
Not All Resources are Visible: Exploiting Fragmented
Shadow Resources in Shared-State Scheduler

Architecture
Xinkai Wang1, Hao He1, Yuancheng Li1, Chao Li1, Xiaofeng Hou1,
Jing Wang1, Quan Chen1, Jingwen Leng1, Minyi Guo1, Leibo Wang2

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University 2 Huawei Cloud
{unbreakablewxk, he-hao, lyc1535180405}@sjtu.edu.cn, {lichao, hou-xf}@cs.sjtu.edu.cn,

jing618@sjtu.edu.cn, {chen-quan, leng-jw, guo-my}@cs.sjtu.edu.cn, wangleibo1@huawei.com

ABSTRACT
With the rapid development of cloud computing, the increas-
ing scale of clusters and task parallelism put forward higher
requirements on the scheduling capability at scale. To this
end, the shared-state scheduler architecture has emerged
as the popular solution for large-scale scheduling due to its
high scalability and utilization. In such an architecture, a
central resource state view periodically updates the global
cluster status to distributed schedulers for parallel schedul-
ing. However, the schedulers obtain broader resource views
at the cost of intermittently stale states, rendering resources
released invisible to schedulers until the next view update.
These fleeting resource fragments are referred to as shadow
resources in this paper. Current shared-state solutions over-
look or fail to systematically utilize the shadow resources,
leaving a void in fully exploiting these invisible resources.
In this paper, we present a thorough analysis of shadow

resources through theoretic modeling and extensive exper-
iments. In order to systematically utilize these resources,
we propose Resource Miner (RMiner), a hybrid scheduling
sub-system on top of the shared-state scheduler architecture.
RMiner comprises three cooperative components: a shadow
resource manager that efficiently manages shadow resources,
an RM filter that selects suitable tasks as RM tasks, and an
RM scheduler that allocates shadow resources to RM tasks.
In total, our design enhances the visibility of shared-state
scheduling solutions by adding manageability to invisible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0387-4/23/11.
https://doi.org/10.1145/3620678.3624650

resources. Through extensive trace-driven evaluation, we
show that RMiner greatly outperforms current shared-state
schedulers in terms of resource utilization, task through-
put, and job wait time with only minor costs of scheduling
conflicts and overhead.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
Shared-state Scheduler, Shadow Resource, Cloud Computing
ACM Reference Format:
Xinkai Wang, Hao He, Yuancheng Li, Chao Li, Xiaofeng Hou, Jing
Wang, QuanChen, Jingwen Leng,Minyi Guo, LeiboWang. 2023. Not
All Resources are Visible: Exploiting Fragmented Shadow Resources
in Shared-State Scheduler Architecture. In ACM Symposium on
Cloud Computing (SoCC ’23), October 30–November 1, 2023, Santa
Cruz, CA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3620678.3624650

1 INTRODUCTION
With the rapid growth of the cloud computing market in
recent years, clusters are expanding in scale, with some con-
taining thousands of thousands of machines and being de-
ployed on various cloud services, including virtual machines,
containers, microservices, and function-as-a-service plat-
forms. Moreover, the million-level concurrent submission
and execution of second-level even millisecond-level tasks
leads to a rising demand for low-overhead, high-utilization,
and high-scalable scheduling architecture. Considering the
value and challenges in large-scale scheduling, many IT com-
panies such as Google [36], Microsoft [7], and Alibaba [47]
have invested significant amounts of capital and engineering
power in developing such systems.
Given the low scalability of monolithic scheduling ar-

chitecture [25, 47] and low utilization of two-level sched-
ulers [22], the shared-state scheduling architecture has be-
come the widely-used solution for large-scale cluster sched-
uling due to its high scalability and capability of parallel

https://doi.org/10.1145/3620678.3624650
https://doi.org/10.1145/3620678.3624650
https://doi.org/10.1145/3620678.3624650

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Xinkai Wang et al.

0

0.2

0.4

0.6

0.8

1

0 50 100

C
D

F

(a) Resource Demand (%)

CPU Usage

Memory Usage
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
C

D
F

(b) Execution Time (s)

Trace-2018

Trace-2021

Memory P99=2.86%

CPU P99=5.99%

Memory Avg.=0.51%

CPU Avg.=1.03%

>10hrs
P99=0.47s

P99=1008s

Figure 1: Distributions of resource demand and execu-
tion time (From (a) Google [37] and (b) Alibaba [4])

scheduling [32]. In such an architecture, a central resource
state view periodically updates the global cluster status to
distributed schedulers and the schedulers make allocation
decisions in parallel for incoming tasks. Based on the original
shared-state design, major cloud providers have proposed
and implemented respective shared-state scheduling systems
to achieve lower scheduling delay [29], lower conflicts [17],
higher throughput [28], and higher scalability [7].
However, each coin has two sides, and the shared-state

