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Optimizing GPU-based Graph Sampling and
Random Walk for Efficiency and Scalability
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Abstract—Graph sampling and random walk algorithms are playing increasingly important roles today because they can significantly
reduce graph size while preserving structural information, thus enabling computationally intensive tasks on large-scale graphs. Current
frameworks designed for graph sampling and random walk tasks are generally not efficient in terms of memory requirement and
throughput. Not to mention that some of them result in biased results. To solve the above problems, we introduce Skywalker+, a
high-performance graph sampling and random walk framework on multiple GPUs supporting multiple algorithms. Skywalker+ makes
four key contributions: First, it realizes highly paralleled alias method on GPUs. Second, it applies finely adjusted workload-balancing
techniques and locality-aware execution modes to present a highly efficient execution engine. Third, it optimizes the GPU memory
usage with efficient buffering and data compression schemes. Last, it scales to multi-GPU to further enhance the system throughput.
Abundant experiments show that Skywalker+ exhibits significant advantage over the baselines both in performance and utility.
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✦

1 INTRODUCTION

G RAPH has drawn great attention these years since
graph can effectively model entities and their relations

in the non-Euclidean space. Most of traditional graph pro-
cessing algorithms mainly study the low-level information
[1], [2], while graph learning algorithms adopt graph em-
bedding to reduce target graphs to low-dimension vectors.
The learned embedding can be used for the downstream
tasks. It has been actively studied in recommendation sys-
tem, e-commerce, and many other fields [3].

However, graph representation learning suffers time-
consuming feature engineering. With multi-level optimiza-
tions, its overhead is still much higher than the cost of clas-
sical graph data traversal since graph learning requires cap-
ture graph features in multiple and deep levels. The ever-
increasing size of graph data can be handled by graph sam-
pling and random walk algorithms. These algorithms focus
on local structural information and global information, re-
spectively. Additionally, it enables the use of deeper and
more intricate neural networks on massive graphs. Some
graph learning algorithms (e.g., node2vec [4], DeepWalk [5]
GraphSAGE [6], Para-GCN [7] and GraphSAINT [8]), which
learn from sampled embedding, can approximate or even
outperform directly learning from the intact graph. While
helping large-scale graphs without sacrificing performance,
these algorithms take a non-negligible amount of time to
extract the embedding. As discussed in previous work [9],
the sampling process for GraphSAGE training can take up
to 82% of the total execution time. Therefore, accelerating
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graph sampling is of great significance for the research and
adoption of GNN algorithms.

As sampling can be executed following the vertex-
centric execution model [10], some works modified state-
of-the-art graph processing frameworks to support sam-
pling algorithms. For example, DrunkardMob [11] extends
GraphChi [12] to support out-of-memory random walk ca-
pability while Deep Graph Library (DGL) [13] applies Gun-
rock [14] to perform graph sampling. While exhibiting some
extent of utility and performance, these systems treat graph
sampling same as traditional graph algorithms, ignoring its
unique properties.

Specialized graph sampling frameworks have been pro-
posed to maximize the overall sampling throughput both
on CPU and GPU. KnightKing [15] is a distributed random
walk system based on the alias method [16]. The system
excels in graph sampling, but it requires building the alias
table for all the vertices of the graph dataset. Recently,
ThunderRW [17] introduces a step-interleaving technique,
which switches among different walk queries to reduce the
CPU pipeline stalls resulted from irregular memory access.
Some works further apply CPU designs to GPU to leverage
their massive computing power and high memory band-
width. C-SAW applies inverse transform sampling (ITS) [18]
method to select neighbours, while NextDoor adopts the
rejection sampling technique from KnightKing. Although
these frameworks shows superior performance compared
with their CPU-based predecessors, they fail to implement
most advanced sampling algorithms, having problems such
as high time complexity and highly varied trial number.

Note that the above specialized system designs all have
their limitations. While CPU-based frameworks manage to
alleviate irregular memory success, the overall performance
is limited compared with GPU-based ones due to lack of
parallelism. On the other hand, GPU-based systems stuck in
the problem of insufficient GPU memory. Once using host
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memory, low PCIe bandwidth can be a severe bottleneck.
One may choose to neglect high-degree vertices to improve
performance [19], but it ends up getting inexact results.

In this paper we aim to achieve high-quality sam-
pling/walking in an efficient and scalable way. We thor-
oughly investigate existing algorithms, frameworks, and
systems for sampling. Prior works [1], [19] believe that the
alias method is not suitable for GPU execution. Neverthe-
less, we believe the alias method is underestimated and has
shown great potential for performance optimization. Our
goal is to execute low-complexity sampling while amortiz-
ing the high-complexity preprocessing cost and preserving
the sampling quality.

We introduce Skywalker+, an high-performance solution
specialized for graph sampling and random walks on mul-
tiple GPUs exploiting both intra- and inter-instance paral-
lelism while optimizing memory access and data locality.
It provides usable interfaces and comprehensive support
for all kinds of algorithms We have further extended our
design to multiple GPUs, using balanced workload par-
tition and locality-aware data management strategies to
optimize the sampling throughput. Extensive experiments
show that Skywalker+ exhibits significant advantage over
the baselines while maintaining robustness on handling
large graphs. We have open-sourced Skywalker+, which can
be accessed online 1.

This work highlights the following contributions:

• We realize highly paralleled alias table construction
on GPUs, making it practical for efficient SIMD exe-
cution for the first time.

• We propose an efficient execution engine support-
ing various sampling algorithms. It is capable of
determining the proper execution mode as well as
balancing the workload.

• We exploit the data locality in graph sampling by
leveraging a locality-aware asynchronous execution
strategy. It reorganizes the execution order so that
the cached data is more likely to be reused.

• We introduce efficient buffering and data compres-
sion schemes to optimize the GPU memory usage, ac-
celerating the execution process while cutting down
the memory footprint.

• We extend the graph-friendly versatile sampler and
alias table optimization to the multi-GPU domain.
We devise efficient graph partition and GPU com-
munication methods, which can effectively utilize
multiple GPUs for better scalability.

• We put the above techniques together and present
Skywalker+, a novel system executing various graph
sampling algorithms with high computing and mem-
ory efficiency. Abundant experiments show that Sky-
walker+ exhibits significant advantage over the base-
lines both in performance and utility.

2 BACKGROUND

2.1 Graph Sampling and Random Walk
We start from the terminology of graph sampling and ran-
dom walk. Graph sampling and random walk are two al-

1. https://github.com/wpybtw/Skywalker
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gorithms widely used to extract small-size embedding form
large graphs while preserving structural information. They
can be considered as pro-processing processes for down-
stream graph learning tasks. Sampling and random walks
can be regarded as embarrassingly parallel computing tasks,
since they seldom update graph information. Specifically,
sampling and random walks can be unbiased (unweighted)
or biased (weighted). The former selects the neighbors uni-
formly, while the latter computes the transition probability
according graph property.

Graph Sampling. In graph sampling, several samplers
start from one given root vertex and repeatedly selects
several neighbors to generate a small sample graph from
the large graph dataset, thus aggregating the neighbor in-
formation of the root vertex. The selection process can be
either uniform (unbiased sampling) or based on a specific
transition probability distribution (biased) generally calculated
based on the weight of edges. A fixed number of neigh-
bors are chosen for each layer when performing Neighbor
sampling, as Figure 1 shows. GraphSage [6] is an induc-
tive algorithm to learn graph embedding using Neighbor
sampling, sampling k-hop neighbours. Hop indicates the
distance of the target vertex to the seed vertex.

Random Walk. The random walk algorithms work sim-
ilarly to sampling. Walkers repeatedly select one neighbor
and moves to the selected vertices from their residing ver-
tices until satisfying certain conditions, as Figure 2 shows.
Personalized PageRank (PPR) [20] is a optimized ver-
sion of PageRank [21]. Deepwalk [5] is an unbiased walk
algorithm, while a later work [22] extends it to a biased
version. Some dynamic algorithms further use runtime in-
formation to make decision. Node2vec [4] introduces the
2nd order random walk and defines two hyperparameters
for the walking states.

