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Abstract 
Virtual machine (VM) live storage migration techniques 
significantly increase the mobility and manageability of virtual 
machines in the era of cloud computing. On the other hand, as 
solid state drives (SSDs) become increasingly popular in data 
centers, VM live storage migration will inevitably encounter 
heterogeneous storage environments. Nevertheless, conventional 
migration mechanisms do not consider the speed discrepancy and 
SSD’s wear-out issue, which not only causes significant 
performance degradation but also shortens SSD’s lifetime. This 
paper, for the first time, addresses the efficiency of VM live 
storage migration in heterogeneous storage environments from a 
multi-dimensional perspective, i.e., user experience, device 
wearing, and manageability. We derive a flexible metric (migration 
cost), which captures various design preference. Based on that, we 
propose and prototype three new storage migration strategies, 
namely: 1) Low Redundancy (LR), which generates the least 
amount of redundant writes; 2) Source-based Low Redundancy 
(SLR), which keeps the balance between IO performance and write 
redundancy; and 3) Asynchronous IO Mirroring, which seeks the 
highest IO performance. The evaluation of our prototyped system 
shows that our techniques outperform existing live storage 
migration by a significant margin. Furthermore, by adaptively 
mixing our proposed schemes, the cost of massive VM live storage 
migration can be even lower than that of only using the best of 
individual mechanism. 
 
Categories and Subject Descriptors D.4.8 [Operating Systems]: 
Performance; C.4 [Computer System Organization]: Performance 
of Systems 
 
General Terms   Management, Performance, Design 
 
Keywords Live VM Storage Migration, Solid State Drive, 
Virtualization 

 
 

1. Introduction 
Nowadays, virtualization technology has been widely adopted as 
the base infrastructure for cloud computing. Major cloud providers, 
such as Amazon (EC2) [1] and Microsoft (Azure) [2], are selling 
their computing resources in the form of virtual machines (VMs). 
Load balancing has become essential for effectively managing 
large volumes of VMs in cloud computing environment. The 
cornerstone for moving virtual machines on the fly is the VM live 
migration, which only transfers CPU and memory states of VMs 
from one host to another. To allow the movement of persistent 
storage with VMs, several live storage migration techniques have 
been proposed, including Dirty Block Tracking (DBT) and IO 
Mirroring [10][11][12]. VM live storage migration significantly 
increases the mobility and manageability of virtual machines 
during disaster recovery, storage maintenance, and storage 
upgrade. 

Meanwhile, Flash-based solid state drives (SSDs) have become 
one of the most popular storage media due to their high 
performance, silent operations and shock resistance [20, 21]. With 
the decrease in price, they become more affordable to be used in 
data centers. Currently, many leading Internet service provision 
companies, such as Facebook, Amazon and Dropbox, are starting 
to integrate SSDs into their cloud storage systems [3][4][5]. The 
storage media for data centers becomes more diverse as both SSDs 
and HDDs are being used to support cloud storage. Consequently, 
storage management, especially VM live storage migration, 
becomes more complex and challenging.  

Although SSDs deliver higher IO performance, their limited 
lifetime is an inevitable issue. Our analysis shows that existing VM 
live storage migration schemes do not fully exploit the high 
performance characteristics of SSDs but aggravate the wear out 
problem. Even worse, during massive storage migrations, SSDs 
will be worn out significantly due to large volume of write 
operations. In this paper, we address the efficiency/cost of VM live 
storage migration (Migration Cost, MC) in heterogeneous storage 
environments from a multi-dimensional perspective, which 
incorporates user experience (IO penalty), cluster management 
(migration time) and device usage (degree of wear). The weights 
on IO penalty and SSD lifetime are also considered to reflect 
different design preferences. We propose and prototype three VM 
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live storage migration mechanisms to minimize the migration cost, 
namely: 1) Low Redundancy (LR), which generates near zero 
redundant writes; 2) Source-based Low Redundancy (SLR), which 
aims to leverage faster source disk while still maintaining low 
redundancy merit; 3) Asynchronous IO Mirroring (AIO), which 
targets high IO performance. The empirical evaluation of our 
prototyped systems shows that they yield stable and short disk 
downtimes (around 200ms). Although the cost varies with different 
weights and storage media, on average, the migration costs for LR, 
SLR and AIO are 51%, 22% and 21% lower than those for 
traditional methods (i.e. DBT and IO Mirroring). Furthermore, by 
adaptively invoking our schemes during massive storage 
migration, the cost can be further reduced by 48% compared to 
using the best individual mechanism. 

The rest of this paper is organized as follows: Sections 2 and 3 
provide background and motivation for this work. Section 4 
describes the evaluation metric. Section 5 discusses our proposed 
designs. Sections 6 and 7 present our prototypes and experimental 
results. Section 8 discusses related work and Section 9 concludes 
the paper. 

 
2. Background 
 
2.1. VM Live Storage Migration Techniques 
Live storage migration for virtual machines is defined as the 
migration of VM disk images without service interruption to the 
running workload. The two mainstream techniques are dirty block 
tracking (DBT) and IO Mirroring. The DBT technique, which is 
widely adopted by many VM vendors (e.g. Xen and VMware 
ESX), is a well-known mechanism that uses bitmap to track write 
requests while the VM image is being copied. Once the entire 
image is copied to the destination, a merge process is initiated to 
patch all the dirty blocks (i.e. data blocks that are recorded in 
bitmap) from the original image to the new image. In order to 
prevent further write requests, the VM is paused until all the dirty 
blocks are patched to the new disk image. To mitigate downtime 
introduced by the merge process, incremental DBT, which keeps 
the VM running while iteratively patching dirty blocks to the new 
image, is proposed and used in several projects [11][12][13][14]. If 
the number of dirty blocks is stable for several iterations, the VM 
is suspended and the remaining dirty blocks are copied to the 
destination. Nevertheless, incremental DBT also has disadvantage: 
in case that the number of dirty blocks are not converged due to 
intensive write requests, the migration time and even the downtime 
can be significantly long. Note that in this paper, we refer 
incremental DBT as DBT.  

