
	

	

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
VEE’13, March 16–17, 2013, Houston, Texas, USA.
Copyright © 2013 ACM 978-1-4503-1266-0/13/03...$15.00.

Optimizing Virtual Machine Live Storage Migration
in Heterogeneous Storage Environment

Ruijin Zhou

Intelligent Design of Efficient
Architectures Laboratory

University of Florida
USA

zhourj@ufl.edu

Fang Liu
State Key Laboratory of High

Performance Computing
National University of Defense

Technology
China

liufang@nudt.edu.cn

Chao Li
Intelligent Design of Efficient

Architectures Laboratory
University of Florida

USA
chaol@ufl.edu

Tao Li
Intelligent Design of Efficient

Architectures Laboratory
University of Florida

USA
taoli@ece.ufl.edu

Abstract
Virtual machine (VM) live storage migration techniques
significantly increase the mobility and manageability of virtual
machines in the era of cloud computing. On the other hand, as
solid state drives (SSDs) become increasingly popular in data
centers, VM live storage migration will inevitably encounter
heterogeneous storage environments. Nevertheless, conventional
migration mechanisms do not consider the speed discrepancy and
SSD’s wear-out issue, which not only causes significant
performance degradation but also shortens SSD’s lifetime. This
paper, for the first time, addresses the efficiency of VM live
storage migration in heterogeneous storage environments from a
multi-dimensional perspective, i.e., user experience, device
wearing, and manageability. We derive a flexible metric (migration
cost), which captures various design preference. Based on that, we
propose and prototype three new storage migration strategies,
namely: 1) Low Redundancy (LR), which generates the least
amount of redundant writes; 2) Source-based Low Redundancy
(SLR), which keeps the balance between IO performance and write
redundancy; and 3) Asynchronous IO Mirroring, which seeks the
highest IO performance. The evaluation of our prototyped system
shows that our techniques outperform existing live storage
migration by a significant margin. Furthermore, by adaptively
mixing our proposed schemes, the cost of massive VM live storage
migration can be even lower than that of only using the best of
individual mechanism.

Categories and Subject Descriptors D.4.8 [Operating Systems]:
Performance; C.4 [Computer System Organization]: Performance
of Systems

General Terms Management, Performance, Design

Keywords Live VM Storage Migration, Solid State Drive,
Virtualization

1. Introduction
Nowadays, virtualization technology has been widely adopted as
the base infrastructure for cloud computing. Major cloud providers,
such as Amazon (EC2) [1] and Microsoft (Azure) [2], are selling
their computing resources in the form of virtual machines (VMs).
Load balancing has become essential for effectively managing
large volumes of VMs in cloud computing environment. The
cornerstone for moving virtual machines on the fly is the VM live
migration, which only transfers CPU and memory states of VMs
from one host to another. To allow the movement of persistent
storage with VMs, several live storage migration techniques have
been proposed, including Dirty Block Tracking (DBT) and IO
Mirroring [10][11][12]. VM live storage migration significantly
increases the mobility and manageability of virtual machines
during disaster recovery, storage maintenance, and storage
upgrade.

Meanwhile, Flash-based solid state drives (SSDs) have become
one of the most popular storage media due to their high
performance, silent operations and shock resistance [20, 21]. With
the decrease in price, they become more affordable to be used in
data centers. Currently, many leading Internet service provision
companies, such as Facebook, Amazon and Dropbox, are starting
to integrate SSDs into their cloud storage systems [3][4][5]. The
storage media for data centers becomes more diverse as both SSDs
and HDDs are being used to support cloud storage. Consequently,
storage management, especially VM live storage migration,
becomes more complex and challenging.

Although SSDs deliver higher IO performance, their limited
lifetime is an inevitable issue. Our analysis shows that existing VM
live storage migration schemes do not fully exploit the high
performance characteristics of SSDs but aggravate the wear out
problem. Even worse, during massive storage migrations, SSDs
will be worn out significantly due to large volume of write
operations. In this paper, we address the efficiency/cost of VM live
storage migration (Migration Cost, MC) in heterogeneous storage
environments from a multi-dimensional perspective, which
incorporates user experience (IO penalty), cluster management
(migration time) and device usage (degree of wear). The weights
on IO penalty and SSD lifetime are also considered to reflect
different design preferences. We propose and prototype three VM

73

	

	 	

live storage migration mechanisms to minimize the migration cost,
namely: 1) Low Redundancy (LR), which generates near zero
redundant writes; 2) Source-based Low Redundancy (SLR), which
aims to leverage faster source disk while still maintaining low
redundancy merit; 3) Asynchronous IO Mirroring (AIO), which
targets high IO performance. The empirical evaluation of our
prototyped systems shows that they yield stable and short disk
downtimes (around 200ms). Although the cost varies with different
weights and storage media, on average, the migration costs for LR,
SLR and AIO are 51%, 22% and 21% lower than those for
traditional methods (i.e. DBT and IO Mirroring). Furthermore, by
adaptively invoking our schemes during massive storage
migration, the cost can be further reduced by 48% compared to
using the best individual mechanism.

The rest of this paper is organized as follows: Sections 2 and 3
provide background and motivation for this work. Section 4
describes the evaluation metric. Section 5 discusses our proposed
designs. Sections 6 and 7 present our prototypes and experimental
results. Section 8 discusses related work and Section 9 concludes
the paper.

2. Background

2.1. VM Live Storage Migration Techniques
Live storage migration for virtual machines is defined as the
migration of VM disk images without service interruption to the
running workload. The two mainstream techniques are dirty block
tracking (DBT) and IO Mirroring. The DBT technique, which is
widely adopted by many VM vendors (e.g. Xen and VMware
ESX), is a well-known mechanism that uses bitmap to track write
requests while the VM image is being copied. Once the entire
image is copied to the destination, a merge process is initiated to
patch all the dirty blocks (i.e. data blocks that are recorded in
bitmap) from the original image to the new image. In order to
prevent further write requests, the VM is paused until all the dirty
blocks are patched to the new disk image. To mitigate downtime
introduced by the merge process, incremental DBT, which keeps
the VM running while iteratively patching dirty blocks to the new
image, is proposed and used in several projects [11][12][13][14]. If
the number of dirty blocks is stable for several iterations, the VM
is suspended and the remaining dirty blocks are copied to the
destination. Nevertheless, incremental DBT also has disadvantage:
in case that the number of dirty blocks are not converged due to
intensive write requests, the migration time and even the downtime
can be significantly long. Note that in this paper, we refer
incremental DBT as DBT.

To address the issue of long migration time and downtime,
VMware proposed IO Mirroring technique [10] to eliminate the
iteratively merge process. With IO Mirroring, all the write requests
to the data blocks that have been copied will be duplicated and
issued to both source and destination disks. The two write requests
are synchronized and then the write completion acknowledgement
is asserted (synchronous write). Write requests to the data blocks
that have not yet been copied will only be issued to the source disk

while the writes to the data blocks that are currently being copied
will be buffered and later issued to both source and destination
when the being copied phase completes. By doing so, the data
blocks will always be synchronized during the migration process.
Note that once the process of copying VM disk image completes,
merging is not needed, which leads to shorter migration time and
lower downtime. However, IO Mirroring also raises some
concerns: 1) workload IO performance is limited by the slower
disk due to the synchronized write requests; 2) since the disk
bandwidth is consumed by the duplicated IO requests, the progress
of copying the VM image will be slowed down.