architecture also has its shortcomings. Apart from the com-
monly studied scheduling conflicts and scheduling delay
issues, periodic global state update design results in inter-
mittently stale states of distributed schedulers, which is
rarely mentioned and studied before. Resources released
are only visible to the central state view but invisible to
all parallel schedulers until the next view update, which
turns into fleeting resource fragments defined as Shadow
Resources. The hidden shadow resources are beyond the
scheduling scope of normal schedulers and cause a great
waste to shared-state clusters. Nonetheless, prior works on
shared-state architecture mainly focus on managing visible
resources more efficiently via advanced scheduling policies
and techniques [7, 17, 28, 29, 31] while ignoring the mining
and utilization of invisible shadow resources.
To make matters worse, the spatial and temporal granu-

larities are becoming more lightweight. On the one hand,
the resource demand of tasks is also lower than traditional
resource-hungry monolithic applications. On the other hand,
the number of short-term tasks is increasing due to the emer-
gence of cloud-native technology. From our statistical analy-
sis of traces from large-scale clusters of Google Cloud [37]
and Alibaba Cloud [4] in Figure 1, the resource demand
and the execution time of tasks approximately fit exponen-
tial distributions, which is in line with the findings of prior
works [1, 17]. Figure 1 (a) shows the CPU and memory de-
mands of tasks in Google Cloud and the average resource
demand per task is about 0.5% - 1.0%. Figure 1 (b) shows
the execution time of tasks in Alibaba Cloud and the time
granularity of tasks has become finer recently. Traditional

long-lasting batch workloads gradually shift dominance to
short-lived latency-sensitive tasks. The temporal and spa-
tial trends lead to more frequent and fine-grained resource
changes and exacerbate invisible resource wastes.

Shadow resources are precious while hard to exploit. Both
theoretic and experimental analysis of shadow resources in
real clusters show that the amount of shadow resources is af-
fected by the duration between view updates (a.k.a., updating
delay) and the average execution time of tasks, and accounts
for 2-13% of overall allocated resources in the cluster, which
is considerable and precious in improving resource utiliza-
tion. Nonetheless, two obstacles hinder the utilization of
shadow resources and call for flexible and transparent solu-
tions. First, the fleeting and fragmented properties require an
agile mining mechanism. Second, it is crucial to both utilize
shadow resources and avoid intrusion into normal schedul-
ing. In this work, we argue that shared-state architectures
need to consider shadow resources carefully.
This paper takes the first step to enhance the visibility

of shared-state architecture to support mining and utilizing
shadow resources in the cluster. To this end, we propose Re-
source Miner (RMiner), a hybrid and back-compatible sched-
uling sub-system of shared-state architecture, which consists
of three cooperative components: (1) shadow resource man-
ager that efficiently detects and organizes shadow resources
in the cluster; (2) RM filter that selects suitable tasks to match
fleeting fragments; (3) RM scheduler that allocates shadow
resources to RM tasks in an appropriate manner. Further,
we explore more aggressive resource mining methods by
exploiting shadow resources between view update and ac-
tual allocation (a.k.a., resource waiting delay). For different
goals of cluster management, RMiner is flexible with two
resource mining modes, SafeRM and SmartRM, to balance
the maximized resource utilization and minimized conflicts.

To thoroughly evaluate RMiner, we conduct trace-driven
experiments on the top of industrial cluster simulator [1]
and open-source traces [4, 37]. We mimic the realistic shared-
state scheduling process and use high-fidelity task execution
traces as input. We show that RMiner outperforms conven-
tional shared-state schedulers and brings up to 5.8% on re-
source utilization, 28% on overall throughput, and 59.9% on
job wait time. More specifically, we can exploit up to 112%
shadow resources with a minor overhead of less than 3%
more conflicts and scheduling overhead. In summary, this
paper makes the following contributions:

• We discover the invisible fragment resource oppor-
tunities in shared-state scheduling architecture and
analyze them theoretically and experimentally.
• We introduce RMiner, a novel sub-system for shared-
state architecture to enhance the spatial and temporal
visibility of current designs. RMiner mines and exploits

RMiner: Exploiting Shadow Resources in Shared-State Scheduler Architecture SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA
C

lu
s
te

r

State

Update

(a) Monolithic

State

Update

Scheduler

Local

State

View

Scheduler Scheduler

View Update

State

Update

(b) Two-level

Scheduler Scheduler Scheduler

Partial

View

Partial

View

Partial

View

C
lu

s
te

r

C
lu

s
te

r

Central Resource Manager Central State View

Updating

Delay

(c) Shared-state

Allocate

Task

Central Resource State

Allocate

Task

Allocate

Resource

Allocate

Task

Commit

Local

State

View

Local

State

View

Monolithic Scheduler

Resource Cell

Newly Added

Features Distributed schedulers Distributed schedulers

Worker Node

Figure 2: Three typical scheduler architectures

invisible shadow resources with further enhancements
for more aggressive and flexible management.
• We build and optimize an industrial cluster simula-
tor of RMiner and show that it could improve cluster
performance greatly with minor overhead.