Summary. Random walk algorithms can be seen as spe-
cial cases of graph sampling that only select (at most) one
vertex per step. They both select vertices based on the
connectivity of graphs, leaving the opportunity to optimize
them at the same time. For conciseness, we use sampling to
refer to both the two algorithms. We term the vertices whose
neighbors are to be selected as transit vertices.

2.2 Sampling Operations
For unbiased sampling, we can directly generate an random
integral number to select the neighbour to be sampled in
the next step of the current vertex. On the other hand, there
are multiple neighbouring selecting methods when it comes
to biased sampling, which are introduced next. We use an
example where v1 to v4 are the adjacent vertexes of v0 and
have edge weight of 1, 1, 1 and 2 respectively to demonstrate
the workflow of these methods.
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Fig. 3: Popular neighbour selection methods

Inverse Transformation Sampling (ITS) firsts computes
the CDF on its preprocess stage. Suppose a vertex u has
neighbours v1, v2, . . . , vn with bias of edge euvi being pi.
Then we can get the CDF as p′i =

∑i
j=1 pj . On the execution

stage, ITS generates a uniform real number x in [0, p′n), then
uses binary search to determine the smallest index i such
that x < p′i, and selects vi. Figure 3(a) shows the CDF. If
we generate a random number as 0.8, then v4 should be the
sampled vertex. The preprocess takes O(n) time and space
while the execution takes O(log n) time.

Rejection Sampling calculates p∗ = max pi on its pre-
process stage. The execution stage takes two steps: (1) gen-
erates a uniform integer number x in [1, n] and a uniform
real number y in [0, p∗); and (2) if y < px, then select vx;
otherwise repeat step (1). The time complexity of preprocess
and execution are O(n) and O(n×p∗

∑
pi
), respectively. Since it

only needs to store the max bias p∗, the space complexity is
O(1). As shown in Figure 3(b), the rectangle areas covering
(0,0) to (3,1) and (4,0) to (4,2) is the envelope and the sampling
is accepted as long as it falls into these areas.

Alias method builds two tables on its preprocess stage:
a probability table P and an alias table A. All biases are
distributed into n groups of the same total bias. The vertices
with biases above average fill up the gap of those with biases
below average. As Figure 3(c) shows, v4 uses its bias to help
v1, v2, v3 to form a normalized distribution. The normalized
bias (i.e., {0.8, 0.8, 0.8, 1}) is then recorded in the probability
table while the alias table records {v4, v4, v4, v4}. We then
need to produce two random numbers in order to select one
sample. While the first one chooses an index, the second
one chooses the vertex of that index or its alias vertex stored
in the alias table. The complexity of building an alias table
for a vertex is O(n); however, the cost of drawing sample
once based on the table is O(1). The complete probability
table and alias table both have |E| elements, where E is the
number of edges in the target graph.

2.3 Limitations of the Prior Work

Multiple CPU-based frameworks have been proposed to
accelerate graph sampling tasks. Knightking [15] leverages
rejection sampling along with the alias method for lower
sampling cost. ThunderRW [17] makes further optimization
by alleviating irregular memory access. But the overall
performances of these frameworks are limited compared to
GPU-based frameworks, as GPUs far overwhelm CPUs in
massive parallel computing.

While showing higher throughput, existing GPU-based
frameworks fail to provide comprehensive support for
graph sampling. For example, C-SAW (the latest work on
GPU-based sampling) can easily produce biased results. It
is because its open-sourced implementation [19] simply
choose to skip the vertices with degrees over 8000 when
computing Cumulative Transition Probability Space for the
vertices. In addition, C-SAW applies simple binary search
to draw samples, which leads to high time complexity com-
pared with alias method (O(log n) vs. O(1)). Furthermore,
the C-SAW implementation fails to optimize the storage
of intermediate data and sampling results, storing them in
space-consuming data structure. Accoding to our profiling
results, it can only issue about 4000 in-memory random
walkers at a time on a RTX 2080Ti with 11 GB memory.

Another key work is NextDoor [9]. It is based on re-
jection sampling, but it suffers from the problem of highly
varied trial number. It can lead to severe slow down espe-
cially on large graphs. The biases of some hotspot vertices
could be so large in this case that result in unexpectedly
large average trail number.

2.4 Key Design Considerations

Once the alias table is built, the sampling process takes
constant time as long as the graph bias does not change.
This is significant as downstream GNN tasks always re-
quire multiple iterations of training, generating multiple
sampling/walking queries on the same graph.

However, although alias methods shows superiority in
execution stage, building the alias table appears to be the
bottleneck especially for dynamic sampling algorithms such
as node2vec. A natural way to speed up this procedure is
leveraging parallel processors such as GPGPUs. However,
alias table construction is considered to be problematic on
GPUs [1], [19].

Wei et al. [23] found that their GPU implementation of
alias method [1] performs even worse than the CPU version.
Specifically, adopting the alias method on GPU platforms
haves four challenges:

1) The alias method is hard to parallelize on GPU. Classical
alias table construction method is executed largely
in serial, making it non-trivial to map the alias table
to SIMT-style GPUs.
Unpredictable logical branching would result in
warp divergence if the serial portion of the method
were naively mapped to each GPU thread.

2) It is nontrivial to implement the application-aware exe-
cution engine. The irregularity of graphs leads to ex-
tremely unbalanced workload distribution, creating
severe stragglers. Besides, samplers may visit any
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part of the graph, which leads to frequent thrashing
in both cache and on-board memory.

3) It is difficult to effectively utilize the hybrid mem-
ory structure. While processing many sampling in-
stances concurrently is preferable, constructing an
alias table for each vertex requires large memory
space (detailed in §3.4.1). Therefore memory can be
a scarce resource for graph sampling workloads.

4) It is non-trivial to schedule workloads on multiple GPUs.
Since graph tends to have skewed distribution, sim-
ply dividing workload according to vertex can lead
to inefficiency on different GPUs. Besides, it would
suffer from massive long-latency accesses to remote
data without careful arrangement.

3 SKYWALKER+
In this paper, we aim to address the aforementioned chal-
lenges and unleash the potential of the alias-method-based
sampling on GPUs.

We propose Skywalker+, a highly efficient framework
for random walk and graph sampling algorithms on hetero-
geneous computing platform. The optimization strategies
of our design are multi-pronged, leading to significantly
improved efficiency and scalability with multiple GPUs.

3.1 Design Overview
As shown in Figure 4, Skywalker+ is optimized along
multiple dimensions. We revisit the sampling/random walk
algorithm, devise the parallel execution engine, fine-tune
memory usage, and enable multi-GPU scheduling.

1) At the algorithm level, we separate the samplers of
Skywalker+ so the construction process of the alias table
and sampling process of the graph can be done in parallel.

2) In terms of computing engine, we leverage a new
execution model that can fully utilize the parallelism of
independent sampling instances. It not only utilizes the high
computing power of the SIMD architecture, but also exploits
data locality of graph applications.

3) For memory management, we build memory hierar-
chy aware scheme that can reduce memory requirement for
large graphs. Doing so allow us to further accelerate the
entire graph sampling process.

4) Finally, at the cluster level, our multi-GPU scheduler
distributes workloads evenly based on interleaved indices
and leverages a heuristic strategy to instruct the execution.
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Fig. 5: Speculative execution of Skywalker+.

In total, Skywalker+ supprots a number of different
workloads and execution modes. For example, it can con-
structs the alias table as an offline procedure. It can also
work in a realtime mode, which is necessary for dynamic
sampling tasks that cannot build the entire table beforehand
without runtime information.

3.2 Tapping into Intra-instance Parallelism

To effectively run the alias method on GPUs, we parallelize
the alias-table constructing algorithm while taking load
balancing into consideration.