2.2. Storage Migration in Heterogeneous Storage
Environments
Historically, mechanical hard disk drives (HDDs) are used as the
primary storage media due to their large capacity and high stability
in the long run. Recently, solid-state drives (SSDs), which have
high IO performance [20], are emerging as promising storage
media. The IOPS (IO per second) for VM running on SSDs in our
experiments is 3.3X higher than that on HDDs. However, SSDs
also have their limitations such as low capacity, high price tag, and
limited lifetime. The more the writes and erases are performed, the
shorter the remaining SSD lifetime will be [7, 22]. In the
commercial market, cloud storage providers, such as Morphlabs,
Storm on Demand, CloudSigma and CleverKite, are selling the
SSD powered cloud [4]. On the other hand, device manufacturers,
such as Intel and Samsung, are researching on reliable SSD for
data centers [6, 27]. Thus, from the perspective of both seller and
manufacturer, SSDs have been accredited as an indispensable
component for cloud and data center storage. A data center will be
equipped with several disk arrays. Some of the disk arrays are
SSDs while the others are HDDs. Those disk arrays are connected
to servers via Fibre Channel [8, 9, 26]. Our work focuses on the
storage migration between different disk arrays.

VM live storage migration will be more sophisticated and
challenging on heterogeneous storage environments. For instance,
if a user requests more disk space, his/her VM image may need to
be migrated from small capacity disk (SSD) to large capacity disk
(HDD). On the other hand, if the user requests to upgrade IO
performance, his/her VM image may need to be migrated from
slow disk (HDD) to fast disk (SSD). Since VM live storage
migration will inevitably be performed on various types of storage
media, it should consider the characteristics of different storage
devices, such as the high bandwidth, limited lifetime for SSD and
the low access speed, large capacity for HDDs. Nevertheless,
existing live storage migration schemes do not take the underlying
storage media into consideration, which manifests several
disadvantages, such as: 1) not fully exploiting the high
performance of SSDs, 2) having longer migration time since the
redundant write requests occupy a significant fraction of IO
bandwidth, 3) quickly wearing down SSDs and reducing the
remaining SSD lifetime. Even worse, large volume of redundant
IO operations, which are generated during massive storage

74

	

	 	

migration, will not only saturate the disk bandwidth but also
severely affect the SSD’s lifetime.

3. Performance Characterization
This section analyzes the behaviors of existing live storage
migration schemes (e.g. DBT and IO Mirroring) in heterogeneous
storage environments.

3.1. A Characterization of the Two Basic Processes for VM
Live Storage Migration
In general, VM live storage migration involves two processes,
namely 1) copy process that moves the VM image and 2) VM IO
request handling process that ensures consistency between the two
disk images. During storage migration, processes 1) and 2)
compete for IO bandwidth, which largely affects the performance.
Table 1 shows the performance of copying a 5GB image of an idle
VM and Table 2 shows the measured IOPS of the same VM that is
running but is not being migrated. As expected, the SSD
effectively speeds up the copy process and the VM on SSDs
achieves much higher IOPS than that on HDDs. Nevertheless, the
resource competition between image copy and VM IO requests
still exists even when SSDs are involved. Note that the VM IO
requests can be issued to source or destination during the
migration. The performance characteristics on copying VM image
with running workloads are shown in Figures 1 (a) and (b). SSDs
have faster access speed and better capability of handling intensive
IO requests. In the case where both a SSD and a HDD are
involved, the IOPS will be higher and the copy time will be shorter
if the VM IO requests are directed to the SSD. In the case where
both source and destination are SSDs, the copy time and IOPS will
be similar no matter where the VM IO requests are issued. In the
case where both source and destination are HDDs, higher IOPS
can be achieved at the cost of longer migration time.

Table 1. The time to copy a 5GB idle VM image
SSD to SSD SSD to HDD HDD to SSD HDD to HDD

30s 59s 55s 81s

Table 2. The IOPS of running VM
 75% Read 50% Read 25% Read

VM on SSD 5500 5900 6495
VM on HDD 2230 1744 1445

(a) IOPS of VM (b) Time to copy VM image

 Figure 1. Copying VM image while workloads are running inside

In the case that a VM is migrated from a HDD to a SSD and all

the IO requests from VM are issued to the source disk (HDD) as in

DBT, the performance for both copy process and IO requests will
be significantly low, as shown in Figure 1. The reason is that the
reads from the copy process and the IO requests from VM will
saturate the bandwidth of the HDD. In the case that a VM is
migrated from a SSD to a HDD, issuing all the VM IO requests to
the source disk (SSD) will yield high IOPS and short copy time
because the SSD has better capability for handling large volume of
IO accesses. However, simply filtering all the IO requests to the
SSD will exacerbate the degree of wearing for the SSD, which
shortens the remaining SSD lifetime. Thus, blindly using SSD is
also not a wise decision.

To summarize, when VM storage migration occurs in the
storage environment that involves SSDs, redirecting the workload
IO requests to SSDs will benefit the migration time and IOPS but
the SSDs will be worn out quickly. When a VM is migrated
between HDDs, there is trade off between migration time and
IOPS.

3.2. A Characterization of Existing Live Storage
Migration Schemes
We use Xen as our virtual machine monitor and implement the two
existing storage migration techniques in Xen blktap2 modules
(details in Section 6).

There are three well-known metrics to measure the
performance of live storage migration: 1) downtime, 2) migration
time, and 3) IO penalty. Downtime measures the time it takes to
pause the VM and switchover between source and destination
disks. Migration time represents the overall time it takes to
accomplish the storage migration operation, which should be
minimized to guarantee smooth and quick storage maintenance. IO
penalty shows the performance degradation the user will
experience during the VM live storage migration.

As can be seen in Table 3, DBT tends to have longer downtime
than IO Mirroring because DBT needs to patch the last copy of
dirty blocks during the downtime period while this is not necessary
for IO Mirroring. Besides, when varying the underlying storage
media, the downtime of DBT is less stable than that of IO
Mirroring. Worse, when the destination is slower than the source
(e.g. from SSD to HDD), DBT takes long time or even fails to
complete since the last iteration of the merge process writes dirty
data blocks to the slower disk.

Table 3. The Downtime of Migrating 30GB VM Image while

Running IOmeter with 50% Reads / 50% Writes

Migration time for existing schemes is shown in Figure 2. We
also use two emulated scenarios for comparison purposes. Copying
disk image while VM IO requests are only issued to the source is
denoted as Emulated_S and copying disk image while VM IO
requests are only issued to the destination is referred as
Emulated_D. In terms of migration time, the biggest difference
between IO Mirroring and DBT is the iterative merge process. As

0"

1000"

2000"

3000"

4000"

5000"

SSD"to"SSD" SSD"to"HDD"HDD"to"SSD"HDD"to"HDD"

IO
PS
"

0"

50"

100"

150"

200"

250"

SSD"to"SSD" SSD"to"HDD" HDD"to"SSD"HDD"to"HDD"

Co
py
"T
im

e"
(s
)"

75%"read"access"on"source"
50%"read"access"on"source"
25%"read"access"on"source"
75%"read"access"on"des=na=on"
50%"read"access"on"des=na=on"
25%"read"access"on"des=na=on"

SSD to SSD SSD to HDD HDD to SSD HDD to HDD
DBT 232ms 4000ms 266ms 900ms

IO Mirroring 198ms 249ms 298ms 199ms

75

	

	 	

Figure 2. The migration time for a 5GB VM
image under heterogeneous storage
environment (Iometer is running inside the
VM with 50% read, 50% write)

Figure 3. The IOPS for migrating VM images
under heterogeneous storage environment
(IOmeter is used to measure IOPS)

Figure 4.	 The total size of data that
written to device when migrating 30GB
VM from SSD to SSD (IOzone is set to
perform write and rewrite operation)

can be seen in Figure 2, DBT exhibits longer migration time than
IO Mirroring because it needs to iteratively merge dirty blocks to
destination after copying the image. The slower the destination
storage media are, the longer the merge process will be. Both
migration schemes manifest longer migration time compared to the
better of the two emulated scenarios.