The rest of the paper is organized as follows. Section 2
introduces the background and further motivates our work.
Section 3 illustrates the detailed design details and optimiza-
tion modes of RMiner. Section 4 presents the evaluation
methodology and results. Section 5 discusses related work
and Section 6 concludes this paper.

2 BACKGROUND AND MOTIVATIONS
In this section, we first introduce the shared-state sched-
uler architecture. Then we define and analyze the shadow
resources within such architecture. At last, we demonstrate
the challenges of mining and utilizing shadow resources.

2.1 Shared-state Scheduler Architecture
In cloud computing clusters, there are three major sched-
uler architectures: 1) monolithic, 2) two-level, and 3) shared-
state [32]. As shown in Figure 2 (a), a monolithic scheduler
is the only scheduler in the cluster with up-to-date global
resource states and applies the same algorithm for all incom-
ing jobs. This architecture is the least scalable and flexible
for large-scale clusters. In a two-level scheduler as Figure
2 (b), there is a central manager and multiple distributed
schedulers [22]. The manager allocates global resources to
individual schedulers, and each scheduler holds the latest
partial view of resources. They can only schedule tasks on
their partial resources. This architecture is more scalable
compared to the prior design while suffering from low uti-
lization due to the isolated views of parallel schedulers.

Consequently, the shared-state scheduler has become the
popular architecture for large-scale clusters due to high scal-
ability and utilization [7, 17, 28, 31, 32]. It overcomes conven-
tional schedulers by providing all schedulers with a global

Updating Delay

schedulers commits

and status response latest

state view

local view updated

Updating Delay

resource R released

Shadow Resource

Updating Delay

R is invisible for schedulers

in this period

local view updated

latest

state view

Updating Delay

Schedulers commits

resource allocation.

Updating Delay Updating Delay

Idle R is invisible

for schedulers

Local view updated

R

Resource R

released

Time

Shadow

Resource
Allocated

Resources

Idle

Resources

Central

State

View

Local

State

View-1

Local

State

View-2

Timestamp

Operations

Local view updated Local view updated

Figure 3: Shadow Resource in Shared-state Scheduler

view of all the resources. As shown in Figure 2 (c), there are
multiple parallel schedulers managed by a master with Cen-
tral State View (CSV). CSV maintains up-to-date information
on cluster resources and is not responsible for scheduling
tasks. CSV periodically updates the Local State View (LSV)
owned by each distributed scheduler with fixed updating
delays. The original shared-state design updates LSVs at each
successful resource allocation action [32] but in realistic clus-
ters, the updating delay is usually second-level to reduce the
update overhead [17]. When schedulers schedule tasks, they
allocate resources based on their own LSV and commit the
decisions to CSV to avoid conflicts with other schedulers. It
is obvious that the pursuit of low overhead makes the LSV of
each parallel scheduler intermittently stale since they are in-
visible to the up-to-date status of released resources within
the updating delays. Therefore, we define these invisible
resource fragments as shadow resources in this paper.

2.2 Shadow Resources in Shared-State
Scheduler Architecture

In the shared-state scheduler architecture, the resource states
of distributed schedulers are stale within updating delays
and it results in shadow resources. As shown in Figure 3, at
the start of each updating delay, the CSV updates the local
resource state of each LSV owned by distributed schedulers.
The distributed schedulers commit resource allocation deci-
sions to CSV for task scheduling and the latest cluster status
is known by only the CSV. Within the updating delay, LSVs
owned by each scheduler fall behind the actual cluster status
but they have a relatively global view of cluster resources.
Similarly, when certain resources (𝑅) are released, the CSV
updates itself immediately while distributed schedulers are
still relying on stale local state views. Before the next time
of local view update, each parallel scheduler would treat the
idle resource 𝑅 as allocated and cannot schedule new tasks
to 𝑅, leading to a great waste of cluster resources. Therefore,
shadow resources are those that are not visible to the dis-
tributed schedulers in their resource view when they can
actually be used for allocation.

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Xinkai Wang et al.