3.2.1 Parallel Table Construction Algorithm

Skywalker+ assigns many threads to compute the alias table
of a single vertex in order to make use of the parallelism
of the GPU. A workgroup is a collection of threads that
cooperate to process nearby vertexes within a single thread
warp/block. We use atomic operations so that threads in
a workgroup can simultaneously put vertices into Large
and Small. Each thread in a workgroup handles one pair of
large-/small- bias vertices individually.

If the proportion of vertices in Large or Small is uneven,
the parallelism of the construction would be restricted. For
example, we take into account a workgroup with eight
threads in Figure 5(a). Only three vertices make up Large,
but Small’s size is equal to or more than eight. Five threads
will therefore be idle because only one large-bias vertex can
be processed. Note that Large and Small do not necessarily
have equal sizes, this circumstance occurs frequently.
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Algorithm 1: Parallel alias table construction.
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Algorithm 1: Serial algorithm to construct alias table.
Input: B = {b1, b2, ...bn}
Result: Prob,Alias

1 Large = Small = Alias = ∅;
2 Prob = {pi|pi = n∗bi∑n

1 bj
, 1 ≤ i ≤ n} ;

3 for i = 1 to n do
4 if pi > 1 then
5 Large = Large ∪ {vi};
6 else
7 Small = Small ∪ {vi};
8 end
9 while Large 6= ∅ And Small 6= ∅ do

10 vs = Small.pop();
11 vl = Large.pop();
12 Prob[vl] = Prob[vl] + Prob[vs]− 1;
13 Alias[vs] = vl;
14 if Prob[vl] > 1 then
15 Large = Large ∪ {vl};
16 else if Prob[vl] < 1 then
17 Small = Small ∪ {vl};
18 end

Algorithm 2: Parallel alias table construction.
Input: Large, Small, Prob, Alias
Result: Prob,Alias

1 while Large 6= ∅ do
2 if ThreadIdx < Large.size then
3 IsMain = true;
4 else
5 IsMain = false;
6 vs = Small.pop();
7 if ThreadIdx == 0 then
8 Large.size− = MIN(Large.size,GroupSize);
9 vl = Large[ThreadIdx mod Large.size];

10 oldP = atomicSub(Prob[vl], (1− Prob[vs]));
11 if oldP − (1− Prob[vs]) < 0 then // Roll back
12 AtomicAdd(Prob[vl], (1− Prob[vs]));
13 Small = Small ∪ vs;
14 else // Successful update
15 Alias[vs] = vl;
16 if IsMain then
17 if Prob[vl] > 1 then
18 Large = Large ∪ vl;
19 else if Prob[vl] < 1 then
20 Small = Small ∪ vl;
21 end

3.2.2 Handling Complex Bias Distribution

To handle complex bias distribution, we devise a speculative
execution mechanism. In the alias method, we can allow
numerous small-bias vertices to aggressively consume the
bias of large-bias vertices since the bias of vertices in Large
will eventually be dispersed into several buckets of vertices
in Small. However, in the worst case, this could lead to
negative bias value. The threads that consume excessive re-
sources in this case should roll back their execution. Thus we
further devise a parallel alias table construction algorithm to
handle complex bias distribution.

The detailed parallel algorithm is shown in Algo-
rithms 1. We illustrate how the algorithm works together
with Figure 5(b). Eight threads in a workgroup work co-
operatively. Each thread has a unique smaller-bias vertex
to process. As for large-bias vertices, there are only three
of them. Specifically, we term the threads with a local index
less than the size of Large as main threads. Main threads hold
the ownership of the respective vertices, and are responsible
for enqueuing that vertex to Large or Small at the end of
the steps. Those non-main threads can also consume the
bias of one large-bias vertex for its smaller-bias vertices
even though they do not hold the ownership. Thus, thread
t0, t1, t2 are the main threads, holding the ownership of
vertex vl0 , vl1 and vl2 , respectively. All threads try to process
their low-bias vertices using atomic operations, specula-
tively. If the resulted probabilities are valid, the specula-
tive execution is succeeded. Otherwise, the corresponding
threads withdraw their probability updates. Note that the
atomic functions in Algorithms 1 return the original value
before modification, following CUDA’s semantic [24]. At the
end of this step, main threads enqueue the large-bias ver-
tices to Large or Small based on their current probability.
In this way, the parallelism is improved. Algorithms 1 shows
the parallel algorithm. Speculatively, all threads attempt to
process their low-bias vertices using atomic operations. The

execution of the speculation is successful if the probabilities
that were generated are positive.

3.3 Tapping into Inter-instance Parallelism
This section explains how Skywalker+ makes use of the
graph sampling inter-instance parallelism.

3.3.1 Versatile Sampler
We propose versatile sampler, a new execution model which
enables GPU threads to engage in various levels of collabo-
ration for alias table creation with the minimal overhead.

Our design features a multi-level load balancing tech-
nique for assigning GPU resources for vertices with various
degrees of skewness. Specifically, it uses two key param-
eters, the warp-processing threshold and the block-processing
threshold, to decide the various sizes of workgroups for one
transit vertex. For example, several threads working in the
same warp are used to build the alias table for low-degree ver-
tices whose degrees are below the warp-processing thresh-
old. Threads within a block collaborate to process vertices
with degrees greater than the block-processing threshold.

The jobs in a queue are processed by GPU kernel threads
that remain active during execution until there are no job
left. Threads contained within one block of execution can
switch between different modes if necessary. We devise
collective samplers at the sub-warp level, warp level, and
block level. We use shared memory to store sampler context.
In contrast to prior execution model [25] where threads in
one block independently complete the same task on several
inputs, our versatile sampler allows threads in one block
to switch between three working modes. As the burden of
alias table formation varies greatly for each vertex, a distinct
number of threads collaborate to process one task.

3.3.2 Semi-asynchronous Execution
The workload for each vertex is significantly skewed due
to the irregularity of graphs, and therefore all the existing
iterative-based GPU sampling frameworks can face signifi-
cant performance overhead due to the straggler issue.

We use a semi-asynchronous [26] execution model, other
than conventional synchronous one. In particular, the sam-
plers in Skywalker+ separately handle each job after con-
tinuously requesting it from a per-depth global queue. One
sampler advances to process jobs for the next depth without
waiting for other samplers when the current depth has no
jobs in the queue and just one sampler is available.

The execution flow of Skywalker+ is depicted in Fig-
ure 6: 1⃝ A subwarp-collective sampler is executed by each
thread warp. The sampler builds the alias table and draws
samples for the low-degree transit vertex. 2⃝ A sampler
adds a high-degree transit vertex to a queue that holds high-
degree jobs whenever it receives one. Our design momentar-
ily saves mid-degree transit vertices in a per-SM queue. 3⃝
Subwarp-collective samplers can form one warp-collective
sampler to process jobs in the per-SM queue when the
global job queue for the current iteration is empty. 4⃝ Warp-
collective samplers in a thread block gather together and
become a single block-collective sampler when the per-SM
queue is empty. 5⃝ The transit vertices in the high-degree
queue are processed by the block-collective sampler. 6⃝ For
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Fig. 6: Skywalker+’s semi-asynchronous execution flow.

the following iteration, the block-collective sampler changes
back to subwarp-collective samplers.

3.3.3 Locality-aware Asynchronous Execution
When performing online sampling, the samplers need to
access all the neighbors of transit vertices to construct alias
tables. In this case, data locality is crucial for performance.
Though the above semi-asynchronous execution style is
efficient in load-balancing, it overlooks the locality existing
in sampling just like other existing GPU-based method im-
plementing the synchronous style. Vertices in large graphs
are partitioned and processed successively, eliminating the
chance of leveraging data locality. It can lead to frequent
data thrashing, since data may be evicted from cache even
it is to be used in the next iteration.