When using IO Mirroring scheme, the IOPS inside the VM
highly depends on the slowest disk due to synchronous write. On
the other hand, the IOPS inside the VM when using DBT scheme
only depends on the source disk. As can be seen from Figure 3,
when the source disk is a SSD, DBT has advantage over IO
Mirroring in terms of IO performance. If the source is a HDD, both
DBT and IO Mirroring yield similar IOPS. However, neither of
them reaches the performance of the two emulated scenarios
(indicated by the dash-cross or solid-square lines, whichever is
higher). In other words, conventional schemes do not fully exploit
the high performance of SSDs.

Since introducing a large volume of write and erase cycles will
unavoidably diminish the lifetime of SSDs [7], we add another
measurement: the amount of data that is written to SSD, in our
characterization. If only the copying of a VM disk image is
considered (e.g. experiments shown in Figure 1), then the total
amount of data written to SSD is determined by the workload IO
traffic plus the VM image size. The live storage migration schemes
introduce overhead and redundant data writes, further wearing off
SSDs and shortening the SSD’s lifetime.

Figure 4 shows the amount of data written to disk when
migrating VM images from SSDs to SSDs. As can be seen, both
mechanisms generate extra amount of data writes compared to
simply copying the disk image of the running VM (dashed line).
The heavier the workload’s IO traffic is, the higher the extra
volume of data write (the amount that exceeds the dashed line) will
be. For DBT, the redundant data writes come from the merge
process; for IO Mirroring, the redundant data writes come from the
duplicated writes to data blocks that have been copied. DBT tends
to have more redundant data writes than IO Mirroring.

To sum up, a good live storage migration technique in
heterogeneous storage environments should have negligible
downtime, short migration time, low IO penalty, and less

redundant writes to the SSD. The major issue with contemporary
methods is that they do not take the underlying device
characteristics into consideration. We believe that once the
underlying storage becomes heterogeneous, new methods for live
storage migration are needed and our analysis shows that there is
still plenty of room for improvement in terms of migration time, IO
penalty, and redundant writes. In this paper, we are motivated to
explore better VM live storage migration schemes.

4. Metric for Live Storage Migration in
Heterogeneous Environments
VM live storage migration behavior has impacts on three aspects:
1) VM user experience (IO penalty and downtime), 2) storage
maintenance (migration time), and 3) SSD lifetime (extra amount
of data writes). Thus, in this section, we propose a more
comprehensive metric, which takes all three aspects into
consideration.

For the VM user experience, the existing metric, IO penalty,
can indicate the performance degradation the user will experience.
Note that the value of traditional IO penalty may be negative when
destination disk is faster than source disk. In order to avoid this
(i.e. negative penalty), we define I/O penalty as:

𝜆!" =
!"#$!" !"#$%!"#$%&!!" !"#$%#&'()" !"#$%& !"#$%&"'(

!"#$!" !"#$%#&'()"
 (1)

In equation (1), Best IO Performance means the best IO

performance achieved from available storage media. For example,
if VM is migrated from HDD to SSD, the Best IO Performance is
the performance we can get from SSD. Ideally, when workloads
always run on a faster disk, λ!" will be close to 0. From the user
perspective, the less the IO penalty is, the better the storage
migration scheme will be. As a “live” storage migration, the disk
downtime should be close to 0. Otherwise, workloads inside the
VM may crash due to intolerably long interrupts. We believe that
downtime should be used as a separate metric to quantify whether
a storage migration design is “live” or not.

From the perspective of the data center administrator,
migration time means how long he/she should wait until the next

0"

100"

200"

300"

400"

500"

SSD"to"SSD" SSD"to"HDD"HDD"to"SSD"HDD"to"HDD"

M
ig
ra
2o

n"
Ti
m
e"
(s
)"

DBT"
IO"Mirroring"
Emulated_S"
Emulated_D"

0"
500"
1000"
1500"
2000"
2500"
3000"
3500"
4000"
4500"

SSD"to"SSD" SSD"to"HDD"HDD"to"SSD"HDD"to"HDD"

IO
PS
"

DBT"
IO"Mirroring"
Emulated_S"
Emulated_D"

20#
30#
40#
50#
60#
70#
80#
90#

2G# 4G# 8G# 12G# 16G#Si
ze
#o
f#D

at
a#
W
ri8

en
#to

#D
ev
ic
e#

(G
B)
#

iozone#Input#Size#

DBT#
IO#Mirroring##
VM#Image#Size#
VM#Image#Size#+#Workload#IO#Size#

76

	

	 	

management can be performed. Longer migration time means
higher possibility to fail the scheduled maintenance plan. Ideally,
migration time should be close to the time it takes to simply copy
the entire VM disk image without interference. We define the
migration time factor λ!"#$%&"'(!"#$ as:

𝜆!!"#$%!&' !"#$ =
𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 𝑖𝑚𝑎𝑔𝑒 𝑐𝑜𝑝𝑦 𝑡𝑖𝑚𝑒

 (2)

Since storage migration will inevitably introduce IO

competition and runtime overhead, migration time will always be
longer than image copy time. In other words, λ!"#$%&"'(!"#$ is
always greater than 1. The smaller the λ!"#$%&"'(!"#$ is, the better
the storage migration scheme is for the data center manager.

From the device point of view, the amount of data writes can
indicate the degree of wear brought by live storage migration.
Besides, the larger the amount of data writes is, the more quickly
the SSD will be worn out, which leads to shorter remaining
lifetime for the SSD. Thus, we define a wear-out factor λ!"#$!"# to
indicate the SSD lifetime penalty per time unit during storage
migration. There is one caveat: HDD does not have the wear out
issue. Thus, λ!"#$!"# should equal to 0 when all the write requests
are issued to HDD.

𝜆!"#$!"# =
!"#" !"#$$%& !" !!" !"# !"!" !"#$

!"#$%"&' !"#" !"#$%& !"# !"#$!"#$
 (3)

In equation (3), the denominator is the amount of data writes

per time unit generated by the workloads while the nominator is
the amount of data (generated by workload) written to SSD per
time unit. For normal executing VMs, λ!"#$!"# equals to 1 if the
VM is running on a SSD, 0 if the VM is running on a HDD. Any
redundant writes, such as merge process in DBT and write request
duplication in IO Mirroring, will make λ!"#$!"# greater. The
smaller the λ!"#$!"# is, the less severely the SSD wears off during
live storage migration.

Note that migration time indicates not only how long the user
will suffer from the I/O penalty but also how long the device will
be worn. In other words, the longer the migration time is, the
higher overall penalty (𝜆!" ∗ 𝜆!"#$%&"'(!"#$) the user will observe
and the higher overall degree of wearing (𝜆!"#$!"# ∗ 𝜆!"#$%&"'(!"#$)
the SSD could receive. Therefore, we define the migration cost
(MC) for VM live storage migration as: 	

𝑀𝐶 = 𝛾 ∗ 𝜆!"#$!"# ∗ 𝜆!"#$%&"'(!"#$
 + 1 − 𝛾 ∗ 𝜆!" ∗ 𝜆!"#$%&"'(!"#$
 = 𝜆!"#$%&"'(!"#$ ∗ 𝛾 ∗ 𝜆!"#$!"# + 1 − 𝛾 ∗ 𝜆!" (4)

where γ defines the weight on the lifetime of SSD while
1 − γ is the weight on the IO performance (0 < 𝛾 < 1).
γ > 50% means wear out issue has higher priority while γ < 50%
means IO performance is desired more.