To address the issue of long migration time and downtime, 
VMware proposed IO Mirroring technique [10] to eliminate the 
iteratively merge process. With IO Mirroring, all the write requests 
to the data blocks that have been copied will be duplicated and 
issued to both source and destination disks. The two write requests 
are synchronized and then the write completion acknowledgement 
is asserted (synchronous write). Write requests to the data blocks 
that have not yet been copied will only be issued to the source disk 

while the writes to the data blocks that are currently being copied 
will be buffered and later issued to both source and destination 
when the being copied phase completes. By doing so, the data 
blocks will always be synchronized during the migration process. 
Note that once the process of copying VM disk image completes, 
merging is not needed, which leads to shorter migration time and 
lower downtime. However, IO Mirroring also raises some 
concerns: 1) workload IO performance is limited by the slower 
disk due to the synchronized write requests; 2) since the disk 
bandwidth is consumed by the duplicated IO requests, the progress 
of copying the VM image will be slowed down. 

 
2.2. Storage Migration in Heterogeneous Storage 
Environments  
Historically, mechanical hard disk drives (HDDs) are used as the 
primary storage media due to their large capacity and high stability 
in the long run. Recently, solid-state drives (SSDs), which have 
high IO performance [20], are emerging as promising storage 
media. The IOPS (IO per second) for VM running on SSDs in our 
experiments is 3.3X higher than that on HDDs. However, SSDs 
also have their limitations such as low capacity, high price tag, and 
limited lifetime. The more the writes and erases are performed, the 
shorter the remaining SSD lifetime will be [7, 22]. In the 
commercial market, cloud storage providers, such as Morphlabs, 
Storm on Demand, CloudSigma and CleverKite, are selling the 
SSD powered cloud [4]. On the other hand, device manufacturers, 
such as Intel and Samsung, are researching on reliable SSD for 
data centers [6, 27]. Thus, from the perspective of both seller and 
manufacturer, SSDs have been accredited as an indispensable 
component for cloud and data center storage. A data center will be 
equipped with several disk arrays. Some of the disk arrays are 
SSDs while the others are HDDs. Those disk arrays are connected 
to servers via Fibre Channel [8, 9, 26]. Our work focuses on the 
storage migration between different disk arrays.     

VM live storage migration will be more sophisticated and 
challenging on heterogeneous storage environments. For instance, 
if a user requests more disk space, his/her VM image may need to 
be migrated from small capacity disk (SSD) to large capacity disk 
(HDD). On the other hand, if the user requests to upgrade IO 
performance, his/her VM image may need to be migrated from 
slow disk (HDD) to fast disk (SSD). Since VM live storage 
migration will inevitably be performed on various types of storage 
media, it should consider the characteristics of different storage 
devices, such as the high bandwidth, limited lifetime for SSD and 
the low access speed, large capacity for HDDs. Nevertheless, 
existing live storage migration schemes do not take the underlying 
storage media into consideration, which manifests several 
disadvantages, such as: 1) not fully exploiting the high 
performance of SSDs, 2) having longer migration time since the 
redundant write requests occupy a significant fraction of IO 
bandwidth, 3) quickly wearing down SSDs and reducing the 
remaining SSD lifetime. Even worse, large volume of redundant 
IO operations, which are generated during massive storage 
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migration, will not only saturate the disk bandwidth but also 
severely affect the SSD’s lifetime.  

 
3. Performance Characterization  
This section analyzes the behaviors of existing live storage 
migration schemes (e.g. DBT and IO Mirroring) in heterogeneous 
storage environments.  
 
3.1. A Characterization of the Two Basic Processes for VM 
Live Storage Migration 
In general, VM live storage migration involves two processes, 
namely 1) copy process that moves the VM image and 2) VM IO 
request handling process that ensures consistency between the two 
disk images. During storage migration, processes 1) and 2) 
compete for IO bandwidth, which largely affects the performance. 
Table 1 shows the performance of copying a 5GB image of an idle 
VM and Table 2 shows the measured IOPS of the same VM that is 
running but is not being migrated. As expected, the SSD 
effectively speeds up the copy process and the VM on SSDs 
achieves much higher IOPS than that on HDDs. Nevertheless, the 
resource competition between image copy and VM IO requests 
still exists even when SSDs are involved. Note that the VM IO 
requests can be issued to source or destination during the 
migration. The performance characteristics on copying VM image 
with running workloads are shown in Figures 1 (a) and (b). SSDs 
have faster access speed and better capability of handling intensive 
IO requests. In the case where both a SSD and a HDD are 
involved, the IOPS will be higher and the copy time will be shorter 
if the VM IO requests are directed to the SSD. In the case where 
both source and destination are SSDs, the copy time and IOPS will 
be similar no matter where the VM IO requests are issued. In the 
case where both source and destination are HDDs, higher IOPS 
can be achieved at the cost of longer migration time. 

 

Table 1. The time to copy a 5GB idle VM image 
SSD to SSD SSD to HDD HDD to SSD HDD to HDD 

30s 59s 55s 81s 
 

Table 2. The IOPS of running VM 
 75% Read 50% Read 25% Read 

VM on SSD 5500 5900 6495 
VM on HDD 2230 1744 1445 
 

  
(a) IOPS of VM (b) Time to copy VM image 

    Figure 1. Copying VM image while workloads are running inside 
 
In the case that a VM is migrated from a HDD to a SSD and all 

the IO requests from VM are issued to the source disk (HDD) as in 

DBT, the performance for both copy process and IO requests will 
be significantly low, as shown in Figure 1. The reason is that the 
reads from the copy process and the IO requests from VM will 
saturate the bandwidth of the HDD. In the case that a VM is 
migrated from a SSD to a HDD, issuing all the VM IO requests to 
the source disk (SSD) will yield high IOPS and short copy time 
because the SSD has better capability for handling large volume of 
IO accesses. However, simply filtering all the IO requests to the 
SSD will exacerbate the degree of wearing for the SSD, which 
shortens the remaining SSD lifetime. Thus, blindly using SSD is 
also not a wise decision. 

To summarize, when VM storage migration occurs in the 
storage environment that involves SSDs, redirecting the workload 
IO requests to SSDs will benefit the migration time and IOPS but 
the SSDs will be worn out quickly. When a VM is migrated 
between HDDs, there is trade off between migration time and 
IOPS.  

 
3.2. A Characterization of Existing Live Storage 
Migration Schemes 
We use Xen as our virtual machine monitor and implement the two 
existing storage migration techniques in Xen blktap2 modules 
(details in Section 6). 