Table 1: Variables for modeling analysis

Variables Descriptions
𝑑𝑢 Duration of updating delay
𝑟𝑟𝑢𝑛 Total allocated resources
𝑇𝑠 Survival time of shadow resources
𝑅𝑡 Resource demand of tasks
_ Parameter of 𝑅𝑡 distribution
𝑇𝑡 Running time of tasks
[Parameter of 𝑇𝑡 distribution
𝑁 Number of tasks running in the cluster
𝑈𝑇 Idealized unit of time
𝐾 Number of tasks completed per𝑈𝑇
𝑋 Instantaneous amount of shadow resources

Given the existence of precious shadow resources within
shared-state scheduler architecture, there are two main dif-
ferences compared with normal resources. Firstly, shadow
resources are invisible to current distributed schedulers. Prior
works on shared-state schedulers focus on achieving higher
utilization and lower conflicts on normal resources [7, 11, 17,
28, 31, 32]. Most of works ignore the existence of shadow
resources and their solutions fail to utilize them. ParSync
noticed stale local state views while it partially added visi-
bility to schedulers and focused on resolving conflicts [17].
Secondly, shadow resources are fleeting and fragmented. The
granularity of shadow resources is strongly related to up-
dating delay, which is about second-scale [17]. Further, it
is not practical to alleviate shadow resources by reducing
the invisibility window of shared-state architecture, because
shorter invisibility windows incur higher synchronization
overhead to the overall scheduling system [17]. Meantime,
shadow resource fragments spread in distributed servers due
to lightweight cloud task granularities. Therefore, the mining
of shadow resources is valuable but challenging to current
shared-state scheduling systems.

2.3 Analysis of Shadow Resources
Till now, we still have no clear understanding of them in
the cluster as a whole. Therefore, we both theoretically
model and experimentally analyze the quantitative amount
of shadow resources in the cluster to answer the following
three questions: (1) What is the total amount of shadow re-
sources available in the cluster? (2) What are the factors
affecting the amount of shadow resources? (3) How do these
factors affect the amount of shadow resources?

To theoretically analyze shadow resources, we first define
some constants and variables as Table 1, where upper-cases
are variables and lower-cases are constants. As Figure 3, re-
source R is released and becomes a shadow resource, which
survives until the local state view is updated. Without loss

of generality, we assume that the cluster is stable with 𝑟𝑟𝑢𝑛
resource allocated, and within each updating delay 𝑑𝑢 , the re-
source release rate remains the same. Therefore, the survival
time 𝑇𝑠 follows a uniform distribution, i.e., 𝑇𝑠 ∼ 𝑈 (0, 𝑑𝑢).
Further, we analyze the open-source industrial traces [1,

37] and related works [17, 36] to conclude that the statistical
resource demand and execution time of tasks at scale approx-
imately fit continuous exponential distributions. Therefore,
the task resource demand fits 𝑅𝑡 ∼ 𝐸𝑋𝑃 (_) and the task
execution time fits 𝑇𝑡 ∼ 𝐸𝑋𝑃 ([). _ and [are approximately
the average resource demand and average execution time of
tasks. The number of tasks running in the cluster 𝑁 is 𝑟𝑟𝑢𝑛

𝑅𝑡
,

and the number of tasks completed per unit time UT is:

𝐾 = 𝑁 / 𝑇𝑡
𝑈𝑇

=
𝑟𝑟𝑢𝑛

𝑅𝑡
· 𝑈𝑇
𝑇𝑡

(1)

Converting the continuous analysis into realistic discrete
form, we can get the number of sampled tasks running in
the cluster 𝑛 =

𝑟𝑟𝑢𝑛
_

. Also, we can transform the continuous
exponential variable 𝑅𝑡 and 𝑇𝑡 into their corresponding dis-
crete Γ distributions. For brevity, let 𝑌 = 1

𝑅𝑡
and 𝑍 = 1

𝑇𝑡
and

we can get the expectation of tasks completed per unit time:

E(𝐾) =𝑟𝑟𝑢𝑛 ·𝑈𝑇 · 𝐸 (𝑌) · 𝐸 (𝑍) (2)

=𝑟𝑟𝑢𝑛 ·𝑈𝑇 ·
∫ ∞

0

𝑛

_Γ(𝑛)𝑦
−𝑛𝑒−

1
𝑦 𝑑𝑦 ·

∫ ∞

0

𝑛

[Γ(𝑛) 𝑧
−𝑛𝑒−

1
𝑧 𝑑𝑧

=𝑟𝑟𝑢𝑛 ·𝑈𝑇 ·
𝑛Γ(𝑛 − 1)
_Γ(𝑛) ·

𝑛Γ(𝑛 − 1)
[Γ(𝑛)

=
𝑈𝑇 · 𝑟 3𝑟𝑢𝑛

_[· (𝑟𝑟𝑢𝑛 − _)2
(3)

Further, the total amount of shadow resources can be cal-
culated by multiplying three elements: (1) tasks completed
per unit of time 𝐾 , (2) the amount of each shadow resource
fragment, and (3) the corresponding survival time of each
shadow resource 𝑇𝑠 . Given that shadow resources are the re-
leased resources when corresponding tasks are complete, we
assume that the amount of each shadow resource is equal to
the amount of resource demand of each task, i.e., 𝑅𝑡 . And 𝑇𝑠
follows uniform distribution according to the analysis above.
Then we divide the result by the unit of time 𝑈𝑇 to get the
instantaneous amount of shadow resources 𝑋 in the cluster.