Figure 5. MC for current storage
migration schemes when γ = 0.5

Figure 6 (a). MC when
migrating a VM from SSD to
SSD

Figure 6 (b). MC when
migrating a VM from SSD to
HDD (the value of DBT is too high
to be shown)

Figure 6 (c). MC when
migrating a VM from HDD to
SSD

Assuming neutral preference on wear-out issue and IO
performance (γ = 0.5), Figure 5 shows the migration cost for
existing storage migration schemes. As can be seen, no matter
what type of underlying storage media are used, both DBT and IO
Mirroring have extra migration cost compared to the two emulated
scenarios (Emulated_S and Emulated_D). Further zooming in on
each case, Figures 6 (a), (b) and (c) show how migration cost
varies when the weight γ changes. In the case where both source
and destination are SSDs, the larger the weight γ on λ!"#$!"# is,
the higher the migration cost will be. In this situation, no matter
where the VM IO requests are issued, the total writes to the SSD
could not be reduced. When the source is SSD and the destination
is HDD as shown in Figure 6 (b), the migration cost for DBT is
way higher than that for IO Mirroring due to the long migration
time (ranging from 11 to 21). Furthermore, since the source disk is
SSD, running a VM on source (Emulated_S) will gain higher IO
performance (lower λ!") than on the destination (Emulated_D),
which leads to lower migration cost if the user cares more about
the IO performance (γ → 0). In contrast, if one prefers to extend
the SSD lifetime (γ → 1), Emulated_D will offer lower migration
cost since λ!"#$!"# is 0 when all the IO requests are issued to the
destination (HDD). In the case where a VM is migrated from HDD
to SSD as shown in Figure 6 (c), although Emulated_D yields
higher IO performance, Emulated_S will provide lower migration
cost if longer SSD lifetime is preferred. Despite the value of γ,
current storage migration schemes always yield higher migration
cost than simply copying the running VM (Emulated_S or
Emulated_D). Thus, we believe the migration cost can be reduced
by adaptively balancing the three factors: λ!"#$!"#, λ!"#$%&"'(!"#$
and λ!".

0"
0.5"
1"

1.5"
2"

2.5"
3"

3.5"

SSD"to"
SSD"

SSD"to"
HDD"

HDD"to"
SSD"

HDD"to"
HDD"

M
C"

DBT"
IO"Mirroring"
Emulated_S"
Emulated_D"

0"
0.5"
1"

1.5"
2"

2.5"
3"

3.5"

0" 0.5" 1"

M
C"

γ""

DBT"
IO"Mirroring"
Emulated_S"
Emulated_D"

0"

0.5"

1"

1.5"

0" 0.2" 0.4" 0.6" 0.8" 1"

M
C"

γ""

DBT" IO"Mirroring"

Emulated_S" Emulated_D"

0"
0.5"
1"

1.5"
2"

2.5"
3"

3.5"

0" 0.5" 1"

M
C"

γ""

DBT" IO"Mirroring"

Emulated_S" Emulated_D"

77

	

	 	

5. VM Live Storage Migration Schemes under
Heterogeneous Environments

	

5.1. Low Redundancy Live Storage Migration Mechanism
(LR)
Since a VM will eventually run on the destination disk, we propose
to issue all the write requests to the destination during the entire
storage migration process, as shown in Figure 7. By doing so, the
updated data will appear on the destination disk during the copy
process and the read requests should be aware of which storage has
the latest value. To implement this design, we leverage the bitmap
from DBT and partition the disk image into 2 regions: copied
region, whose data has already been copied to destination and to-
be-copied region, whose data is going to be copied in the future.
All the writes will be issued to the destination directly while the
writes to the to-be-copied region also need to be recorded in the
bitmap (“set” in the Figure 7). The reads to the copied area will
fetch data from the destination while reads to the to-be-copied area
need to check the bitmap first. If the data block is recorded in the
bitmap, reads will be issued to the destination. However, if not
recorded in the bitmap, data blocks will be read from the source.
On the other hand, the copy process could skip the data blocks that
are recorded in the bitmap. There is one caveat: requests to the data
blocks, which are now being copied by copy process, will be
deferred and put into a queue. They will be handled the same way
as the requests to the copied area after the data blocks are released
by the copy process.

The advantages of this design are: 1) there is zero redundant
writes because it eliminates the merge process in DBT and
duplicated writes in IO Mirroring; 2) copy process does not need to
copy the entire disk image because the data blocks that have been
written to the destination by VM write requests can be skipped; 3)
the resource competition on disk is mitigated due to smaller
volume of writes, which leads to higher IO performance and faster
copy process. The benefits of this design become more evident
when the destination disk (SSD) is faster than the source (HDD):
when the storage migration begins, all the write requests are issued
to faster disk (destination), which results in higher IO performance.
In addition, the competition between copy process and VM IO
requests is handled by SSD rather than HDD, which further
improves the IO performance and migration time.

Note that implementing LR scheme introduces additional
overhead (e.g. intercepting all IO requests, skipping data blocks in
copy process, data recovery upon failure). With our
implementation, the total cost of filtering IO requests and
setting/checking the bitmap is less than 2us. In terms of the data
recovery, our scheme forks a new process to compress and log the
updates to the system hard drives (disk for OS). Upon a failure, the
source disk image is recovered using the logged data. Since the
logging process is parallel to the migration process and system
hard drive is normally separated from data hard drives, the
performance impact on our storage migration scheme is negligible.

5.2. Alternative Designs
LR scheme essentially runs the VM on the destination at the
beginning of storage migration. If the destination has a slower hard
drive (HDD) than the source (SSD), all the disk IO burden will be
laid on the slow hard drives. Therefore, in this section, we propose
two alternative designs to further exploit the IO performance from
faster disk.

5.2.1. Source-based, Low Redundancy Storage Migration
Mechanism (SLR)
In the situation where the destination disk is slower than the
source, issuing the VM IO requests to the source can achieve better
IO performance. Thus, based on LR design, we further propose
source-based, low redundancy storage migration mechanism
(SLR), as shown in Figure 8. We flip over the LR design by
issuing as many requests as possible to the source disk. Similar to
the LR design, all the IO requests are intercepted and the VM disk
image is divided into 2 regions: copied and to-be-copied. The IO
requests that are issued to the to-be-copied region will be issued to
the source storage (faster disk). For those write requests that are
issued to the copied area, SLR issues them to the destination and
records them in the bitmap since doing so keeps the destination
image up-to-date without invoking the merge process. All the reads
falling in the copied area should first check the bitmap to find out
whether the requested data has already been updated by writes or
not. If so, the latest data is on the destination. Otherwise, the data
will be fetched from the faster source disk (SSD). By doing so,
most of the IO requests are now issued to the faster source disk.

Compared with traditional storage migration schemes, SLR has
the edge on low redundant writes. Similar to LR, there is no merge
process or duplicated write requests. Note that in SLR, most IO
requests are issued to the source disk, which will yield better IO
performance than LR. In addition, the copy process does not need
to be interrupted every time to check the bitmap, which results in
better migration time.

The implementation overhead of SLR is less than that of LR
due to the simpler copy process. Also, the recovery process is both
simpler and easier since we only need to log the write requests
issued to the destination, which is significantly less than the LR.
However, SLR has its limitation: not all the IO requests are issued
to the (fast) source disk. Write requests and fraction of read
requests to the copied region are issued to the (slow) destination.
Thus, in the scenario that the workload keeps updating the data
blocks in the copied area, the IO performance of SLR will become
similar to running the VM on the slow disk.

5.2.2. Asynchronous IO Mirroring Storage Migration
Mechanism (AIO)
In this section, we propose Asynchronous IO Mirroring (shown in
Figure 9) as an alterative version of IO Mirroring design, to fully
leverage the faster disk (SSD) and achieve higher IO performance.