There are three well-known metrics to measure the 
performance of live storage migration: 1) downtime, 2) migration 
time, and 3) IO penalty. Downtime measures the time it takes to 
pause the VM and switchover between source and destination 
disks. Migration time represents the overall time it takes to 
accomplish the storage migration operation, which should be 
minimized to guarantee smooth and quick storage maintenance. IO 
penalty shows the performance degradation the user will 
experience during the VM live storage migration.  

As can be seen in Table 3, DBT tends to have longer downtime 
than IO Mirroring because DBT needs to patch the last copy of 
dirty blocks during the downtime period while this is not necessary 
for IO Mirroring. Besides, when varying the underlying storage 
media, the downtime of DBT is less stable than that of IO 
Mirroring. Worse, when the destination is slower than the source 
(e.g. from SSD to HDD), DBT takes long time or even fails to 
complete since the last iteration of the merge process writes dirty 
data blocks to the slower disk. 

 
Table 3. The Downtime of Migrating 30GB VM Image while 

Running IOmeter with 50% Reads / 50% Writes 

 
 

Migration time for existing schemes is shown in Figure 2. We 
also use two emulated scenarios for comparison purposes. Copying 
disk image while VM IO requests are only issued to the source is 
denoted as Emulated_S and copying disk image while VM IO 
requests are only issued to the destination is referred as 
Emulated_D. In terms of migration time, the biggest difference 
between IO Mirroring and DBT is the iterative merge process. As  
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Figure 2. The migration time for a 5GB VM 
image under heterogeneous storage 
environment (Iometer is running inside the 
VM with 50% read, 50% write) 

Figure 3. The IOPS for migrating VM images 
under heterogeneous storage environment 
(IOmeter is used to measure IOPS) 

Figure 4.	  The total size of data that 
written to device when migrating 30GB 
VM from SSD to SSD (IOzone is set to 
perform write and rewrite operation) 

   
can be seen in Figure 2, DBT exhibits longer migration time than 
IO Mirroring because it needs to iteratively merge dirty blocks to 
destination after copying the image. The slower the destination 
storage media are, the longer the merge process will be. Both 
migration schemes manifest longer migration time compared to the 
better of the two emulated scenarios.     

When using IO Mirroring scheme, the IOPS inside the VM 
highly depends on the slowest disk due to synchronous write. On 
the other hand, the IOPS inside the VM when using DBT scheme 
only depends on the source disk. As can be seen from Figure 3, 
when the source disk is a SSD, DBT has advantage over IO 
Mirroring in terms of IO performance. If the source is a HDD, both 
DBT and IO Mirroring yield similar IOPS. However, neither of 
them reaches the performance of the two emulated scenarios 
(indicated by the dash-cross or solid-square lines, whichever is 
higher). In other words, conventional schemes do not fully exploit 
the high performance of SSDs.  

Since introducing a large volume of write and erase cycles will 
unavoidably diminish the lifetime of SSDs [7], we add another 
measurement: the amount of data that is written to SSD, in our 
characterization. If only the copying of a VM disk image is 
considered (e.g. experiments shown in Figure 1), then the total 
amount of data written to SSD is determined by the workload IO 
traffic plus the VM image size. The live storage migration schemes 
introduce overhead and redundant data writes, further wearing off 
SSDs and shortening the SSD’s lifetime.  

Figure 4 shows the amount of data written to disk when 
migrating VM images from SSDs to SSDs. As can be seen, both 
mechanisms generate extra amount of data writes compared to 
simply copying the disk image of the running VM (dashed line). 
The heavier the workload’s IO traffic is, the higher the extra 
volume of data write (the amount that exceeds the dashed line) will 
be. For DBT, the redundant data writes come from the merge 
process; for IO Mirroring, the redundant data writes come from the 
duplicated writes to data blocks that have been copied. DBT tends 
to have more redundant data writes than IO Mirroring.  

To sum up, a good live storage migration technique in 
heterogeneous storage environments should have negligible 
downtime, short migration time, low IO penalty, and less 

redundant writes to the SSD. The major issue with contemporary 
methods is that they do not take the underlying device 
characteristics into consideration. We believe that once the 
underlying storage becomes heterogeneous, new methods for live 
storage migration are needed and our analysis shows that there is 
still plenty of room for improvement in terms of migration time, IO 
penalty, and redundant writes. In this paper, we are motivated to 
explore better VM live storage migration schemes. 

 
4. Metric for Live Storage Migration in 
Heterogeneous Environments 
VM live storage migration behavior has impacts on three aspects: 
1) VM user experience (IO penalty and downtime), 2) storage 
maintenance (migration time), and 3) SSD lifetime (extra amount 
of data writes). Thus, in this section, we propose a more 
comprehensive metric, which takes all three aspects into 
consideration. 

For the VM user experience, the existing metric, IO penalty, 
can indicate the performance degradation the user will experience. 
Note that the value of traditional IO penalty may be negative when 
destination disk is faster than source disk. In order to avoid this 
(i.e. negative penalty), we define I/O penalty as: 
 

𝜆!" =
!"#$  !"  !"#$%!"#$%&!!"  !"#$%#&'()"  !"#$%&  !"#$%&"'(

!"#$  !"  !"#$%#&'()"
    (1) 

 

 
In equation (1), Best IO Performance means the best IO 

performance achieved from available storage media. For example, 
if VM is migrated from HDD to SSD, the Best IO Performance is 
the performance we can get from SSD. Ideally, when workloads 
always run on a faster disk, λ!" will be close to 0. From the user 
perspective, the less the IO penalty is, the better the storage 
migration scheme will be. As a “live” storage migration, the disk 
downtime should be close to 0. Otherwise, workloads inside the 
VM may crash due to intolerably long interrupts. We believe that 
downtime should be used as a separate metric to quantify whether 
a storage migration design is “live” or not. 

From the perspective of the data center administrator, 
migration time means how long he/she should wait until the next 
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management can be performed. Longer migration time means 
higher possibility to fail the scheduled maintenance plan. Ideally, 
migration time should be close to the time it takes to simply copy 
the entire VM disk image without interference. We define the 
migration time factor λ!"#$%&"'(  !"#$ as:    

 

𝜆!!"#$%!&'  !"#$ =
𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛  𝑡𝑖𝑚𝑒
  𝑖𝑚𝑎𝑔𝑒  𝑐𝑜𝑝𝑦  𝑡𝑖𝑚𝑒

                                            (2) 
 

 
Since storage migration will inevitably introduce IO 

competition and runtime overhead, migration time will always be 
longer than image copy time. In other words, λ!"#$%&"'(  !"#$  is 
always greater than 1. The smaller the λ!"#$%&"'(  !"#$ is, the better 
the storage migration scheme is for the data center manager.  