For example, suppose we need to sample vertex 0 and
4 in the example graph of Figure 7 in an iterative-based
manner. The graph is divided into two parts so that each
part can fit into a virtual cache. For the given sample results,
the procedure is as follows: vertex 0 and 4 are in the frontier
of the first iteration; to construct the alias table for vertex
0, Sampler0 loads partition A and then selects vertices 3
and 4; then, Sampler1 loads partition B and selects vertices
3 and 5; similarly, we construct the alias table and select
neighbors for vertices 3, 4, 3 and 5. In this way, we need to
repetitively load graph partitions to process each sampling
task in iterative execution order, which is highly inefficient.

To address the above problems, Skywalker+ further in-
troduces a locality-aware asynchronous execution strategy
to explicitly exploit the locality existing in sampling. The
main idea is to rearrange the order in processing the transit
vertices based on their position in the graph so that the
cached data is more likely to be reused.

Specifically, we partition the graph into subgraphs virtu-
ally based on vertex indices. Then, a locality-aware sampler
creates one sub-frontier for each subgraph. During execu-
tion, tasks in the same sub-frontier are processed succes-
sively while the newly-generated sampling tasks enqueue
into their corresponding sub-frontiers. The tasks from dif-
ferent sampling depths can be processed together. In other
words, once a warp- or block- sampler constructs the alias
table and selects several samples, the newly-generated sam-
pling tasks can be processed immediately as long as they
belong to the same subgraph. For example, as shown in
the locality-aware execution of Figure 7, instead of moving

to vertex 4 stored in another partition, the sampler first
sample on vertex 2, thus eliminating an unnecessary sub-
graph switching. In this way, the data loaded in the cache is
more likely to be reused and the number of loading data in
memory is reduced eventually. On the other hand, if thread
blocks do not get valid tasks from the current sub-frontier,
they will immediately move on to the next sub-frontier and
do not wait for other blocks.

3.3.4 Selecting Vertices

Skywalker+ choose vertices depending on the con-
structed alias table. Sampling algorithms generally use sam-
pling without replacement. In other words, there shouldn’t
be any repetition in the vertices chosen for a single transit
vertex. This leads to repeatedly sampling overhead, which
stems from duplicate detection and resampling. Skywalker+
adopts several techniques to reduce this overhead for both
offline and realtime workloads.

We use a bitmap for each transit vertex for duplicate
detection. Each bit in the bitmap specifically specifies indi-
cates whether a certain vertex has been chosen. To avoid
selecting the same vertex again when selecting, threads
employ atomic compare-and-swap operations. Besides, Sky-
walker+ aggressively lets excessive threads atomically in-
crease a counter. With twice or more threads than actually
needed vertexes (depending on a pre-set expand factor)
launched to select one neighbour using atomicCAS to gener-
ate unique results, the warp is more likely to succeed in one
trial. For high-degree vertices, collisions would be rather
rare. For low-degree vertexes smaller than the expand factor,
Skywaker+ directly submits all its neighbors.

With already constructed alias table, we can perform re-
sampling with a constant O(1) overhead. No repetitive alias
table construction is needed since the graph bias does not
change. Thus, Skywalker+ has significant advantage over
other frameworks such as C-SAW which requires O(log(d))
operations to resample.

3.4 Memory-side Optimizations

This section explains how Skywalker+ optimizes memory
access and lowers memory usage when creating alias tables.

3.4.1 Fast Alias Table Construction

To create the probability table and alias table (Prob and
Alias) for one vertex, we need to load all its neigh-
bors in queues and process them with frequent enqueu-
ing/dequeuing operations. Skywalker+ leverages shared
memory of GPUs to further optimize the buffer. For ex-
ample, each SM supports 1024 concurrent threads at most.
Thus, each warp can be provisioned with around 1.5 KB
shared memory. This means a warp-collective sampler can
process nearly 100 elements using buffer shared memory,
which is larger than a reasonable warp-processing thresh-
old. For a block-collective sampler, shared memory in each
SM alone is not sufficient for processing vertices with ex-
tremely high degrees. In this scenario, Skywalker+ splices
shared memory and global memory for the buffer. In other
words, the buffer falls back to global memory when the
required buffer size is larger than the size of shared memory.
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In this way, Skywalker+ reduces the memory requirement
to:

Mem3 = K ×#SM ×BlockPerSm×MaxDegree.

Skywalker+ thus drastically lowers the amount of mem-
ory needed to generate an alias table by utilizing low-
latency shared memory on the GPU.

3.4.2 Table Storage Compression
As discussed in section 2.2, the entire graph’s alias table
requires roughly twice as much storage space as the graph
structure data. This severely limits the ability to sample
huge graphs given the GPU’s low memory capacity.

Skywalker+ adopts a compression technique on the alias
table to solve the aforementioned problem. The original
alias approach specifically maintains the neighbor vertices’
indices, which span from 1 to |V |. Vertex indices must be
identified using a 4-byte format for graphs with millions of
vertices. Skywalker+ solves this issue by storing the offset
in the alias table rather than the vertex indices. Skywalker+
can utilize 1-byte, 2-byte, or 4-byte format for the alias array,
depending on the graph’s maximum degree.

3.5 Scaling to Multi-GPU
To the best of our knowledge, prior work does not consider
alias method based graph sampling on multiple GPUs. In
this work we first investigate the scalability of our design
and adapt our system to the multi-GPU environment. To
fully utilize the parallelism of multiple GPUs, we adopt
the following strategies to partition graphs, distribute work-
loads and manage data for higher system throughput.

3.5.1 Locality-centric Graph Partition
When handling large graphs, Skywalker+ first partitions the
integrated graph so that the subgraphs can be accommo-
dated to different GPUs respectively.

Graph partitioning with Multi-GPU. Skywalker+ partitions
the workload by vertex indices instead of vertex number
as table construction has O(d) complexity for each vertex.
Skywalker+ inspects the vertex index offset first and then
partitions the workload so that the partitions have similar
edges for better load-balance.

Alias table partitioning with Multi-GPU. Alias table com-
poses of an alias array and a probability array, which is
stored corresponding to the input order. It requires extra
space and time if we want to rearrange alias tables. The in-
tegral alias table is stored in the host memory and accessed
through PCIe if there lacks enough space in GPU memory.

3.5.2 Balance-ensured Workload Distribution
Workload distribution is a key factor in Multiple GPU com-
puting since straggler GPUs can severely lower the overall
performance. Skywalker+ distributes the workload evenly
for alias table construction and sampling in both realtime
and offline sampling scenarios to alleviate this problem.

Alias table construction with Multi-GPU. Each GPU is
distributed with certain partition of graph data. Based on
these data, the GPU builds the partial alias table. When
GPUs finish its partitioned table construction, those parti-
tioned alias tables are assembled together for further usage.
Depending on the size of the graph and GPU memory
capacity, Skywalker+ either gathers the partial alias table
in GPU memory for lower access latency or assemble the
partial alias table in host memory to avoid exhausting the
GPU memory.

Sampling with Multi-GPU. Skywalker+ distributes the
sampling instances evenly to different GPUs. As the com-
puting of instances is independent, there is no need for
communication or synchronization. Each GPU processes
its assigned sampling instances independently. Although
graphs could have skewed edge distribution, the workload
for the GPUs are generally evenly distributed. It’s because
the time complexity for sampling is O(1) for each vertex
and Skywalker+ ensures that each partition has a similar
amount of vertices.

3.5.3 Latency-aware Data Management
Data management is crucial for multiple GPU computing as
GPU has a limited memory capacity. Due to the irregularity
of graphs, the sampler/walker may access any locations
of the graph. Thus, each sampler/walker must be able to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) In-GPU Execution (b) DMA Execution (c) Peer-to-Peer Execution

Fig. 9: Different execution modes on multiple GPUs.

access the whole graph data. Skywalker+ carefully places
the necessary data to minimize the memory access latency.

