Harri-
son Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael Ubal, José L. Abel-
lán, John Kim, Ajay Joshi, and David Kaeli. 2019. MGPUSim: Enabling Multi-
GPU Performance Modeling and Optimization. In Proceedings of the 46th In-
ternational Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19).
Association for Computing Machinery, New York, NY, USA, 197–209. https:
//doi.org/10.1145/3307650.3322230

[20] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. 2018. Superneurons: Dynamic GPU Memory Man-
agement for Training Deep Neural Networks. SIGPLAN Not. 53, 1 (2018), 41–53.
https://doi.org/10.1145/3200691.3178491

[21] PengyuWang, Jing Wang, Chao Li, JianzongWang, Haojin Zhu, and Minyi Guo.
2021. Grus: TowardUnified-memory-efficient High-performanceGraph Process-
ing on GPU. ACM Transactions on Architecture and Code Optimization (TACO)

18, 2 (2021), 1–25.
[22] PengyuWang, Lu Zhang, Chao Li, andMinyi Guo. 2019. Excavating the potential

of GPU for accelerating graph traversal. In 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 221–230.

[23] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D. Owens. 2015. Gunrock: a High-Performance Graph Processing Library
on the GPU. Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2015-Janua (2015), 265–266. https://
doi.org/10.1145/2688500.2688538 arXiv:1501.05387v6

[24] Hailu Xu, Murali Emani, Pei-Hung Lin, Liting Hu, and Chunhua Liao. 2019. Ma-
chine learning guided optimal use of GPU unified memory. In 2019 IEEE/ACM
Workshop on Memory Centric High Performance Computing (MCHPC). IEEE, 64–
70. https://doi.org/10.1109/MCHPC49590.2019.00016

[25] Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark Stephenson, and
StephenW. Keckler. 2016. Towards High Performance Paged Memory for GPUs.
In 2016 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA). IEEE, 345–357. https://doi.org/10.1109/HPCA.2016.7446077

https://doi.org/10.1145/3173162.3173180
https://doi.org/10.1109/IPDPS.2011.102
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1145/3200691.3178491
https://doi.org/10.1145/2688500.2688538
https://doi.org/10.1145/2688500.2688538
https://arxiv.org/abs/1501.05387v6
https://doi.org/10.1109/MCHPC49590.2019.00016
https://doi.org/10.1109/HPCA.2016.7446077

	Abstract
	1 Introduction
	2 Related Work
	2.1 UVM Analysis
	2.2 UVM Management
	2.3 Summary of Prior Arts

	3 Evaluation Methodology
	3.1 Design Considerations
	3.2 Benchmark Application
	3.3 Platform and Profiling Tools
	3.4 Memory Oversubscription Emulation

	4 Results And Discussion
	4.1 Sensitivity to Oversubscription
	4.2 Pattern of Page Fault under Oversubscription
	4.3 Impact of Prefetching and UVM Hints
	4.4 Multi-GPU Support

	5 Conclusion and Future Work
	Acknowledgments
	References