From the device point of view, the amount of data writes can 
indicate the degree of wear brought by live storage migration. 
Besides, the larger the amount of data writes is, the more quickly 
the SSD will be worn out, which leads to shorter remaining 
lifetime for the SSD. Thus, we define a wear-out factor λ!"#$  !"# to 
indicate the SSD lifetime penalty per time unit during storage 
migration. There is one caveat: HDD does not have the wear out 
issue. Thus, λ!"#$  !"# should equal to 0 when all the write requests 
are issued to HDD. 

 

𝜆!"#$  !"# =
!"#"  !"#$$%&  !"  !!"  !"#  !"!"  !"#$

!"#$%"&'  !"#"  !"#$%&  !"#  !"#$  !"#$
                         (3) 

 

 
In equation (3), the denominator is the amount of data writes 

per time unit generated by the workloads while the nominator is 
the amount of data (generated by workload) written to SSD per 
time unit. For normal executing VMs, λ!"#$  !"# equals to 1 if the 
VM is running on a SSD, 0 if the VM is running on a HDD. Any 
redundant writes, such as merge process in DBT and write request 
duplication in IO Mirroring, will make λ!"#$  !"#  greater. The 
smaller the λ!"#$  !"# is, the less severely the SSD wears off during 
live storage migration. 

Note that migration time indicates not only how long the user 
will suffer from the I/O penalty but also how long the device will 
be worn. In other words, the longer the migration time is, the 
higher overall penalty (𝜆!" ∗ 𝜆!"#$%&"'(  !"#$) the user will observe 
and the higher overall degree of wearing (𝜆!"#$  !"# ∗ 𝜆!"#$%&"'(  !"#$) 
the SSD could receive. Therefore, we define the migration cost 
(MC) for VM live storage migration as: 	  

 
𝑀𝐶 = 𝛾 ∗ 𝜆!"#$  !"# ∗ 𝜆!"#$%&"'(  !"#$ 
          + 1 − 𝛾 ∗ 𝜆!" ∗ 𝜆!"#$%&"'(  !"#$ 
              = 𝜆!"#$%&"'(  !"#$ ∗ 𝛾 ∗ 𝜆!"#$  !"# + 1 − 𝛾 ∗ 𝜆!"               (4) 
 

 

where γ  defines the weight on the lifetime of SSD while 
1 − γ  is the weight on the IO performance ( 0 < 𝛾 < 1 ). 
γ > 50% means wear out issue has higher priority while γ < 50% 
means IO performance is desired more.  

 

  
Figure 5. MC for current storage 
migration schemes when γ = 0.5 

Figure 6 (a). MC when 
migrating a VM from SSD to 
SSD 
 

  
Figure 6 (b). MC when 
migrating a VM from SSD to 
HDD (the value of DBT is too high 
to be shown) 

Figure 6 (c). MC when 
migrating a VM from HDD to 
SSD 

 

Assuming neutral preference on wear-out issue and IO 
performance (γ = 0.5), Figure 5 shows the migration cost for 
existing storage migration schemes. As can be seen, no matter 
what type of underlying storage media are used, both DBT and IO 
Mirroring have extra migration cost compared to the two emulated 
scenarios (Emulated_S and Emulated_D). Further zooming in on 
each case, Figures 6 (a), (b) and (c) show how migration cost 
varies when the weight γ changes. In the case where both source 
and destination are SSDs, the larger the weight γ on λ!"#$  !"# is, 
the higher the migration cost will be.  In this situation, no matter 
where the VM IO requests are issued, the total writes to the SSD 
could not be reduced. When the source is SSD and the destination 
is HDD as shown in Figure 6 (b), the migration cost for DBT is 
way higher than that for IO Mirroring due to the long migration 
time (ranging from 11 to 21). Furthermore, since the source disk is 
SSD, running a VM on source (Emulated_S) will gain higher IO 
performance (lower λ!") than on the destination (Emulated_D), 
which leads to lower migration cost if the user cares more about 
the IO performance (γ → 0). In contrast, if one prefers to extend 
the SSD lifetime (γ → 1), Emulated_D will offer lower migration 
cost since λ!"#$  !"# is 0 when all the IO requests are issued to the 
destination (HDD). In the case where a VM is migrated from HDD 
to SSD as shown in Figure 6 (c), although Emulated_D yields 
higher IO performance, Emulated_S will provide lower migration 
cost if longer SSD lifetime is preferred. Despite the value of γ, 
current storage migration schemes always yield higher migration 
cost than simply copying the running VM (Emulated_S or 
Emulated_D). Thus, we believe the migration cost can be reduced 
by adaptively balancing the three factors: λ!"#$  !"#, λ!"#$%&"'(  !"#$ 
and λ!". 
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5. VM Live Storage Migration Schemes under 
Heterogeneous Environments 

	  

5.1. Low Redundancy Live Storage Migration Mechanism 
(LR) 
Since a VM will eventually run on the destination disk, we propose 
to issue all the write requests to the destination during the entire 
storage migration process, as shown in Figure 7. By doing so, the 
updated data will appear on the destination disk during the copy 
process and the read requests should be aware of which storage has 
the latest value. To implement this design, we leverage the bitmap 
from DBT and partition the disk image into 2 regions: copied 
region, whose data has already been copied to destination and to-
be-copied region, whose data is going to be copied in the future. 
All the writes will be issued to the destination directly while the 
writes to the to-be-copied region also need to be recorded in the 
bitmap (“set” in the Figure 7). The reads to the copied area will 
fetch data from the destination while reads to the to-be-copied area 
need to check the bitmap first. If the data block is recorded in the 
bitmap, reads will be issued to the destination. However, if not 
recorded in the bitmap, data blocks will be read from the source. 
On the other hand, the copy process could skip the data blocks that 
are recorded in the bitmap. There is one caveat: requests to the data 
blocks, which are now being copied by copy process, will be 
deferred and put into a queue. They will be handled the same way 
as the requests to the copied area after the data blocks are released 
by the copy process.  