Design Space Analysis. There are several options to al-
low GPU to access data larger than the GPU memory
capacity, such as pinned host memory, Unified Memory
(UM) and peer GPU memory. These options have different
performance characteristics. Pinned host memory allows
GPUs to directly access host memory through unified vir-
tual address space, but fails to cache the hot pages. UM
allows over-subscription of GPU memory, but can suffer
from fault handing overhead [27]. Besides, directly applying
UM among multi-GPU can lead to frequent data migration
between host memory and devices, which further result in
interface congestion. Peer-to-peer memory access enables
GPUs to access remote graph data resident on other GPUs’
memory, but it is only supported by limited GPU types.
Skywalker+ carefully weighs these options and adapts them
to suitable scenarios.

Heuristic Strategy. Skywalker+ devises a heuristic strat-
egy taking both graph data characteristics and hardware ca-
pability into consideration. The methodology is to leverage
memory with lower latency as much as possible. Figure 9
presents our various execution modes. 1⃝ Skywalker+ first
inspects the graph to be sampled, and calculates the size
of graph data, alias table and other runtime data (such as
task queues and result). 2⃝ For small-sized graphs whose
structure data and alias table is small enough to be integrally
stored in a single GPU memory, Skywalker+ duplicates
them to each GPU and let kernels access local-resident data
as shown in Figure 9(a). 3⃝ For large-size graphs whose
graph data itself approaches or exceeds the total GPU
memory, Skywalker+ allocates the graph directly in host
memory. Then, the kernel accesses graph data through DMA
and stores the runtime data locally as shown in Figure 9(b).
4⃝ For medium-sized graphs, Skywalker+ partitions the

graph into #GPU pieces, and dispatches different graph
partitions to each GPU as shown in Figure 9(c). Users can
also manually assign the strategy for Skywalker+ instead of
the pre-set strategy.

4 EXPERIMENTAL METHODOLOGIES

In this section, we show the experimental methodologies to
verify the superiority of Skywalker+.

Platform. We use a Linux server that has two 2.4 GHz
Intel Xeon 6148 CPUs (20×2 physical cores in total) as the
evaluation platform. Each CPU has 27.5 MB of L3 cache and
256 GB of main memory.

TABLE 1: Evaluated walk&sampling strategies.

Name Sampling Method Supported workload
Graphwalker [28] Unbiased sampling. Unbiased PPR.
KnightKing [15] offline Alias method

for static sampling; re-
jection sampling for
dynamic sampling.

Biased/unbiased ran-
dom walks.

C-SAW [19] Inverse transform
(ITS) sampling.

Biased sampling and
DeepWalk.

NextDoor [9] Rejection-sampling Unbiased node2vec
/ Sampling. Biased
DeepWalk / PPR.

ThunderRW [17] ITS, rejection, and
Alias method

Biased/unbiased.

Skywalker+ Alias method. Biased/unbiased.

Our platform is well equipped with four RTX 2080Ti
graphics cards. Each GPU has 4352 CUDA cores in total and
11GB of GDDR6 memory. We install Ubuntu with Linux
kernel 4.15.0. We compile all programs using NVCC com-
piler version 11.0.167 (g++ version 7.5.0). For evaluation, we
use nsight system v2021.5.2 and nsight compute v2022.1.1
to collect runtime information.

For CPU-based baselines, we let them use all 40 physical
CPU cores to compute. The distributed systems Knightk-
ing [15] is also executed on a single machine. For compari-
son with the GPU-based framework, we use only one GPU.

Baseline Frameworks. To verify the superiority of Sky-
walker+ over existing approaches, we compare it to the most
representative baselines as summarized in Table 1.

1) GraphWalker [28] is a CPU-based random walk sys-
tem targeting single node. To maximize data access
efficiency, it gives priority to the loaded subgraphs.

2) KnightKing [15] targets distributed system. For al-
gorithms with static deviations, it uses the aliasing
method, while for algorithms with dynamic devia-
tions, it uses the rejection sampling method.

3) Nextdoor [9] is another representative GPU-based
graph sampling approach. Its rejection sampling
technique is the same as KnightKing.

4) C-SAW [19] is one of the most representative graph
sampling and random walk system for GPU. It rep-
resents the ones that utilize the Inverse Transform
Sampling method.

5) ThunderRW [29] represents the latest CPU-based
graph walk engine. It supports multiple sampling
methods on both biased and unbiased workloads.
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TABLE 2: Evaluated graph datasets [30], [31]. The graphs
are stored in weighted edgelist format in disk.

Graph Data Abbr. |V | |E| Max Degree Size(GB)
web-Google GG 0.9 M 5.1 M 456 0.07
Livejournal LJ 5 M 69 M 20 K 1.4

Orkut OK 3 M 117 M 33 K 2.0
Arabic-2005 AB 22 M 640 M 10 K 12

UK-2005 UK 39 M 936 M 5 K 18
Friendster FS 65 M 1.8 B 3 K 35
SK-2005 SK 50 M 1.9 B 12 K 38
rmat27 RT 130M 3.2B 1700k 67

To implement the above baselines, we download their
source code from GitHub and compile and run them on our
evaluation platform. As shown in Table 1, some baselines
may only support a portion of the workloads. For example,
GraphWalker only supports unbiased walk PPR while the
open-sourced C-SAW do not support PPR, node2vec and
unbiased sampling. Additionally, because C-SAW only sup-
ports pre-allocating a fixed size buffer for each thread block,
it ignores all vertices with degrees greater than 8000.

Workloads. We have selected three types of workloads
that can represent the most common sampling and random
walk algorithms in a wide range of application domains.
This helps to verify the performance and effectiveness of
Skywalker+ in various settings. To be specific, we use
thses algorithms including Deepwalk, PPR, node2vec and
NeighborSampling. As we mentioned above, some base-
lines may not support a portion of these algorithms due to
their limited processing capabilities. We extend and improve
them as much as possible to support more algorithms.
Taking NeighborSampling as an example, we adopt the
configuration from GraphSAGE [6] with the sampling depth
as 2 and expansion factor (the number of neighbors to be
sampled for one vertex) as S1 = 25 and S2 = 10. For PPR,
we use 15% as determination probability. For node2vec, we
set the hyper-parameters p = 2.0 and q = 0.5. We set 100
as the maximum length as adopted in previous works. For
all algorithms, we perform sampling with batch size 40000,
which is enough for most downstream applications. For our
method Skywalker+, we evaluate the sampling algorithms
in all possible execution modes and bith unbiased/biased.

Graph Dataset. As shown in Table 2, we use a variety of
state-of-the-art datasets in our experiments. We totally con-
sider 7 datasets used in two representative graph applica-
tions, i.e., social networks and web graph snapshots. Among
them, LiveJournal (LJ), Orkut (OK) and Friendster (FS) are
commonly used in social networks, and Web-Google (GG),
UK-2005 (UK), Arabic-2005 (AB) and SK-2005 (SK) are the
SOTA datasets used in web graph snapshot applications.
We also mannualy create a 67GB rmat graph to evaluate our
scalability for large graphs.

Implementation Details. Node2vec uses dynamic bias
and is executed in online mode for Skywalker+ and
Knightking. Other algorithms are executed in offline mode
unless otherwise stated. To be mentioned, C-SAW simply
skips all the vertices with degrees higher than 8000, re-
sulting in biased result. Skywalker+ and other baselines
follow the standard sampling method, which guarantees the
quality of the results. We use a factor of the sampled edges
to adjust the running time. We also change the batch size

directly in ThunderRW’s source code since it samples on all
vertices by default, which is less flexible.