E(𝑋) = 1
𝑈𝑇
· 𝐸 (𝑅𝑡) · 𝐸 (𝑇𝑠) · 𝐸 (𝐾) (4)

=
1
𝑈𝑇
·
∫ ∞

0

𝑟

_
𝑒−

𝑟
_𝑑𝑟 ·

∫ 𝑑𝑢

0

𝑡

𝑑𝑢
𝑑𝑡 · 𝑈𝑇 · 𝑟 3𝑟𝑢𝑛

_[· (𝑟𝑟𝑢𝑛 − _)2

=
𝑑𝑢𝑟

3
𝑟𝑢𝑛

2[· (𝑟𝑟𝑢𝑛 − _)2
(5)

RMiner: Exploiting Shadow Resources in Shared-State Scheduler Architecture SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200

Sh
ad

ow
 re

so
ur

ce
 /

Al
lo

ca
te

d
re

so
ur

ce

Average task execution time (s)

Trace-driven ratio
Theoretic ratio

𝜎=5.5s
CPU Util. =17.35

Trace-driven:4.457
Theoretic:4.543
Deviation=1.9%

𝜎=20.1s
CPU Util. =49.69

Trace-driven:1.271
Theoretic: 1.242
Deviation=2.4%

Figure 4: Comparison of the theoretic and trace-driven
ratio of shadow resources

Given that the average resource demand for tasks _ is neg-
ligible compared to the total amount of allocated resources
in the cluster 𝑟𝑟𝑢𝑛 , the above equation can be approximated
by 𝑟𝑟𝑢𝑛 − _ ≈ 𝑟𝑟𝑢𝑛 . Therefore, the final expectation of the
instantaneous amount of shadow resources is:

E(𝑋) = 𝑑𝑢 · 𝑟𝑟𝑢𝑛
2[

(6)

We show that the total amount of shadow resources is mainly
proportional to the duration of updating delay 𝑑𝑢 and the num-
ber of allocated resources in the cluster 𝑟𝑟𝑢𝑛 , while inversely
proportional to the average execution time of tasks [. The
analysis above could roughly answer the last two questions
about the factors affecting the amount of shadow resources.
Counter-intuitively, shadow resources have little relation-
ship with the resource demand of tasks because the granular-
ity of execution time and resource demand is getting smaller
at the same time.

To answer the first question of the total amount of shadow
resources available in the cluster, we rely on trust-worthy
statistics to calculate the approximate ratio of shadow re-
sources in the cluster with 𝐸 (𝑋)/𝑟𝑟𝑢𝑛 = 𝑑𝑢/2[. According
to industrial traces [37] and experiences [17, 36], we set the
average task execution time [as 4𝑠 ∼ 5𝑠 and the duration of
updating delay 𝑑𝑢 as 0.3𝑠 ∼ 1.0𝑠 . Then we find that shadow
resources in the cluster account for about 3% ∼ 12.5%, which
is considerable and valuable for cluster scale. With the devel-
opment of lightweight cloud-native technologies, invisible
resource waste becomes more and more severe.

To validate our analysis, we observe and record the shadow
resources in realistic shared-state scheduling process [1] (de-
tailed in Section 4.1). Since the ratio is strongly dependent on
the trace selection, we randomly sample industrial traces [4]
for 10 separate settings and report the results in Figure 4. It is
obvious that the experimental trace-driven ratios of shadow

resources are almost the same as the results of theoretic anal-
ysis, while the deviation becomes larger when the average
task execution time increases due to the greater impact of
monolithic and resource-hungry tasks.

2.4 Challenges Faced by Shadow Resources
Challenge-1: How to mine and manage shadow re-
sources agilely and efficiently.

Given the fleeting and fragmented shadow resources, it is
crucial to record and gather them for allocation quickly. Time-
consuming mining strategies fail to seize such opportunities.
Meantime, the fragmentation is worse with the emergence of
light-weighted containerization tasks, likemicroservices [43]
and serverless functions [46], which reduces the granularity
of shadow resources but increases the quantity of them. This
adds to the difficulty of management and calls for more
efficient shadow resource usage designs.
Challenge-2: How to allocate and utilize shadow re-
sources flexibly and transparently.
Even if we could manage shadow resources as wished,

it is more complex to exploit them perfectly. Due to the
fleeting and fragmented nature, we should carefully select
suitable tasks to fulfill shadow resources as much as possible.
More importantly, exploiting shadow resources cannot cause
negative effects on the performance and efficiency of nor-
mal shared-state schedulers. So there is a trade-off between
maximized utilization and minimized conflict. We pursue a
solution that is transparent to the normal scheduling process
and makes as little intrusion as possible.
Overall, we envision the hidden resource opportunities

due to the limited visibility of the current shared-state design
and perform a comprehensive analysis of the importance
and challenges to fill the void. Next, we present our design
to properly and effectively enhance current systems.