The advantages of this design are: 1) there is zero redundant 
writes because it eliminates the merge process in DBT and 
duplicated writes in IO Mirroring; 2) copy process does not need to 
copy the entire disk image because the data blocks that have been 
written to the destination by VM write requests can be skipped; 3) 
the resource competition on disk is mitigated due to smaller 
volume of writes, which leads to higher IO performance and faster 
copy process. The benefits of this design become more evident 
when the destination disk (SSD) is faster than the source (HDD): 
when the storage migration begins, all the write requests are issued 
to faster disk (destination), which results in higher IO performance. 
In addition, the competition between copy process and VM IO 
requests is handled by SSD rather than HDD, which further 
improves the IO performance and migration time.  

Note that implementing LR scheme introduces additional 
overhead (e.g. intercepting all IO requests, skipping data blocks in 
copy process, data recovery upon failure). With our 
implementation, the total cost of filtering IO requests and 
setting/checking the bitmap is less than 2us. In terms of the data 
recovery, our scheme forks a new process to compress and log the 
updates to the system hard drives (disk for OS). Upon a failure, the 
source disk image is recovered using the logged data. Since the 
logging process is parallel to the migration process and system 
hard drive is normally separated from data hard drives, the 
performance impact on our storage migration scheme is negligible.  

     
 
  

5.2. Alternative Designs  
LR scheme essentially runs the VM on the destination at the 
beginning of storage migration. If the destination has a slower hard 
drive (HDD) than the source (SSD), all the disk IO burden will be 
laid on the slow hard drives. Therefore, in this section, we propose 
two alternative designs to further exploit the IO performance from 
faster disk.   

 
5.2.1. Source-based, Low Redundancy Storage Migration 
Mechanism (SLR) 
In the situation where the destination disk is slower than the 
source, issuing the VM IO requests to the source can achieve better 
IO performance. Thus, based on LR design, we further propose 
source-based, low redundancy storage migration mechanism 
(SLR), as shown in Figure 8. We flip over the LR design by 
issuing as many requests as possible to the source disk. Similar to 
the LR design, all the IO requests are intercepted and the VM disk 
image is divided into 2 regions: copied and to-be-copied. The IO 
requests that are issued to the to-be-copied region will be issued to 
the source storage (faster disk). For those write requests that are 
issued to the copied area, SLR issues them to the destination and 
records them in the bitmap since doing so keeps the destination 
image up-to-date without invoking the merge process. All the reads 
falling in the copied area should first check the bitmap to find out 
whether the requested data has already been updated by writes or 
not. If so, the latest data is on the destination. Otherwise, the data 
will be fetched from the faster source disk (SSD). By doing so, 
most of the IO requests are now issued to the faster source disk. 

Compared with traditional storage migration schemes, SLR has 
the edge on low redundant writes. Similar to LR, there is no merge 
process or duplicated write requests. Note that in SLR, most IO 
requests are issued to the source disk, which will yield better IO 
performance than LR. In addition, the copy process does not need 
to be interrupted every time to check the bitmap, which results in 
better migration time.  

The implementation overhead of SLR is less than that of LR 
due to the simpler copy process. Also, the recovery process is both 
simpler and easier since we only need to log the write requests 
issued to the destination, which is significantly less than the LR. 
However, SLR has its limitation: not all the IO requests are issued 
to the (fast) source disk. Write requests and fraction of read 
requests to the copied region are issued to the (slow) destination. 
Thus, in the scenario that the workload keeps updating the data 
blocks in the copied area, the IO performance of SLR will become 
similar to running the VM on the slow disk. 
 
5.2.2. Asynchronous IO Mirroring Storage Migration 
Mechanism (AIO) 
In this section, we propose Asynchronous IO Mirroring (shown in 
Figure 9) as an alterative version of IO Mirroring design, to fully 
leverage the faster disk (SSD) and achieve higher IO performance. 
 

 
 

78



	  

	   	  

 
  

Figure 7. Low redundancy storage 
migration (LR) 

Figure 8. Source-based, low redundancy 
storage migration (SLR) 

Figure 9. Asynchronous IO mirroring storage 
migration (AIO) 

   
In the original IO Mirroring mechanism, the write requests are 

duplicated in the copied region and issued to both the source and 
the destination. Due to the synchronization requirement, the slower 
storage determines IO performance. With our AIO design, IO 
request is marked as completion and returned to the VM as soon as 
one of the duplicated IO operations is accomplished. A counter is 
used to track the number of unfinished IO operations. The counter 
will be incremented upon writes and decremented when both 
requests are completed. The requests to the faster disk will first 
check the counter to see how many requests are still pending. If the 
counter is larger than a threshold (T), the write request will be 
delayed by sleeping for a certain period. The pending write 
requests can be completed during that period so that the counter 
becomes smaller than the threshold (T). In real execution, delay 
will not occur frequently because the pending write requests can be 
completed during the CPU computation, memory access and disk 
reads. In the worst case (workload continuously perform writes), 
delay will keep occurring, which makes the overall performance as 
low as running on the slower disk. 

The advantages of AIO are: 1) all the IO requests will be issued 
and handled by the faster disk (SSD) under regular IO access 
patterns, which yields high IO performance; and 2) Data recovery 
is not needed since the source disk always has up-to-date data upon 
failure.  

Compared to LR and SLR, AIO duplicates IO requests and 
generates the same amount of redundant writes to the storage 
devices as IO Mirroring does. The disk resource competition 
between the copy process and IO requests becomes more intensive, 
which may lead to longer migration time.  
 
5.3. An Analysis of Migration Cost of the Proposed 
Design and Further Extension to Massive Storage Migration 
The migration cost (MC) is always expected to be as low as 
possible. But, which scheme should be used highly depends on the 
weight γ in equation (4). LR design with lowest redundant writes 
on device will benefit the lifetime of SSDs, which will result in 
lower migration cost (MC) for a user who cares more about the 
lifetime (γ → 1). SLR design takes advantage of the higher IO 
performance of the source disk while still maintaining the low IO 
pressure on the device. Those who care about both the IO 

performance and lifetime of SSDs will tend to use SLR when 
migrating from SSDs to HDDs. AIO, which maximally exploits 
high IO performance from the faster disk, is preferred when high 
IO performance has top priority (γ → 0).   

During the entire life cycle of data center, the weight γ could 
vary dramatically. When the user demands high IO performance 
for his/her VM, γ will be close to 0 to guarantee low IO penalty. 
On the other hand, when SSD is worn out after a period, the 
lifetime would be the most desired, which will cause γ → 1. Once 
γ is set, a certain migration method (LR, SLR or AIO) could be 
chosen based on the MC in equation (4).  