Metrics. We collect and demonstrate the runtime infor-
mation for most of the tests. We do not include the time
to initialize and load data from the disk. All datasets that
are available can be loaded into the main memory entirely
except for Graphwalker, which uses only host memory. We
do not include the processing time for Graphwalker to
repeatedly load graph segments. Although different input
formats are fetched from disk, all frameworks eventually
store graph data in memory in the same CSR format. Sky-
walker+ and other frameworks that utilize the alias method
require additional space same to the size of graph data as
the alias table for offline workloads. As for the GPU-based
baselines, we collect their kernel execution time on GPU.
Unless otherwise noted, we include the time to create the
entire alias table as part of the preprocessing overhead for
KnightKing and Skywalker+.

5 RESULTS AND EVALUATIONS

In this section, we demonstrate the results and evaluate the
performance of Skywalker+ from four aspects: 1) How fast
can unbiased workloads run with Skywalker+? 2) How does
Skywalker+ perform when dealing with workloads with
static or dynamic biases? 3) How do the new optimizations
affect performance? 4) How scalable is Skywalker+ when
using multiple GPUs?

5.1 Performance on Unbiased Workload.

We begin with validating the performance of different meth-
ods i.e., Graphwalker, KnightKing, NextDoor, ThunderRW
and Skywalker+ on the unbiased workload. The results
are shown in Table 3. According to our observation, Sky-
walker+ outperforms all baselines in all test cases and can
be adapted to a wide range of scenarios. To be fair, we only
compare Skywalker+ with the baselines that support the
unbiased model. In our comparison experiments, we do not
use uniform bias as the unbiased workload. The unbiased
model simply picks a random neighboring vertex, while
the uniform bias must go through a complex preprocessing
process, such as alias table construction.

Skywalker+ speeds up the execution time on Deepwalk
by three orders of magnitude compared to Graphwalker; the
result is two orders of magnitude on PPR. The key reason
behind the performance improvement is that Graphwalker
uses random walks to statically partition the graph, which
involves significant additional coordination overhead. In-
stead, Skywalker+ is fully optimized for load balancing,
data locality, memory access efficiency, and other factors.

Skywalker+ also respectively shows 641×, 142× and
4157× average speedup of improvement than knightking on
Deepwalk, PPR and node2vec. Particularly, Skywalker+
achieves higher speedup on node2vec than the other algo-
rithms. This is because the node2vec algorithm needs time
to verify the connectivity of recently sampled vertices with
previously sampled vertices. In this situation, the straggler
thread would prevent all other threads from running. This
problem is not present in Skywalker+ since different SMs
are scheduled to work independently.
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TABLE 3: Result of unbiased workloads. ”O.O.M” indicates out-of-memory error and ” ” indicates internal error

Algorithms Frameworks Task Runtime (ms) Avg. Speedup of Skywalker+GG LJ OK AB UK SK FS

Deepwalk
Graphwalker 172 338 721 1719 1739 5894
ThunderRW 13 16 16 27 28 27 30 101
Knightking 17 12 13 14 16 3 17 60
Skywalker+ 0.44 1.25 0.22 0.15 0.48 0.21 0.1 1

PPR
Graphwalker 29 40 30 73 109 641

Knightking 3 16 20 16 23 1 16 142
ThunderRW 7 4 4 5 5 18 17 94
Skywalker+ 0.11 0.18 0.13 0.06 0.08 0.08 0.1 1

node2vec
Knightking 1189 1382 202 1033 2323 946 122 4157

ThunderRW 16 14 14 20 23 25 27 143
Nextdoor 26 38 6.8 17.8 30.4 O.O.M O.O.M 49.8

Skywalker+ 1.11 1.98 0.45 0.11 1.04 0.07 0.07 1

Sampling
Nextdoor 1.7 1.97 2 1.7 1.7 O.O.M O.O.M 5.2

Skywalker+ 0.3 0.73 1.24 0.22 0.21 0.3 0.3 1
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Fig. 10: Results of biased graph sampling (normalized to
Skywalker+’s runtime).

Due to its high memory needs, NextDoor cannot pro-
cess graphs larger than UK. Therefore, we only compare
Skywalker+ to NextDoor on UK and NeighborSampling.
The result shows that Skywalker+ speeds up UK and
NeighborSampling respectively by 49.8× and 5.2× on
average compared with NextDoor.

To compare with ThunderRW, we set the thread number
as 20. It shows that Skywalker+ outperforms ThunderRW
by 101×, 94× and 143× on Deepwalk, PPR and node2vec
respectively. It is notable that the throughput improvement
declines from 3× to 10× when ThunderRW samples a batch
of vertices rather than all vertices. This is because Thun-
derRW’s interleaving technique works well when the batch
size is large. Its relatively constant start-up and shutdown
time can surpass actual execution time when handling a
small number of queries.

5.2 Performance on Biased Workloads.
In Figure 10, we demonstrate the result of the biased work-
loads. Compared with KnightKing, Skywalker+ achieves
3.6∼21×, 1.7∼38× and 2∼190× of performance improve-
ment on DeepWalk, PPR and node2vec, respectively.

Skywalker+ achieves 10∼93× speedup on DeepWalk
and 483∼5878× speedup on NeighborSampling com-
pared with C-SAW. The reason behind the significant im-

TABLE 4: Speedup breakdown of different techniques

Technique Speedup
GG LJ OK AB UK SK FS

w/ Speculative Execution 1.26 1.58 1.54 3.11 2.06 1.63 1.28
w/o Speculative Execution 1 1 1 1 1 1 1

w/ Semi-asynchronous Execution 2.35 1.55 1.99 5.20 1.49 2.82 1.10
w/o Semi-asynchronous Execution 1 1 1 1 1 1 1

w/ Data Locality-aware 2.18 2.64 2.89 2.71 2.69 2.77 2.29
w/o Data Locality-aware 1 1 1 1 1 1 1

Technique Space requirement for alias array
GG LJ OK AB UK SK FS

w/ Compressed Alias Table 0.25 0.27 0.31 0.30 0.27 0.28 0.34
w/o Compressed Alias Table 1 1 1 1 1 1 1

provement is that Skywalker+ can utilize the CPU’s main
memory through the UM mechanism along with space-
efficient designs. Therefore, well-designed UM has great po-
tential in increasing the performance of graph sampling and
random walk. Skywalker+ beats C-SAW mianly because
Skywalker+ can utilize the precomputed alias tables.

Skywalker+ has a lower overhead for sampling multi-
ple items without replacement. Firstly, sampling by aliasing
is more efficient because it takes constant time. Secondly,
Skywalker+ has lower selection collision cost. On Skywalker+,
collision detection and resampling are substantially less
expensive than they are on C-SAW. Thus, Skywalker+ shows
higher speedup on NeighborSampling than DeepWalk.
Compared to ThunderRW, Skywalker+ enables 3∼61×
speedup on DeepWalk, 2∼43× speedup on ppr and 1.4∼7×
speedup on node2vec respectively.

When it comes to Nextdoor, the latest sampling frame-
work on GPU, Skywalker+ achieves 2.6∼35× speedup on
DeepWalk and 2.5∼40× speedup on PPR. Besides, Sky-
walker+ show more comprehensive support for different
sampling algorithms and large graphs.

5.3 Impact of Different Schemes
In Table 4, we validate the effectiveness of the core optimiza-
tions of Skywalker+. We conduct this experiment by analyz-
ing the normalized results on Deepwalk with or without
the proposed optimizations. We have the following obser-
vations. 1) Speculative Execution. Skywalker+ uses spec-
ulative execution to speed up Deepwalk and Neighbor
sampling by a factor of up to 3.1 and 1.6 times, respectively.
2) Semi-asynchronous Execution. Using semi-asynchronous
execution, Skywalker+ has up to 3.6× and 5.2× speedup on
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(a) Realtime DeepWalk.
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(b) Offline DeepWalk.
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(c) Unbiased DeepWalk.
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(d) Realtime sampling.
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(f) Unbiased sampling.