78

	

	 	

Figure 7. Low redundancy storage
migration (LR)

Figure 8. Source-based, low redundancy
storage migration (SLR)

Figure 9. Asynchronous IO mirroring storage
migration (AIO)

In the original IO Mirroring mechanism, the write requests are

duplicated in the copied region and issued to both the source and
the destination. Due to the synchronization requirement, the slower
storage determines IO performance. With our AIO design, IO
request is marked as completion and returned to the VM as soon as
one of the duplicated IO operations is accomplished. A counter is
used to track the number of unfinished IO operations. The counter
will be incremented upon writes and decremented when both
requests are completed. The requests to the faster disk will first
check the counter to see how many requests are still pending. If the
counter is larger than a threshold (T), the write request will be
delayed by sleeping for a certain period. The pending write
requests can be completed during that period so that the counter
becomes smaller than the threshold (T). In real execution, delay
will not occur frequently because the pending write requests can be
completed during the CPU computation, memory access and disk
reads. In the worst case (workload continuously perform writes),
delay will keep occurring, which makes the overall performance as
low as running on the slower disk.

The advantages of AIO are: 1) all the IO requests will be issued
and handled by the faster disk (SSD) under regular IO access
patterns, which yields high IO performance; and 2) Data recovery
is not needed since the source disk always has up-to-date data upon
failure.

Compared to LR and SLR, AIO duplicates IO requests and
generates the same amount of redundant writes to the storage
devices as IO Mirroring does. The disk resource competition
between the copy process and IO requests becomes more intensive,
which may lead to longer migration time.

5.3. An Analysis of Migration Cost of the Proposed
Design and Further Extension to Massive Storage Migration
The migration cost (MC) is always expected to be as low as
possible. But, which scheme should be used highly depends on the
weight γ in equation (4). LR design with lowest redundant writes
on device will benefit the lifetime of SSDs, which will result in
lower migration cost (MC) for a user who cares more about the
lifetime (γ → 1). SLR design takes advantage of the higher IO
performance of the source disk while still maintaining the low IO
pressure on the device. Those who care about both the IO

performance and lifetime of SSDs will tend to use SLR when
migrating from SSDs to HDDs. AIO, which maximally exploits
high IO performance from the faster disk, is preferred when high
IO performance has top priority (γ → 0).

During the entire life cycle of data center, the weight γ could
vary dramatically. When the user demands high IO performance
for his/her VM, γ will be close to 0 to guarantee low IO penalty.
On the other hand, when SSD is worn out after a period, the
lifetime would be the most desired, which will cause γ → 1. Once
γ is set, a certain migration method (LR, SLR or AIO) could be
chosen based on the MC in equation (4).

Upon storage upgrade or disaster recovery, massive storage
migration will be triggered to move all VMs on the storage. The
total migration cost for massive storage migration on
heterogeneous storage can be further reduced by adaptively mixing
our proposed three designs according to different weights (γ). For
example, if the SSD’s lifetime has top priority (γ → 1), VMs that
are migrated to or from the SSD will be migrated via LR, which
has the least amount of writes to the SSD. Besides, by mixing our
three designs in different ways, the overall IO penalty and
migration time can be optimized accordingly.

6. Prototype and Experimental Setup
We implemented DBT, IO Mirroring, and prototyped our proposed
designs in blktap2 backend driver of Xen 4.1.2 [15], which
intercepts every disk IO request coming from the VM. In order to
track IO requests, we implemented a bitmap filter layer in blktap2
driver module (/xen/tools/blktap2/drivers). The data sector is dirty
if the corresponding bit is set to one. We also implemented the
image copy function in blktap2 control module
(/xen/tools/blktap2/control), which can be executed in a separate
process alongside with the blktap2 driver module. Data structures,
such as bitmap and copy address offset, are shared between both
processes. We also integrated our command line interface into tap-
ctl Linux command so that we can trigger the storage migration
using generic Linux commands. The codes for the existing and the
proposed schemes are integrated into blktap module, which will be
enabled once the migration command is issued. When all the data
is copied to the destination, we pause the disk driver and modify

IO Requests from Guest VM

W R W R

Copied To be Copied

Set

Source Destination

CheckYes

No

Copy Process

IO Requests from Guest VM
W R W R

Copied To be Copied

Source Destination
Copy Process

Counter
Delay

Increment
the counter

Decrement
the counter

>T
<T

IO Requests from Guest VM

W R W R

Copied To be Copied

Set

Source Destination

CheckYes

No

Check
Yes

ignore

Copy Process

79

	

	 	

the file descriptor (fd) so that all the upcoming IO requests will be
directed to the new disk image. We log the execution statistics for
each scheme under the /var/log directory. We have also
implemented additional design specific functions: 1) IO
duplication is implemented by memcpy-ing the entire IO requests
including address offset, size and data content. 2) Long writes are
implemented by injecting constant delay into write requests.
Besides, the delay is set to be 1ms and threshold is set to be 100 in
our experiments. 3) IO requests to the destination disk are handled
by a new IO ring structure so that the requests to the source and the
destination do not compete for software resources (e.g. queue).

We evaluated the downtime, migration time, IO performance,
and the migration cost by using disk or file system benchmarks:
Iometer [16], Dbench [17], IOzone [18] and Linux kernel 2.6.32
compilation. Our workloads run in a VM with 1 vCPU and 2GB
RAM. We also vary the input parameters of our benchmarks (e.g.
outstanding IO (OIO) for Iometer, process number (proc) for
Dbench, input size for IOzone) to simulate different I/O size and
access patterns. Besides, kernel compilation, which is known as a
comprehensive benchmark on CPU, memory and IO, is also used
in our evaluation. Our virtual machines ran on self-customized
servers with hardware specifications shown in Table 4. Two SSD
disk arrays and Two HDD disk arrays are used as data drives while
the local storage uses HDD to host Xen+OS and log files. Data
Drives are connected to the server via 6Gb/s Data Link interface.
Similar platform configurations were used in [10] from VMware.
Our experimental VM has a 10GB system disk running Debian
Squeeze 6.0 and a separate data disk (size ranging from 2GB to
30GB). To avoid the interference of OS behavior, our migration
schemes and benchmarks are performed on the data disk. In order
to ensure the significance of the results, we execute the workloads
for at least five times. Then, we take the average of the five results
and show it in this paper. Besides, we have tested our prototypes
many times to guarantee its robustness.

Table 4. Hardware Specs for Our Experiment Platform

	
	

7. Evaluation Results and Analysis

7.1. Downtime
Table 5 shows the downtime when we migrate the VM with kernel
compilation benchmark running inside. As can be seen, the
downtime for DBT is worse when the destination is an HDD
(rather than an SSD) because the final copy of dirty data block has
to be written to the HDD. Besides, when workloads have intensive

IO requests and large IO working set, the merge process of DBT
cannot even converge when the destination is a HDD. IO
Mirroring and our proposed designs yield stable downtime. The
reason is these designs do not have a merge process and the
destination has the up-to-date data when the entire image is copied.

Table 5. The downtime of live storage migration

	
	

7.2. Impact on SSD Lifetime
Assume the model of write requests during the storage migration
as: α% of write requests are in the copied area while (1-α%) of
write requests are in the to-be-copied area. β% is the percentage of
writes that are performed on different block addresses (a.k.a the
write working set size of workloads). Table 6 summarizes the
percentage of write requests that are issued to the SSD under
different scenarios:

Table 6. Percentage of writes requests that are issued to SSD

Note that (1-α%) of the writes are skipped by the copy process for
LR design. To be fair and to keep the amount of data writes in the
copy process the same across all five schemes, those (1- α%)
writes are counted into the copy process for LR, which means only
α% of writes is issued to the destination. As shown in Table 6, LR
has the lowest amount of data writes to the SSD. SLR also has
smaller amount of data writes than DBT and IO Mirroring while
AIO has the same amount of data writes as IO Mirroring. Thus,
using LR design can mitigate the wear-out issue for SSDs.

To verify this, we run IOzone with different input parameters
when migrating 30GB VM image on an SSD involved storage
environment. In the case of migrating a VM disk image from an
SSD to an HDD as shown in Figure 10 (a), LR has zero writes to
the SSD because all writes are issued to the destination. When
migrating from an HDD to an SSD as shown in Figure 10 (b), DBT
will have more data writes to the SSD than the other four designs
because β% is larger than α% for this benchmark. When both
source and destination are SSDs as shown in Figure 10 (c), LR
produces the smallest amount of data writes while DBT yields the
largest amount of data writes.