Upon storage upgrade or disaster recovery, massive storage 
migration will be triggered to move all VMs on the storage. The 
total migration cost for massive storage migration on 
heterogeneous storage can be further reduced by adaptively mixing 
our proposed three designs according to different weights (γ). For 
example, if the SSD’s lifetime has top priority (γ → 1), VMs that 
are migrated to or from the SSD will be migrated via LR, which 
has the least amount of writes to the SSD. Besides, by mixing our 
three designs in different ways, the overall IO penalty and 
migration time can be optimized accordingly.  

 
6. Prototype and Experimental Setup 
We implemented DBT, IO Mirroring, and prototyped our proposed 
designs in blktap2 backend driver of Xen 4.1.2 [15], which 
intercepts every disk IO request coming from the VM. In order to 
track IO requests, we implemented a bitmap filter layer in blktap2 
driver module (/xen/tools/blktap2/drivers). The data sector is dirty 
if the corresponding bit is set to one. We also implemented the 
image copy function in blktap2 control module 
(/xen/tools/blktap2/control), which can be executed in a separate 
process alongside with the blktap2 driver module. Data structures, 
such as bitmap and copy address offset, are shared between both 
processes. We also integrated our command line interface into tap-
ctl Linux command so that we can trigger the storage migration 
using generic Linux commands. The codes for the existing and the 
proposed schemes are integrated into blktap module, which will be 
enabled once the migration command is issued. When all the data 
is copied to the destination, we pause the disk driver and modify 
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the file descriptor (fd) so that all the upcoming IO requests will be 
directed to the new disk image. We log the execution statistics for 
each scheme under the /var/log directory. We have also 
implemented additional design specific functions: 1) IO 
duplication is implemented by memcpy-ing the entire IO requests 
including address offset, size and data content. 2) Long writes are 
implemented by injecting constant delay into write requests. 
Besides, the delay is set to be 1ms and threshold is set to be 100 in 
our experiments. 3) IO requests to the destination disk are handled 
by a new IO ring structure so that the requests to the source and the 
destination do not compete for software resources (e.g. queue).  

We evaluated the downtime, migration time, IO performance, 
and the migration cost by using disk or file system benchmarks: 
Iometer [16], Dbench [17], IOzone [18] and Linux kernel 2.6.32 
compilation. Our workloads run in a VM with 1 vCPU and 2GB 
RAM. We also vary the input parameters of our benchmarks (e.g. 
outstanding IO (OIO) for Iometer, process number (proc) for 
Dbench, input size for IOzone) to simulate different I/O size and 
access patterns. Besides, kernel compilation, which is known as a 
comprehensive benchmark on CPU, memory and IO, is also used 
in our evaluation. Our virtual machines ran on self-customized 
servers with hardware specifications shown in Table 4. Two SSD 
disk arrays and Two HDD disk arrays are used as data drives while 
the local storage uses HDD to host Xen+OS and log files. Data 
Drives are connected to the server via 6Gb/s Data Link interface. 
Similar platform configurations were used in [10] from VMware. 
Our experimental VM has a 10GB system disk running Debian 
Squeeze 6.0 and a separate data disk (size ranging from 2GB to 
30GB). To avoid the interference of OS behavior, our migration 
schemes and benchmarks are performed on the data disk. In order 
to ensure the significance of the results, we execute the workloads 
for at least five times. Then, we take the average of the five results 
and show it in this paper. Besides, we have tested our prototypes 
many times to guarantee its robustness. 

 
Table 4. Hardware Specs for Our Experiment Platform  

	  
	  

7. Evaluation Results and Analysis 
 

7.1. Downtime 
Table 5 shows the downtime when we migrate the VM with kernel 
compilation benchmark running inside. As can be seen, the 
downtime for DBT is worse when the destination is an HDD 
(rather than an SSD) because the final copy of dirty data block has 
to be written to the HDD. Besides, when workloads have intensive 

IO requests and large IO working set, the merge process of DBT 
cannot even converge when the destination is a HDD. IO 
Mirroring and our proposed designs yield stable downtime. The 
reason is these designs do not have a merge process and the 
destination has the up-to-date data when the entire image is copied.   

 
Table 5. The downtime of live storage migration 

	  
	  

7.2. Impact on SSD Lifetime 
Assume the model of write requests during the storage migration 
as: α% of write requests are in the copied area while (1-α%) of 
write requests are in the to-be-copied area. β% is the percentage of 
writes that are performed on different block addresses (a.k.a the 
write working set size of workloads). Table 6 summarizes the 
percentage of write requests that are issued to the SSD under 
different scenarios: 

 
Table 6. Percentage of writes requests that are issued to SSD 

 
 
Note that (1-α%) of the writes are skipped by the copy process for 
LR design. To be fair and to keep the amount of data writes in the 
copy process the same across all five schemes, those (1- α%) 
writes are counted into the copy process for LR, which means only 
α% of writes is issued to the destination. As shown in Table 6, LR 
has the lowest amount of data writes to the SSD. SLR also has 
smaller amount of data writes than DBT and IO Mirroring while 
AIO has the same amount of data writes as IO Mirroring. Thus, 
using LR design can mitigate the wear-out issue for SSDs.  

To verify this, we run IOzone with different input parameters 
when migrating 30GB VM image on an SSD involved storage 
environment. In the case of migrating a VM disk image from an 
SSD to an HDD as shown in Figure 10 (a), LR has zero writes to 
the SSD because all writes are issued to the destination. When 
migrating from an HDD to an SSD as shown in Figure 10 (b), DBT 
will have more data writes to the SSD than the other four designs 
because β% is larger than α% for this benchmark. When both 
source and destination are SSDs as shown in Figure 10 (c), LR 
produces the smallest amount of data writes while DBT yields the 
largest amount of data writes. 

In general, DBT is the worst design while LR is the best in 
term of redundant data writes to SSDs. Since redundant data writes 
will affect the remaining lifetime of SSDs, LR can be awarded as 
SSD-preserved VM live storage migration design.  