Fig. 12: Throughput on multiple GPUs. We only show the result for Skywalker+ as C-SAW’s open-sourced implementation
does not support multi-GPU execution. (a), (b) and (c) are realtime, offline or unbiased version for Deepwalk, respectively.
Similarly, (d), (e) and (f) are three versions of Neighbor Sampling

node2vec and Deepwalk, respectively. 3) Data Locality-
aware Execution. Through data locality-aware execution,
Skywalker+ achieves a speedup of 2.2∼2.9× on Neighbour
sampling in online mode, respectively. 4) Compressed
Alias Table. On the evaluated graphs, the compressed alias
array allows saving about 66% more spaces than the original
ones. In this regard, Skywalker+ can handle large graphs
with almost no overhead.

5.4 Data Locality-aware Execution Breakdown

In Figure 11, we evaluate the hardware characteristic of
Skywalker+ and Skywalker. We validate the effectiveness of
the locality-aware asynchronous execution technique. Com-
pared with Skywalker, the normalized DRAM throughput
of Skywalker+ increases up to 2.9×; global throughput
improves to 2.6 to 3.0; L1 cache hit rate improves up to
2.1 except for SK; IPC improves to 2.5 to 3.3; On the other
hand, normalized DRAM utilization ratio ranges from 0.05
to 0.66; the number of stalls due to memory dependency
reduces down to 0.65; DRAM transactions reduces to 0.42
to 0.97 except for LJ and SK; As a result, the normalized
sampling throughput is improved from 1.9 to 2.8. All the
above results illustrate that the locality-aware asynchronous
execution can effectively harness the locality while reducing

the pressure on the GPU memory subsystem, thus improv-
ing the overall sampling throughput.

5.5 Multi-GPU Scalability

Figure 12 shows the overall sampling throughput achieved
by Skywalker+ using 1 to 4 GPUs. Skywalker+ delivers up
to 520 and 3226 million SEPS of throughput on Deepwalk
and Neighbor Sampling for real-time workloads, respec-
tively. The large difference in throughput on Deepwalk and
neighbor sampling is due to the fact that Deepwalk
needs to compute the alias table once for each newly
sampled vertex while neighbor sampling samples 20
vertices using each computed alias table. For offline work-
loads, Skywalker+ respectively achieves up to 5.7 and 5.6
GSEPS (billions sampled edge per second) throughput on
Deepwalk and neighbor sampling. As for unbiased
workloads, Skywalker+ achieves up to 14.2 and 59.3 GSEPS
throughput on Deepwalk and Neighbor Sampling.

6 RELATED WORKS

To the best of our knowledge, this paper provides the first
extensive analysis of graph sampling and random walk
on multiple GPUs. We adopt a multi-pronged approach
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and implement a highly efficient and scalable GPU graph
sampling and random walk framework. The relevant prior
work are summarized as bellow.

CPU-based Random Walk Systems. Similar to graph
computing frameworks, DrunkardMob [11], leverages the
popular vertex-centric computational model. KnightK-
ing [15] is a distributed random walk system implementing
on multi-core CPU. It applies alias method for static sam-
pling algorithms, while implementing rejection sampling
for dynamic sampling algorithms which are less suitable
for alias method. We observe that the performance of the
above designs are largely affected by the bias distribution.
Similarly, GraphWalker [28] leverages GraphChi’s out-of-
core processing capability. While only supporting unbiased
random walk, it features an asynchronous walk updating
technique to optimize I/O. ThunderRW [17] is a framework
that supports diverse graph sampling workloads. It reduces
the CPU pipeline stall resulting from irregular memory ac-
cess in graph processing with a step interleaving technique.
This technique switches between different walk queries to
hide the memory latency.

GPU-based Sampling Systems. There are several GPU-
based graph sampling and random work frameworks.
For example, C-SAW [19] introduces a parallel scan algo-
rithm [32] to implement ITS to select neighbours. Unfor-
tunately, its open-source implementation does not demon-
strate how it is optimized for out-of-memory and multi-
GPU sampling. Different from C-SAW, NextDoor [9] applies
KnightKing’s rejection sampling technique to GPU, achiev-
ing higher throughput. It introduces a parallel paradigm
called transit-parallelism. It assigns transit vertices to thread
blocks and assigns samples to threads. It also optimizes for
memory coalescing.

Memory-constrained GPU Graph Computing. GPU has
very limited memory for handling large graph dataset.
Therefore, prior studies propose to divide large graphs into
subgraphs and process them in a streaming manner [33].
Garaph [34] takes advantage of both CPU and GPU to
process large graphs. Recently, a few works [2], [35] start
to adopt NVIDIA’s unified memory (UM) technique to
oversubscribe GPU memory capacity, but often suffer from
the problem of frequent page faults. HALO [36] introduces
a graph reordering algorithm to speed up graph traversal
with UM. Chen et.al [37] further applies a unified-memory-
based hybrid processing for partition-oriented subgraph
matching on GPU. Hum [38] tries to optimize the execu-
tion on unified memory. Subway [39] smartly chooses and
transfers the subgraphs to process on the GPU.

Graph partitioning. Since it’s common practice to first
divide large graphs into subgraphs, extensive researches
have been conducted on efficient and effective graph
partitioning. Multiple works [40], [41] have leveraged
both heuristic and machine learning methods to provide
communication-efficient and workload-balanced partitions
so that multiple workers such as GPUs can handle these
partitions with less memory thrashing and performance
straggler. Partition-centric processing model has also been
applied [42] to take advantage of data-locality of the par-
titions and accelerate the whole processing. Hep [43] pro-
poses a new partitioning algorithm which flexibly adapts its
memory overhead by separating the edge set of the graph

into two sub-sets and achieves improvements in both in-
memory partitioning and streaming partitioning.

Multi-GPU. An application can be accelerated by multi-
ple GPUs to achieve higher speedup. Groute [44] introduces
asynchronous multi-GPU programming in a thin runtime
environment. cuTS [45] develops a GPU-friendly trie-based
data structure and a distributed sub-graph isomorphism al-
gorithm to leverage the computing power of multiple GPUs.
Case [46] constructs GPU tasks from CUDA programs in the
compilation to guide task assignments.

Graph Compression. Besides the general lossless and lossy
data compression techniques [47], [48], graph compression
techniques [49], [50] compress the graph structure data.
POCLib [51] proposes a near orthogonal processing method
for compression. It mainly targets data analysis tasks such
as search and count which require to scan or traversal the
whole data region. However, alias tables are only looked
up randomly for a few specific elements in a fine-grained
granularity, which is significantly different.

7 CONCLUSION

We present Skywalker+, an novel and powerful system that
supports various key random walk and graph sampling
algorithms. We introduce a parallel algorithm for alias table
construction on GPU and design an efficient locality-aware
execution engine. We also apply specialized buffer and stor-
age optimizations and further extend the system to multiple
GPUs. Our design exhibits notable performance advantage
over the state-of-the-art baseline systems on a variety of
scenarios. Importantly, it shows strong robustness and capa-
bility on handling large graphs and provides comprehensive
support for all kinds of algorithms and execution modes. It
also presents satisfactory scalability on multiple GPUs.
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[20] D. Fogaras and B. Rácz, “Towards scaling fully personalized
pagerank,” in WAW, 2004.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking : Bringing order to the web,” in WWW 1999, 1999.

[22] M. Cochez, P. Ristoski, S. P. Ponzetto, and H. Paulheim, “Biased
graph walks for rdf graph embeddings,” Proceedings of the 7th
International Conference on Web Intelligence, Mining and Semantics,
2017.

[23] Z. Wei, X. He, X. Xiao, S. Wang, S. Shang, and J.-R. Wen, “Topppr:
Top-k personalized pagerank queries with precision guarantees
on large graphs,” Proceedings of the 2018 International Conference on
Management of Data, 2018.

[24] Nvidia, “Programming Guide :: CUDA Toolkit Documentation,”
2022. [Online]. Available: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html

[25] K. Gupta, J. A. Stuart, and J. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” 2012 Innovative
Parallel Computing (InPar), pp. 1–14, 2012.