3 DESIGN OF RESOURCE MINER
Based on the characteristics and challenges of shadow re-
sources in the current shared-state scheduler architecture.
In this section, we present the detailed design, Resource
Miner (RMiner), to mine and exploit shadow resources for a
high-performance and high-visibility scheduling system.

3.1 Overview and Design Principles
RMiner is built upon current shared-state architecture (the
white parts) and contains three cooperated components (the
blue parts) as shown in Figure 5: (1) Shadow Resource Man-
ager detects and manages up-to-date shadow resource state
efficiently with a newly-designed index, (2) RM Filter select
tasks suitable for shadow resource (RM Tasks) to the task
queue, (3) RM Scheduler is responsible for allocating shadow
resources to RM tasks flexibly. Based on the characteristics

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Xinkai Wang et al.

C
lu

s
te

r

Central State View

Shadow

State View

Echo State

Shadow Resource Manager

Distributed Schedulers

RM Tasks

Queue

Commit

View Update

Allocate

Normal Tasks

Allocate

RM Tasks

RM Tasks

Scheduler

Local State

View

N-CommitNormal Tasks

RMiner

Scheduler

Local State

View

Scheduler

Local State

View

RM Scheduler

Shadow Resource

Identifier

S
u
b
m

it
te

d
 T

a
s
k
s

R
M

F
il

te
r

Y-Commit
Shadow Resource

State Indexes

Shadow

State

Figure 5: Overview of Resource Miner

of shadow resources and the shared-state architecture, we
derive two design principles for RMiner:
Principle 1: Intrusion Avoidance
To enable transparent integration with current shared-

state architectures, we should avoid intrusive modification
to the original scheduling system. Preferably, the original
schedulers are unaware of the usage of shadow resources and
incur no conflicts with the allocation of shadow resources.
Principle 2: Balanced Performance

RMiner faces the trade-off of maximized utilization of in-
visible resources and minimized conflict with visible sched-
uling. Aggressively utilizing shadow resources can lead to
abundant preemptive executions, which in turn degrade the
overall performance of clusters, and vice versa. Therefore,
our design should balance the performance of RMiner and
the original system and pursue the optimal performance.

3.2 Shadow Resource Manager
The Shadow Resource Manager is responsible for detecting
the generation of shadow resources, organizing their state in-
dexes, andmanaging them for further scheduling. To perform
these functionalities efficiently, we newly design a data struc-
ture, shadow resource state indexes, to manage shadow
state view, as shown in Figure 5.
The shadow resource state index is a 6-tuple including

three basic dimensions and three scheduling-related dimen-
sions. In basic dimensions, shadow resource ID distinguishes
different fragments 𝑅, survival time denotes the interval till
the next update of all local state views, andmachine ID maps
𝑅 to a specific node in the cluster. The other three dimen-
sions are related to RM scheduling logic, where available
resource is set as the amount of 𝑅 while occupied resource and
allocated tasks are set as 0. We merge the shadow resources
on each node to reduce the managing complexity.

Shadow Resources State Indexes
Available Resource

Occupied ResourceSurvival Time

Allocated TasksMachine ID

Shadow State View

Shadow Resource ID

Shadow Resource ManagerCentral
State
View

Manage
Logic

C
lu

st
er Mapping

Synchronize
Echo State

Figure 6: Workflow of shadow resources state indexes

Algorithm 1:Management of shadow state view
Input: Released shadow resource 𝑅
Output: Updated shadow state view with 𝑅𝑠

1 Echo State Function:
2 if RM task released 𝑅 then
3 if Original 𝑅𝑠 exists then
4 𝑅𝑠 ← 𝑅𝑠 + 𝑅;
5 end
6 else
7 𝑅𝑠 ← 𝑅, 𝑇𝑠 ← 𝑡 (𝑅𝑠),𝑀𝑠 ←𝑚(𝑅𝑠);
8 Add a new shadow resource state index

(𝑅𝑠 ,𝑇𝑠 , 𝑀𝑠);
9 end

10 View Update Function:
11 for 𝑅𝑠 in shadow state view do
12 if Occupied 𝑅𝑠 = 0 then
13 Remove 𝑅𝑠 index from view.
14 end
15 end

As Figure 6, when the central state view synchronizes the
status of the cluster and monitors the release of resource
𝑅, the shadow state view is aware of this information im-
mediately through Echo State mechanism and merges the
newly discovered shadow resource into the shadow state
view through the manage logic outlined in Algorithm 1. In
the echo state function, we first identify the task type releas-
ing 𝑅 according to CSV (line 1). If it is the RM task releasing
𝑅, we merge it to its origin 𝑅𝑠 if possible (line 4). We can
use hash mapping to reduce the overhead of managing oper-
ations. If normal tasks release 𝑅, we use the direct 𝑡 () and
𝑚() functions to get the corresponding survival time and
machine ID and add a new shadow resource state index (lines
7-8). Moreover, in the view update function, the shadow re-
source manager would remove all the idle shadow resources
at view update by CSV (lines 11-14) and continue to manage
the occupied shadow resources until the release moment.
To follow the design principle of intrusion avoidance,

scheduling RM tasks to the shadow resources should not
commit to the central state view like the normal schedulers.