 

CPU 3.4GHz*Intel*core*i7
Motherboard ASUS*Maximus*V*Extreme
Physical*Memroy 8*GB

Seagate*7200*rpm*hard*drives
Avearge*Data*Rate:125MB/s
Intel*520*Series*MLC*Internal*SSD
4KB*Random*Reads*50,000*IOPS
4KB*Random*Writes*60,000*IOPS

Disk*Interconnect 6Gb/s*Data*Link*

Hard*Drives

Solid*State*Drives

DBT IO Mirroring LR-Design SLR-Design AIO-Design
SSD to SSD 232ms 198ms 197ms 120ms 124ms
HDD to SSD 266ms 249ms 197ms 140ms 200ms
SSD to HDD 4000ms 298ms 200ms 150ms 201ms
HDD to HDD 900ms 199ms 246ms 179ms 260ms

DBT IO&Mirroring LR/Design SLR/Design AIO/Design
SSD&to&SSD 1+&β% 1+&α% α% 1 1+&α%
HDD&to&SSD β% α% α% α% α%
SSD&to&HDD 1 1 0 1/α% 1
HDD&to&HDD 0 0 0 0 0
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(a) From SSD to HDD (b) From HDD to SSD (c) From SSD to SSD 

Figure	  10.	  The	  total	  amount	  of	  data	  that	  is	  written	  to	  SSD	  when	  migrating	  30	  GB	  VM	  image	  
 

    
(a) 𝜆!"#$%&"'(  !"#$ (b) 𝜆!" (c) MC for IOmeter OIO=4 (d) MC for Dbench proc=16 

Figure 11. The case that VM is migrated from HDD to SSD 

 
7.3. IO Penalty, Migration Time and Migration Cost  
In this section, we compare DBT, IO Mirroring, LR, SLR and AIO 
in terms of migration time (λ!"#$%&"'(  !"#$), IO penalty (λ!") and 
Migration Cost (MC). The benchmarks with different input 
parameters are shown in Table 7. 

 
Table 7. Benchmark list 

 
 
 
7.3.1. Migrating VMs from HDDs to SSDs 
As shown in Figures 11 (a) and (b), LR exhibits advantages for 
both migration time (56% shorter than traditional design) and IO 
performance (at least 35% less IO penalty compared with 
traditional design). Issuing IO requests to the destination will not 
only benefits the IO performance but also decreases the migration 
time by skipping updated data blocks and mitigating IO contention. 
Although SLR and AIO are not designed specifically for this case, 
they both have better migration time and IO performance than the 
traditional design. By further considering the amount of redundant 
data writes (λ!"#$  !"# ), we show the migration cost for two 
benchmarks in Figures 11 (c) and (d). As can be seen, LR has the 
lowest migration cost no matter what the weight γ is. Although LR 
does not exhibit advantages in terms of SSD data writes in this 
situation, it leverages the fast access speed from SSDs to the 

greatest extent possible, which not only mitigates the IO penalty 
but also decreases the migration time.  

By further digging into results shown in Figures 11(c) and (d), 
we observe that as the weight gets close to 1, the migration cost for 
DBT and LR are increased because λ!"#$  !"#is larger than λ!"for 
these two designs. On the other hand, the migration cost for IO 
Mirroring, SLR and AIO are reduced whenγ->1. That is because 
those three designs have smaller λ!" than λ!"#$  !"# . In this 
situation, the benefits of having high IO performance and shorter 
migration time overwhelm the effect of λ!"#$  !"# when using LR. 
Thus, LR always yields the least migration cost when a VM is 
migrated from an HDD to an SSD. 

 
7.3.2. Migrating VMs from SSDs to HDDs 
By analyzing Figures 12 (a) and (b), we found that in this situation, 
SLR has the shortest migration time on average while AIO has the 
least IO penalty. Since SLR uses the source (SSD) to handle IO 
requests and generates less redundant writes, the copy process can 
consume more disk bandwidth, which results in shorter migration 
time. On the other hand, AIO takes advantage of faster disk all the 
time, which would lead to lower IO penalty. Note that DBT is 
excluded from the comparison due to its frequent failure (merge 
process takes extremely long time). As discussed in section 7.2, 
LR has zero writes to the SSD in this situation, which means it has 
an edge in preserving SSD’s lifetime. 

Figures 12 (c) and (d) show migration cost as weight increases 
from 0 to 1. The area where γ is larger than 50% is defined as 
Lifetime Preference Zone, which includes users who consider SSD 
wear-out issue as top priority; the area where γ is less than 50% is 
defined as IO Performance Preference Zone, which includes those 
who prefer to have high IO performance. As can be seen in Figures  
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(a) 𝜆!"#$%&"'(  !"#$ (b) 𝜆!" (c) MC for IOmeter OIO=4 (d) MC for Dbench proc=16 

Figure 12. The case that VM is migrated from SSD to HDD 
 

    
(a) 𝜆!"#$%&"'(  !"#$ (b) 𝜆!" (c) MC for IOmeter OIO=4 (d) MC for Dbench proc=16 

Figure 13. The case that VM is migrated from SSD to SSD 
 

12 (c) and (d), LR has relatively low migration cost in Lifetime 
Preference Zone due to zero writes to SSDs. Besides, the more the 
γ is close to 1, the less the migration cost will be for LR. In IO 
Performance Preference Zone, AIO is more desired as γ becomes 
smaller. As SLR maintains the balance between migration time, IO 
penalty and the amount of SSD data writes, it has the lowest 
migration cost when γ is around 0.5. 
Further investigating in the trend of migration cost, we found that 
the slope for LR is negative, which means that the migration cost 
for LR keeps decreasing as the weight moves towards 1. However, 
the migration cost will increase for the other four designs as γ 
increases. Thus, when migrating from SSDs to HDDs, the weight 
determines which design has the lowest migration cost. If IO 
performance is preferred, AIO is the most suitable decision; if SSD 
wear-out issue is the main concern, LR is the best policy; if the IO 
performance and SSD lifetime are equally important, SLR will 
yield the lowest migration cost. 