[26] H. Kung, “Synchronized and asynchronous parallel algorithms for
multiprocessors,” 1976.

[27] R. Landaverde, T. Zhang, A. K. Coskun, and M. C. Herbordt, “An
investigation of unified memory access performance in CUDA,”
in IEEE High Performance Extreme Computing Conference, HPEC
2014, Waltham, MA, USA, September 9-11, 2014, 2014, pp. 1–6.
[Online]. Available: https://doi.org/10.1109/HPEC.2014.7040988

[28] R. Wang, Y. Li, H. Xie, Y. Xu, and J. Lui, “Graphwalker: An i/o-
efficient and resource-friendly graph analytic system for fast and
scalable random walks,” in USENIX Annual Technical Conference,
2020.

[29] S. Sun, Y. Chen, S. Lu, B. He, and Y. Li, “Thunderrw: An
in-memory graph random walk engine,” Proc. VLDB Endow.,

vol. 14, no. 11, pp. 1992–2005, 2021. [Online]. Available:
http://www.vldb.org/pvldb/vol14/p1992-sun.pdf

[30] J. Yang and J. Leskovec, “Defining and evaluating network
communities based on ground-truth,” in 12th IEEE International
Conference on Data Mining, ICDM 2012, Brussels, Belgium,
December 10-13, 2012, 2012, pp. 745–754. [Online]. Available:
https://doi.org/10.1109/ICDM.2012.138

[31] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595–601.

[32] A. Grimshaw and D. Merrill, “Parallel scan for stream architec-
tures,” 2012.

[33] M. Kim, K. An, H. Park, H. Seo, and J. Kim, “GTS: A fast and
scalable graph processing method based on streaming topology
to gpus,” in Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, 2016, pp. 447–461. [Online]. Available:
http://doi.acm.org/10.1145/2882903.2915204

[34] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai,
“Garaph: Efficient gpu-accelerated graph processing on a
single machine with balanced replication,” in 2017 USENIX
Annual Technical Conference, USENIX ATC 2017, Santa Clara,
CA, USA, July 12-14, 2017., 2017, pp. 195–207. [Online].
Available: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/ma

[35] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo, “Grus:
Toward unified-memory-efficient high-performance graph pro-
cessing on gpu,” ACM Trans. Archit. Code Optim., vol. 18, no. 2,
2021.

[36] P. Gera, H. Kim, P. Sao, H. Kim, and D. Bader, “Traversing large
graphs on GPUs with unified memory,” Proceedings of the VLDB
Endowment, vol. 13, no. 7, pp. 1119–1133.

[37] J. Chen, Q. Wang, Y. Gu, C. Li, and G. Yu, “Unified-memory-based
hybrid processing for partition-oriented subgraph matching
on GPU,” vol. 25, no. 3, pp. 1377–1402. [Online]. Available:
https://doi.org/10.1007/s11280-021-00952-w

[38] J. Jung, D. Park, Y. Do, J. Park, and J. Lee, “Overlapping
host-to-device copy and computation using hidden unified
memory,” ser. PPoPP ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 321–335. [Online]. Available:
https://doi.org/10.1145/3332466.3374531

[39] A. H. N. Sabet, Z. Zhao, and R. Gupta, “Subway: minimizing
data transfer during out-of-gpu-memory graph processing,” in
EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020, 2020, pp. 12:1–12:16. [Online]. Available:
https://doi.org/10.1145/3342195.3387537

[40] F. Sheng, Q. Cao, H. Jiang, and J. Yao, “Grabi:
Communication-efficient and workload-balanced partitioning
for bipartite graphs,” ser. ICPP ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3404397.3404453

[41] M. Tanaka, K. Taura, T. Hanawa, and K. Torisawa, “Automatic
graph partitioning for very large-scale deep learning,” in 2021
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2021, pp. 1004–1013.

[42] C. Tian, L. Ma, Z. Yang, and Y. Dai, “Pcgcn: Partition-centric
processing for accelerating graph convolutional network,” in 2020
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2020, pp. 936–945.

[43] R. Mayer and H.-A. Jacobsen, “Hybrid edge partitioner:
Partitioning large power-law graphs under memory constraints,”
in Proceedings of the 2021 International Conference on Management
of Data, ser. SIGMOD ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1289–1302. [Online]. Available:
https://doi.org/10.1145/3448016.3457300

[44] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute:
Asynchronous multi-gpu programming model with applications
to large-scale graph processing,” ACM Trans. Parallel
Comput., vol. 7, no. 3, jun 2020. [Online]. Available:
https://doi.org/10.1145/3399730

[45] L. Xiang, A. Khan, E. Serra, M. Halappanavar, and A. Sukumaran-
Rajam, “Cuts: Scaling subgraph isomorphism on distributed
multi-gpu systems using trie based data structure,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY, USA:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476214

[46] C. Chen, C. Porter, and S. Pande, “Case: A compiler-assisted
scheduling framework for multi-gpu systems,” in Proceedings of
the 27th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 17–31. [Online].
Available: https://doi.org/10.1145/3503221.3508423

[47] J. Gilchrist, “Parallel data compression with bzip2,” in Proceedings
of the 16th IASTED international conference on parallel and distributed
computing and systems, vol. 16, no. 2004. Citeseer, 2004, pp. 559–
564.

[48] S. T. Klein and Y. Wiseman, “Parallel lempel ziv coding,” Discrete
Applied Mathematics, vol. 146, no. 2, pp. 180–191, 2005.

[49] G. Buehrer and K. Chellapilla, “A scalable pattern mining ap-
proach to web graph compression with communities,” in Pro-
ceedings of the 2008 International Conference on Web Search and Data
Mining, 2008, pp. 95–106.

[50] F. Claude and G. Navarro, “Fast and compact web graph repre-
sentations,” ACM Transactions on the Web (TWEB), vol. 4, no. 4, pp.
1–31, 2010.

[51] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “Poclib: A high-
performance framework for enabling near orthogonal processing
on compression,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 2, pp. 459–475, 2022.

Pengyu Wang is a PhD. candidate at Shanghai
Jiao Tong University, China. His research inter-
ests include systems and architectures for graph
processing and graph neural network.

Cheng Xu is a MS candidate in Shanghai Jiao
Tong University, China and is working toward
the Ph.D degree. His current research interests
include computer architecture design for graph
and AI applications.

Chao Li is a professor with tenure in the De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University (SJTU). His pri-
mary research area is system architecture de-
sign with an emphasis on energy-efficient, high-
performance computers of large scale.

Jing Wang is a Ph.D. candidate in Shanghai
Jiao Tong University, China. Her current re-
search interests include computer architecture,
disaggregated memory, and graph processing.

Taolei Wang is a Ph.D. candidate at Shanghai
Jiao Tong University, China. His current research
area includes computer architecture, disaggre-
gated memory and cloud computing.

Lu Zhang received the BS degree from the
Northwestern Polytechnical University in 2016.
He is working toward the PhD degree in the
Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University. His research
interests include edge computing, network func-
tion virtualization and serverless computing.

Xiaofeng Hou received her Ph.D. degree from
Shanghai Jiao Tong University in 2020. She is
currently a Post-doctoral Fellow at AI Chip Cen-
ter for Emerging Smart Systems (ACCESS) and
at Hong Kong University of Science and Technol-
ogy. Her research mainly focuses on hardware-
software co-design, power/energy management
for computing system of different sizes. She
received the IEEE ICCD Best Paper Award in
2018. She is a IEEE member.

Minyi Guo is a chair professor in the Depart-
ment of Computer Science and Engineering of
Shanghai Jiao Tong University (SJTU), China,
and was the department head from 2009 to
2019. His research area includes parallel and
distributed Processing, compilers, cloud comput-
ing, pervasive computing, software engineering,
embedded systems; green computing, etc.