In general, DBT is the worst design while LR is the best in
term of redundant data writes to SSDs. Since redundant data writes
will affect the remaining lifetime of SSDs, LR can be awarded as
SSD-preserved VM live storage migration design.

CPU 3.4GHz*Intel*core*i7
Motherboard ASUS*Maximus*V*Extreme
Physical*Memroy 8*GB

Seagate*7200*rpm*hard*drives
Avearge*Data*Rate:125MB/s
Intel*520*Series*MLC*Internal*SSD
4KB*Random*Reads*50,000*IOPS
4KB*Random*Writes*60,000*IOPS

Disk*Interconnect 6Gb/s*Data*Link*

Hard*Drives

Solid*State*Drives

DBT IO Mirroring LR-Design SLR-Design AIO-Design
SSD to SSD 232ms 198ms 197ms 120ms 124ms
HDD to SSD 266ms 249ms 197ms 140ms 200ms
SSD to HDD 4000ms 298ms 200ms 150ms 201ms
HDD to HDD 900ms 199ms 246ms 179ms 260ms

DBT IO&Mirroring LR/Design SLR/Design AIO/Design
SSD&to&SSD 1+&β% 1+&α% α% 1 1+&α%
HDD&to&SSD β% α% α% α% α%
SSD&to&HDD 1 1 0 1/α% 1
HDD&to&HDD 0 0 0 0 0

80

	

	 	

(a) From SSD to HDD (b) From HDD to SSD (c) From SSD to SSD

Figure	 10.	 The	 total	 amount	 of	 data	 that	 is	 written	 to	 SSD	 when	 migrating	 30	 GB	 VM	 image	

(a) 𝜆!"#$%&"'(!"#$ (b) 𝜆!" (c) MC for IOmeter OIO=4 (d) MC for Dbench proc=16

Figure 11. The case that VM is migrated from HDD to SSD

7.3. IO Penalty, Migration Time and Migration Cost
In this section, we compare DBT, IO Mirroring, LR, SLR and AIO
in terms of migration time (λ!"#$%&"'(!"#$), IO penalty (λ!") and
Migration Cost (MC). The benchmarks with different input
parameters are shown in Table 7.

Table 7. Benchmark list

7.3.1. Migrating VMs from HDDs to SSDs
As shown in Figures 11 (a) and (b), LR exhibits advantages for
both migration time (56% shorter than traditional design) and IO
performance (at least 35% less IO penalty compared with
traditional design). Issuing IO requests to the destination will not
only benefits the IO performance but also decreases the migration
time by skipping updated data blocks and mitigating IO contention.
Although SLR and AIO are not designed specifically for this case,
they both have better migration time and IO performance than the
traditional design. By further considering the amount of redundant
data writes (λ!"#$!"#), we show the migration cost for two
benchmarks in Figures 11 (c) and (d). As can be seen, LR has the
lowest migration cost no matter what the weight γ is. Although LR
does not exhibit advantages in terms of SSD data writes in this
situation, it leverages the fast access speed from SSDs to the

greatest extent possible, which not only mitigates the IO penalty
but also decreases the migration time.

By further digging into results shown in Figures 11(c) and (d),
we observe that as the weight gets close to 1, the migration cost for
DBT and LR are increased because λ!"#$!"#is larger than λ!"for
these two designs. On the other hand, the migration cost for IO
Mirroring, SLR and AIO are reduced whenγ->1. That is because
those three designs have smaller λ!" than λ!"#$!"# . In this
situation, the benefits of having high IO performance and shorter
migration time overwhelm the effect of λ!"#$!"# when using LR.
Thus, LR always yields the least migration cost when a VM is
migrated from an HDD to an SSD.

7.3.2. Migrating VMs from SSDs to HDDs
By analyzing Figures 12 (a) and (b), we found that in this situation,
SLR has the shortest migration time on average while AIO has the
least IO penalty. Since SLR uses the source (SSD) to handle IO
requests and generates less redundant writes, the copy process can
consume more disk bandwidth, which results in shorter migration
time. On the other hand, AIO takes advantage of faster disk all the
time, which would lead to lower IO penalty. Note that DBT is
excluded from the comparison due to its frequent failure (merge
process takes extremely long time). As discussed in section 7.2,
LR has zero writes to the SSD in this situation, which means it has
an edge in preserving SSD’s lifetime.

Figures 12 (c) and (d) show migration cost as weight increases
from 0 to 1. The area where γ is larger than 50% is defined as
Lifetime Preference Zone, which includes users who consider SSD
wear-out issue as top priority; the area where γ is less than 50% is
defined as IO Performance Preference Zone, which includes those
who prefer to have high IO performance. As can be seen in Figures

0"

10"

20"

30"

40"

2G" 4G" 8G" 12G" 16G"

A
m
ou

nt
"o
f"D

at
a"
(G
B
)"

IOzone"Input"

DBT" IO"Mirroring""

LR" SLR"

AIO" VM"Image"Size"

VM"Image"Size"+"Workload"IO"Size"

25#

35#

45#

55#

65#

75#

2G# 4G# 8G# 12G# 16G#

A
m
ou

nt
#o
f#D

at
a#
(G
B)
#

IOzone#Input#Size#

DBT# IO#Mirroring##

LR# SLR#

AIO# VM#image#

VM#image#+#Workload#IO#Size#

25#
35#
45#
55#
65#
75#
85#
95#

2G# 4G# 8G# 12G# 16G#

A
m
ou

nt
#o
f#D

at
a#
(G
B)
#

IOzone#Input#

DBT# IO#Mirroring##
LR# SLR#
AIO# VM#Image#Size#
VM#Image#Size#+#Workload#IO#Size#

0.5$

1$

1.5$

2$

2.5$

IOM_4IOM_16 Db_2$ Db_16$ KC_10$ KC_20$

λm
ig
ra
7o

n$
7m

e$
$

DBT$ IO$Mirroring$ LR$ SLR$ AIO$

0.2$

0.3$

0.4$

0.5$

0.6$

0.7$

0.8$

0.9$

1$

IOM_4IOM_16 Db_2$ Db_16$ IOZ_R$ IOZ_W$

λ"
IO
$$

DBT$ IO$Mirroring$ LR$ SLR$ AIO$

0"

0.5"

1"

1.5"

2"

2.5"

0" 0.2" 0.4" 0.6" 0.8" 1"

M
C"

Gamma""

DBT" IO"Mirroring" LR" SLR" AIO"

0"

0.5"

1"

1.5"

2"

0" 0.2" 0.4" 0.6" 0.8" 1"

M
C"

Gamma"

DBT" IO"Mirroring" LR" SLR" AIO"

Name Benchmarks Notes

IOM_4 IOmeter3with3OIO=43

IOM_16 IOmeter3with3OIO=163

Db_2 Dbench3with3proc=2

Db_16 Dbench3with3proc3=16

IOZ_R IOzone3read3file3test

IOZ_W IOzone3write3file3test

KC_10 Kernel3Compilation3in310GB3image

KC_20 Kernel3Compilation3in320GB3image

IOmeter3is3configured3as375%3reads3and325%3writes

3running3in3VM3with320GB3disk3image3

Dbench3is3configured3to3push3the3limits

3of3throughput3(OR399999)3running3in3VM3with320GB3

IOzone3is3used3to3test3the3IO3Performance3

during3the3migration3

Kernel3Compilation3is3used3to3test3our3schemes

3in3comprehensive,3real3workloads

81

	

	 	