RMiner: Exploiting Shadow Resources in Shared-State Scheduler Architecture SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Otherwise, after the local views are updated, normal sched-
ulers will see that the shadow resource is occupied, which
affects the total resource of normal scheduling and is no
longer invisible. As we expect the original scheduling sys-
tem is not aware of the shadow resources, we design the
shadow state view for the management of RM tasks’ sched-
uling. With the state echo, the shadow state view is kept
up to date with the central state view, and the state echoes
also include state updates of the shadow resource. Therefore,
the shadow state view includes both the state information
in the central state view and of shadow resources, ensuring
that no conflicting errors are generated in resource mining
scheduling. In addition, the state update requests include the
update information about the shadow resource state, while
these kinds of state update requests will be ignored by the
central state view in the RMiner to avoid the impact on the
original scheduling system, which also follows the principle
of intrusion avoidance. These state updates will still be sent
to the manager with the state echoes to maintain the shadow
resource states and update the shadow state view.

3.3 RM Filter
RM filter is responsible for selecting the tasks suitable for
shadow resources and constructing the task queue of the
RM scheduler. We filter the appropriate tasks in advance
instead of stealing from the task queues of geo-distributed
schedulers, since the stealing operation may span around
and hinder the usage of fleeting shadow resources. In our
design, the RM filter follows three principles.
Firstly, filtered tasks should match the fleeting and frag-

mented properties of shadow resources. This principle is
straightforward and places restraints on both the resource
demand 𝑅𝑡 and execution time 𝑇𝑡 of tasks. Fortunately, the
emerging trend of lightweight containerization tasks, like mi-
croservices and serverless, enables the RM filter to select suf-
ficient tasks matching the granularity of shadow resources.
Secondly, filtered tasks should be preemptive to be killed or
migrated. To avoid intrusion, we prioritize the execution of
normal tasks over RM tasks and design two eviction modes
to control the usage of shadow resources (detailed in Section
3.5). Selecting tasks with lower priority would both utilize
shadow resources and cause less violation.
Thirdly, neither the RM filter selects too many tasks for

the RM scheduler since it may become a new performance
bottleneck, nor could it select too few tasks to fully utilize
shadow resources. The filter threshold is of great importance
and here we consider five key factors to adjust the threshold:
(1) the length of the RM tasks queue that denotes the work-
load of the RM scheduler; (2) the current amount of shadow
resources from the shadow resource manager; (3) current
task submission rate denoting the workload of the cluster; (4)

Task Task

Occupied

Resources
Available

Resources

Shadow

Resources

Other

Resources

Shadow

State

View

Central

State

View

RM Scheduler

RM

Task T

Commit

Task Task

Occupied

Resources
Available

Resources

Shadow

Resources

Other

Resources

Normal

Task T1

TTask Queue T1

Enough, allocate

RM

Task T

① Commit

② Not enough

③ Commit

④ Enough, allocateNo update×

(a) Y-commit on shadow resource (b) N-commit on normal resource

Figure 7: Execution flow of RM scheduler

the scheduling success rate of RM tasks; (5) current updating
delay of the scheduling system. The threshold is relatively
proportional to factors 2-5 and inversely proportional to
factor 1 and RMiner uses it to filter low-priority tasks with
proper resource demand and execution time. Obviously, the
threshold is qualitative and we can enhance the threshold
calculation function with more complex RL-based methods
and more comprehensive factors, which is not our focus in
this paper. In summary, the RM filter utilizes the real-time
and historical status of clusters to filter just the right tasks
for the RM scheduler to allocate shadow resources.

3.4 RM Scheduler
RM scheduler is responsible for allocating tasks from the RM
filter to utilize shadow resources. As shown in Figure 7, the
task queue contains tasks relatively suitable for shadow re-
sources from the RM filter. The RM scheduler interacts with
the shadow state view and central state view in different
situations and it has two task allocation paths. On the one
hand, the dotted line works when the shadow resource is
enough for the task. It commits the resource allocation deci-
sion to the shadow state view to decide whether the action
has enough shadow resources and conflicts. If the commit
is successful, corresponding shadow resources will be allo-
cated to RM task T. It is worth mentioning that this process
is transparent to the central state view, that is, the allocation
of shadow resources is not updated to CSV and CSV will
set the whole shadow resources as available at next local
view update. Only by doing so can we follow the principle of
intrusion avoidance and avoid the available resources being
mostly occupied by RM tasks in the next updating delay,
which harms the performance of all distributed schedulers.