 
 

7.3.3. Migrating VMs from SSDs to SSDs 
When a VM is migrated from SSDs to SSDs, issuing requests to 
source or destination does not affect the migration time and IO 
performance significantly. In terms of migration time as shown in 
Figure 13 (a), on average, SLR and AIO take slightly shorter time. 
LR has slightly longer migration time because of the overhead to 
check bitmap in the copy process. In terms of IO penalty, DBT has 
the least IO penalty; LR ranks second as shown in Figure 13(b). 
However, DBT generates the largest amount of data writes to the 
SSD while LR has the least amount of data writes to the SSD as 
discussed in Section 7.2. When considering migration cost, which 

is shown in Figures 13 (c) and (d), LR yields the least cost except 
when the weight (γ) is 0. Besides, the migration cost for DBT will 
increase faster than others as the weight increases because it has 
the largest slope rate. SLR, although yielding slightly more 
migration cost when γ =0, has a relatively low migration cost than 
DBT when γ lies between 0.1 and 1. In total, we believe that SLR 
will be the best choice when IO performance is desired. For the 
majority of cases (0.2<γ<1), LR is the best migration policy, which 
shows the lowest migration cost.  

 
7.3.4. Migrating VMs from HDDs to HDDs 
In the situation that no SSD is involved, the wear-out factor 
λ!"#$  !"# will not affect migration cost at all. As shown in Figure 
14 (a), LR takes the shortest time to migrate a VM while DBT 
takes the longest time and occasionally even fails to complete the 
migration. Besides, the downtime for DBT is longer than others as 
discussed in Section 7.1, which makes us exclude DBT from 
comparison. In terms of IO penalty, which is shown in Figure 14 
(b), SLR is the best; AIO ranks second. There is a tradeoff between 
migration time and IO performance in this situation: lower IO 
penalty (λ!") can only be achieved by sacrificing the migration 
time λ!"#$%&"'(  !"#$. Taking both factors into consideration, Figure 
14(c) shows the migration cost (MC) for all the five designs. On 
average, SLR has the lowest migration cost; LR ranks the second.  

 
7.4. Towards Lower Migration Cost in Massive Storage 
Migration by Mixing Different Designs 
As mentioned before, each individual design has its own strength. 
In this section, we show an example to demonstrate how to further 
reduce the overall migration cost in massive storage migration by  
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(a) 𝜆!"#$%&"'(  !"#$ (b) 𝜆!" (c) MC 

Figure 14. The case that VM is migrated from HDD to HDD 
 

   
(1) γ= 10% (2) γ=50% (3) γ=80% 

Figure 15. Overall MC of the massive storage migration on heterogeneous storage environment 
 

mixing all three designs. Consider that we want to move all the 
VMs from one storage pool to another for the purpose of storage 
maintenance. Assume the percentage of VMs that will be migrated 
from SSDs to SSDs is the same as the percentage of VMs that will 
be migrated from HDDs to HDDs (ε). And the number of VMs that 
are migrated from SSDs to HDDs is the same as the number of 
VMs that are migrated from HDDs to SSDs, which will be (1-ε-
ε)/2=0.5-ε. The migration cost of the massive storage migration 
will be the sum of cost for each individual storage migration. To 
simplify the discussion, we consider weight γ as 10%, 50% and 
80%.  

Figures 15 (1), (2) and (3) show the migration cost for the 
massive storage migration when we deploy each single storage 
migration design (LR, SLR and AIO) and mix them together 
(Mix). As can be seen, under different weights γ and percentage of 
migrating between heterogeneous storage media (0.5-ε), mixing all 
the three designs (Mix) can always achieve lower migration cost. 
This is because Mix always chooses the migration scheme with the 
lowest migration cost for each single storage migration behavior. 
For instance, when the SSD lifetime is top priority (γ >50%), most 
of the VMs will be migrated using LR, which makes the migration 
cost of Mix close to that of LR (1% lower than LR but 69% lower 
than AIO). In the case that the IO performance is desired and most 
of the migration occurs on the same storage media (ε->0), Mix will 
be relatively close to AIO but still has the lowest migration cost 
(48% lower than AIO). 

 
8. Related Work 
To eliminate the merge process in DBT and achieve stable and low 
downtime and migration time across benchmarks, [10] proposed 

IO Mirroring storage migration mechanism, which aims to 
maintain data consistency between the new and old images during 
migration by duplicating IO requests in the copied region. Our 
proposed techniques differ from IO Mirroring in that they fully 
exploit the performance characteristics of SSDs while taking SSD 
lifetime into consideration. [11, 14] implemented live VM 
migration in wide area network (WAN) equipped with persistent 
storage. The block-level disk pre-copy mechanism is employed to 
transfer the VM disk image. The write IO requests are throttled to 
reduce the dirty block rate and IP tunneling is used to make the 
network switching transparent to guest OS. [12] proposed to 
couple VM memory copy with disk copy to hide the downtime of 
VM live migration into that of storage migration and [13] takes 
workload behavior into consideration when performing storage 
migration. Our proposed techniques are orthogonal to these 
schemes and can be combined together to further improve the 
efficiency of virtual machine storage migration in light of 
heterogeneous storage media. [23] leverages the copy-on-write 
features in virtual storage and puts the read-only templates of VM 
disk images on SSDs. However, the storage migration behavior 
and the wear-out issue are not considered in their work. [24] 
focuses on file system level implementation of hybrid SSD storage 
systems, which intends to improve the IO performance via faster 
SSDs. However, their work does not consider the migration, wear-
out issue, and virtual disk image. [25] implements a virtualized 
flash storage layer for Fusion-io device, which will yield shorter 
IO response. However, both wear-out issue and migration behavior 
are not considered.  
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9. Conclusion 
As SSDs emerge as an indispensable media for cloud storage, their 
strength and weakness should be taken into account in storage 
management, such as VM storage migration. Nevertheless, existing 
mainstream storage migration schemes (e.g. DBT and IO 
Mirroring) do not fully exploit the features of SSDs. Even worse, 
they wear out SSD devices severely. In this paper, we propose a 
new metric, migration cost, which characterizes the cost for 
storage migration mechanisms from multiple aspects: migration 
time, IO penalty, SSD lifetime and preference (on IO performance 
and SSD lifetime). We propose three new storage migration 
mechanisms to achieve lower migration cost. Each of the proposed 
schemes has its own strength: 1) LR has the lowest possible 
redundant writes; 2) SLR leverages IO performance of the source 
disk while still maintaining the attribute of low redundancy and 3) 
AIO aims at achieving the highest possible IO performance. Our 
prototype-based evaluation shows that all three designs yield stable 
downtime (around 200ms) and lower migration cost than 
traditional mechanisms (DBT and IO Mirroring). By mixing them 
in massive storage migration, the overall migration cost can be 
further reduced by 48% at most compared with the best of each 
individual mechanism.  
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