(a) 𝜆!"#$%&"'(!"#$ (b) 𝜆!" (c) MC for IOmeter OIO=4 (d) MC for Dbench proc=16

Figure 12. The case that VM is migrated from SSD to HDD

(a) 𝜆!"#$%&"'(!"#$ (b) 𝜆!" (c) MC for IOmeter OIO=4 (d) MC for Dbench proc=16

Figure 13. The case that VM is migrated from SSD to SSD

12 (c) and (d), LR has relatively low migration cost in Lifetime
Preference Zone due to zero writes to SSDs. Besides, the more the
γ is close to 1, the less the migration cost will be for LR. In IO
Performance Preference Zone, AIO is more desired as γ becomes
smaller. As SLR maintains the balance between migration time, IO
penalty and the amount of SSD data writes, it has the lowest
migration cost when γ is around 0.5.
Further investigating in the trend of migration cost, we found that
the slope for LR is negative, which means that the migration cost
for LR keeps decreasing as the weight moves towards 1. However,
the migration cost will increase for the other four designs as γ
increases. Thus, when migrating from SSDs to HDDs, the weight
determines which design has the lowest migration cost. If IO
performance is preferred, AIO is the most suitable decision; if SSD
wear-out issue is the main concern, LR is the best policy; if the IO
performance and SSD lifetime are equally important, SLR will
yield the lowest migration cost.

7.3.3. Migrating VMs from SSDs to SSDs
When a VM is migrated from SSDs to SSDs, issuing requests to
source or destination does not affect the migration time and IO
performance significantly. In terms of migration time as shown in
Figure 13 (a), on average, SLR and AIO take slightly shorter time.
LR has slightly longer migration time because of the overhead to
check bitmap in the copy process. In terms of IO penalty, DBT has
the least IO penalty; LR ranks second as shown in Figure 13(b).
However, DBT generates the largest amount of data writes to the
SSD while LR has the least amount of data writes to the SSD as
discussed in Section 7.2. When considering migration cost, which

is shown in Figures 13 (c) and (d), LR yields the least cost except
when the weight (γ) is 0. Besides, the migration cost for DBT will
increase faster than others as the weight increases because it has
the largest slope rate. SLR, although yielding slightly more
migration cost when γ =0, has a relatively low migration cost than
DBT when γ lies between 0.1 and 1. In total, we believe that SLR
will be the best choice when IO performance is desired. For the
majority of cases (0.2<γ<1), LR is the best migration policy, which
shows the lowest migration cost.

7.3.4. Migrating VMs from HDDs to HDDs
In the situation that no SSD is involved, the wear-out factor
λ!"#$!"# will not affect migration cost at all. As shown in Figure
14 (a), LR takes the shortest time to migrate a VM while DBT
takes the longest time and occasionally even fails to complete the
migration. Besides, the downtime for DBT is longer than others as
discussed in Section 7.1, which makes us exclude DBT from
comparison. In terms of IO penalty, which is shown in Figure 14
(b), SLR is the best; AIO ranks second. There is a tradeoff between
migration time and IO performance in this situation: lower IO
penalty (λ!") can only be achieved by sacrificing the migration
time λ!"#$%&"'(!"#$. Taking both factors into consideration, Figure
14(c) shows the migration cost (MC) for all the five designs. On
average, SLR has the lowest migration cost; LR ranks the second.

7.4. Towards Lower Migration Cost in Massive Storage
Migration by Mixing Different Designs
As mentioned before, each individual design has its own strength.
In this section, we show an example to demonstrate how to further
reduce the overall migration cost in massive storage migration by

1"

1.05"

1.1"

1.15"

1.2"

1.25"

1.3"

1.35"

1.4"

IOM_4"IOM_16" Db_2" Db_16" KC_10" KC_20"

λm
ig
ra
'o

n*
'm

e*
"

DBT"
IO"Mirroring"
LR"
SLR"
AIO"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

IOM_4" IOM_16" Db_2" Db_16" IOZ_R" IOZ_W"
λIO
$"

DBT"
IO"Mirroring"
LR"
SLR"
AIO"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

0" 0.2" 0.4" 0.6" 0.8" 1"

M
C"

Gamma"

DBT" IO"Mirroring"
LR" SLR"
AIO"

IO Performance
Preference Zone

Lifetime
Preference Zone

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 0.2" 0.4" 0.6" 0.8" 1"

M
C"

Gamma"

IO"Mirroring" LR"
SLR" AIO"
DBT"

IO Performance
Preference Zone

Lifetime
Preference Zone

0.8$

1$

1.2$

1.4$

1.6$

1.8$

2$

2.2$

2.4$

IOM_4IOM_16 Db_2$ Db_16$ KC_10$ KC_20$

λm
ig
ra
'
on

$'
m
e$
$

DBT$

IO$Mirroring$

LR$

SLR$

AIO$

0.1$

0.2$

0.3$

0.4$

0.5$

0.6$

0.7$

0.8$

0.9$

1$

IOM_4IOM_16 Db_2$ Db_16$ IOZ_R$ IOZ_W$

$λ
IO
$$

DBT$

IO$Mirroring$

LR$

SLR$

AIO$

0"
0.5"
1"

1.5"
2"

2.5"
3"

3.5"
4"

4.5"

0" 0.2" 0.4" 0.6" 0.8" 1"
M
C"

Gamma"

DBT"
IO"Mirroring"
LR"
SLR"
AIO"

0"

0.5"

1"

1.5"

2"

2.5"

0" 0.2" 0.4" 0.6" 0.8" 1"

M
C"

Gamma"

DBT"
IO"Mirroring"
LR"
SLR"
AIO"

82

	

	 	

(a) 𝜆!"#$%&"'(!"#$ (b) 𝜆!" (c) MC

Figure 14. The case that VM is migrated from HDD to HDD

(1) γ= 10% (2) γ=50% (3) γ=80%

Figure 15. Overall MC of the massive storage migration on heterogeneous storage environment

mixing all three designs. Consider that we want to move all the
VMs from one storage pool to another for the purpose of storage
maintenance. Assume the percentage of VMs that will be migrated
from SSDs to SSDs is the same as the percentage of VMs that will
be migrated from HDDs to HDDs (ε). And the number of VMs that
are migrated from SSDs to HDDs is the same as the number of
VMs that are migrated from HDDs to SSDs, which will be (1-ε-
ε)/2=0.5-ε. The migration cost of the massive storage migration
will be the sum of cost for each individual storage migration. To
simplify the discussion, we consider weight γ as 10%, 50% and
80%.

Figures 15 (1), (2) and (3) show the migration cost for the
massive storage migration when we deploy each single storage
migration design (LR, SLR and AIO) and mix them together
(Mix). As can be seen, under different weights γ and percentage of
migrating between heterogeneous storage media (0.5-ε), mixing all
the three designs (Mix) can always achieve lower migration cost.
This is because Mix always chooses the migration scheme with the
lowest migration cost for each single storage migration behavior.
For instance, when the SSD lifetime is top priority (γ >50%), most
of the VMs will be migrated using LR, which makes the migration
cost of Mix close to that of LR (1% lower than LR but 69% lower
than AIO). In the case that the IO performance is desired and most
of the migration occurs on the same storage media (ε->0), Mix will
be relatively close to AIO but still has the lowest migration cost
(48% lower than AIO).

8. Related Work
To eliminate the merge process in DBT and achieve stable and low
downtime and migration time across benchmarks, [10] proposed

IO Mirroring storage migration mechanism, which aims to
maintain data consistency between the new and old images during
migration by duplicating IO requests in the copied region. Our
proposed techniques differ from IO Mirroring in that they fully
exploit the performance characteristics of SSDs while taking SSD
lifetime into consideration. [11, 14] implemented live VM
migration in wide area network (WAN) equipped with persistent
storage. The block-level disk pre-copy mechanism is employed to
transfer the VM disk image. The write IO requests are throttled to
reduce the dirty block rate and IP tunneling is used to make the
network switching transparent to guest OS. [12] proposed to
couple VM memory copy with disk copy to hide the downtime of
VM live migration into that of storage migration and [13] takes
workload behavior into consideration when performing storage
migration. Our proposed techniques are orthogonal to these
schemes and can be combined together to further improve the
efficiency of virtual machine storage migration in light of
heterogeneous storage media. [23] leverages the copy-on-write
features in virtual storage and puts the read-only templates of VM
disk images on SSDs. However, the storage migration behavior
and the wear-out issue are not considered in their work. [24]
focuses on file system level implementation of hybrid SSD storage
systems, which intends to improve the IO performance via faster
SSDs. However, their work does not consider the migration, wear-
out issue, and virtual disk image. [25] implements a virtualized
flash storage layer for Fusion-io device, which will yield shorter
IO response. However, both wear-out issue and migration behavior
are not considered.

0.5$

1$

1.5$

2$

2.5$

3$

3.5$

4$

IOM_4IOM_16 Db_2$ Db_16$ KC_10$ KC_20$

λm
igr

a'
on

*'
me
*$

DBT$
IO$Mirroring$
LR$
SLR$
AIO$

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

IOM_4"IOM_16" Db_2" Db_16" IOZ_R" IOZ_W"

λIO
$"

DBT"
IO"Mirroring"
LR"
SLR"
AIO"

0"

0.5"

1"

1.5"

2"

2.5"

3"

IOM_4"IOM_16" Db_2" Db_16"

M
C"

DBT"
IO"Mirroring"
LR"
SLR"
AIO"

0.4$

0.6$

0.8$

1$

1.2$

0$ 0.1$ 0.2$ 0.3$ 0.4$ 0.5$

Ov
er
al
l$M

ig
ra
4o

n$
Co

st
$

ε$$

LR$ SLR$ AIO$ Mix$

0.5$

0.7$

0.9$

1.1$

1.3$

0$ 0.1$ 0.2$ 0.3$ 0.4$ 0.5$

Ov
er
all
$M

igr
a4

on
$C
os
t$

ε$$

LR$ SLR$ AIO$ Mix$

0.3$

0.8$

1.3$

1.8$

0$ 0.1$ 0.2$ 0.3$ 0.4$ 0.5$

Ov
er
al
l$M

igr
a3

on
$C
os
t$

ε$$

LR$ SLR$ AIO$ Mix$

83

	

	 	

9. Conclusion
As SSDs emerge as an indispensable media for cloud storage, their
strength and weakness should be taken into account in storage
management, such as VM storage migration. Nevertheless, existing
mainstream storage migration schemes (e.g. DBT and IO
Mirroring) do not fully exploit the features of SSDs. Even worse,
they wear out SSD devices severely. In this paper, we propose a
new metric, migration cost, which characterizes the cost for
storage migration mechanisms from multiple aspects: migration
time, IO penalty, SSD lifetime and preference (on IO performance
and SSD lifetime). We propose three new storage migration
mechanisms to achieve lower migration cost. Each of the proposed
schemes has its own strength: 1) LR has the lowest possible
redundant writes; 2) SLR leverages IO performance of the source
disk while still maintaining the attribute of low redundancy and 3)
AIO aims at achieving the highest possible IO performance. Our
prototype-based evaluation shows that all three designs yield stable
downtime (around 200ms) and lower migration cost than
traditional mechanisms (DBT and IO Mirroring). By mixing them
in massive storage migration, the overall migration cost can be
further reduced by 48% at most compared with the best of each
individual mechanism.

Acknowledgments

This work is supported in part by NSF grants 1117261, 0937869,
0916384, 0845721(CAREER), 0834288, 0811611, 0720476, by
SRC grants 2008-HJ-1798, 2007-RJ-1651G, by Microsoft
Research Trustworthy Computing, Safe and Scalable Multi-core
Computing Awards, by NASA/Florida Space Grant Consortium
FSREGP Award 16296041-Y4, and by three IBM Faculty Awards.
Fang Liu is supported by the National High-Tech Research and
Development Program of China (No. 2013AA013201), the
National Natural Science Foundation of China (NO.61170288,
NO.61025009, NO.61232003).

References

[1] “Amazon EC2”, http://aws.amazon.com/ec2/
[2] “Microsoft Azure”, http://www.windowsazure.com/en-us/
[3] “Flash Drives Replace Disks at Amazon, Facebook, Dropbox”,

http://www.wired.com/wiredenterprise/2012/06/flash-data-centers/

[4] “Morphlabs, Dell DCS Team on SSD-Powered Cloud”,
http://www.datacenterknowledge.com/archives/2012/03/28/morphlab
s-dell-dcs-team-on-ssd-powered-cloud/

[5] “SolidFire Develops All-SSD System for Cloud Storage Providers”,
http://searchstoragechannel.techtarget.com/news/2240037093/SolidFi
re-develops-all-SSD-system-for-cloud-storage-providers

[6] “Intel Takes Their SSD Reliability to the Datacenter”,
http://www.zdnet.com/blog/datacenter/intel-takes-their-ssd-reliability-
to-the-datacenter/1316

[7] Gokul Soundararajan, Vijayan Prabhakaran, et al., Extending SSD
Lifetimes with Disk-Based Write Caches, FAST 2010

[8] EMC, http://www.us.emc.com/index.htm
[9] Winchester Systems, http://www.winsys.com
[10] Ali Mashtizadeh, et al., The Design and Evolution of Live Storage

Migration in VMware ESX, ATC 2011
[11] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, Harald

Schioberg, Live Wide-Area Migration of Virtual Machines Including
Local Persistent State, VEE 2007

[12] Yingwei Luo, Binbin Zhang, et al., Live and Incremental Whole-
System Migration of Virtual Machines Using Block-Bitmap, ICCC
2008

[13] Jie Zheng, T. S. Eugene Ng, Kunwadee Sripanidkulchai, Workload-
Aware Live Storage Migration for Clouds, VEE 2011

[14] Takahiro Hirofuchi, et al., A Live Storage Migration Mechanism over
WAN for Relocatable Virtual Machine Services on Clouds, CCGRID
2009

[15] XEN Project http://www.xen.org, January 2009
[16] Iometer Project, http://www.iometer.org
[17] Dbench, http://dbench.samba.org
[18] IOzone File System Benchmark, http://www.iozone.org
[19] Aameek Singh, Madhukar Korupolu, et al., Server-Storage

Virtualization: Integration and Load Balancing in Data Centers, SC
2008

[20] Seonyeong Park, A Comprehensive Study of Energy Efficiency and
Performance of Flash-based SSD, Journal of Systems Architecture,
2011

[21] Guanying Wu and Xubin He, ∆FTL: Improving SSD Lifetime via
Exploiting Content Locality, EuroSys 2012

[22]Youngjae Kim, et al., HybridStore: A Cost-Efficient, High-
Performance Storage System Combining SSDs and HDDs,
MASCOTS 2011

[23] Heeseung Jo, Youngjin Kwon, Hwanju Kim, Euiseong Seo, Joonwon
Lee, and Seungryoul Maeng, SSD-HDD-Hybrid Virtual Disk in
Consolidated Environments, VHPC 2009

[24] Feng Chen, David Koufaty, Xiaodong Zhang, Hystor: Making the Best
Use of Solid State Drives in High Performance Storage Systems, ICS
2011

[25] William K. Josephson, et al., DFS: A File System for Virtualized
Flash Storage, ACM Transactions on Storage, Sept 2010

[26] Bob Laliberte, Delivering Greater Effectiveness and Efficiency for
SANs in Virtualized Data Centers. White Paper, EMC

[27] “Intel Launches DC S3700 SSD for Data Centers”,
http://hothardware.com/News/Intel-Launches-New-Datacenter-SSDs-
Emphasizes-Data-Protection-High-Performance/

84