On the other hand, the solid line works when there are
not enough suitable shadow resources for the task, the RM
scheduler degrades to a normal parallel scheduler and allo-
cates the task to other available resources. It (1○) commits
the resource allocation decision to shadow state view and
(2○) receives a signal of not enough shadow resources. Then
it (3○) commits the allocation to CSV like parallel schedulers

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Xinkai Wang et al.

Algorithm 2: Scheduling algorithm of RM scheduler
Input: Task 𝑇 , Resource demand 𝑅𝑇
Output: Updated shadow state views 𝑅𝑠

1 RM task Function:
2 Traverse nodes w/ shadow resources in descending

order;
3 if Node 𝑁 satisfy 𝑅𝑇 then
4 Allocate 𝑇 to 𝑁 , 𝑅𝑁𝑠 = 𝑅𝑁𝑠 − 𝑅𝑇
5 end
6 Reorder nodes list;
7 Normal task Function:
8 if All nodes are not satisfied for shadow resources then
9 Traverse nodes w/ available resources;

10 if Node 𝑁 satisfy 𝑅𝑇 then
11 Allocate 𝑇 to 𝑁 , 𝑅𝑁𝑠 ← 0;
12 end
13 end

act and (4○) if the commit is successful, task𝑇1 is allocated to
available resources. Tasks in this path are no longer marked
as RM tasks and they will be treated as normal tasks when
they incur shadow state view update in Algorithm 1. Strictly,
not all tasks that are filtered to the RM scheduler are RM
tasks, but only tasks that are allocated to shadow resources.
The execution of the RM scheduler is based on two re-

source state views, and the interaction is detailed in Algo-
rithm 2. For RM task scheduling, we sort the nodes based on
their shadow resources in descending order and traverse the
nodes (line 2). When node 𝑁 is satisfied after committing, we
allocate task 𝑇 to node 𝑁 and update the shadow resource
view (line 4). For normal task scheduling when all nodes
are not satisfied for shadow resources, we use the default re-
source allocation function in current shared-state designs [1]
and find node 𝑁 to allocate task 𝑇 (line 9). To give priority
to shadow resource utilization, we first allocate all shadow
resources on node 𝑁 to task 𝑇 , and the residual demand of
task 𝑇 is other resources. Thus we set the shadow resource
on node 𝑁 as none and update the view (line 11).
Another critical issue is the conflict between RM tasks

and new scheduling tasks due to the invisibility of the cen-
tral state view into shadow resource allocation. When CSV
updates the local view, the occupied shadow resources 𝑅 are
marked available to distributed schedulers and they would
allocate tasks to 𝑅, which definitely incurs conflict. In such
cases, distributed schedulers are unaware of the conflict since
the commit to CSV about resource 𝑅 is successful. Therefore,
we formalize and devise two optimization modes to resolve
such conflicts in the following.

Updating Delay Updating Delay

R

Resource R

released

Time

Shadow

State

View

Central

State

View

Local

State

View

T0 T1

RM task T

allocated to R

Local view

update

Local view

update

Normal task

allocation

Resource waiting delay

T2 T3

No

update

Allocation

No conflict

Allocation

Conflict

with R
Echo

State

Shadow resource survival time

Normal task

allocation

T4

×

R: Actual Invisible Shadow Resource R: Visible Resource Still Can be Utilized

R

Figure 8: Resource waiting delay of shadow resources

3.5 Optimization of Resource Miner
As stated above, we seek the optimal trade-off between re-
source utilization and scheduling conflicts. In fact, by ana-
lyzing the state changes of shadow resources, we find that
when local state views are updated, the distributed sched-
ulers are visible to these shadow resources, but these newly
observed shadow resources are not occupied immediately
due to the presence of other available resources. The idle
time between when the shadow resource is seen by the nor-
mal scheduler and when it is actually reallocated is called
resource waiting delay. The resource waiting delay is the
continuation of the shadow resource survival time, during
which the resource is visible but can still be utilized with-
out affecting the normal scheduling process. It is possible to
optimize RMiner by exploiting the resource waiting delay.
As Figure 8, at the local view update, CSV updates the

resource state of each LSV owned by distributed schedulers.
At 𝑇 0, resource 𝑅 is released and becomes shadow resources
invisible to LSV. CSV updates shadow state view through
echo state. At 𝑇1, the RM scheduler commits and allocates
task 𝑇 to 𝑅 and this allocation is not updated to CSV. At 𝑇 2,
CSV updates LSV again while ignoring the occupation of
shadow resource 𝑅 according to Figure 7. At 𝑇 3, distributed
schedulers commit and allocate tasks to resources in the
black box without conflict with 𝑅, which means the shadow
resource 𝑅 can still be utilized. However, at 𝑇4, distributed
schedulers commit and allocate tasks to resources in the
black box containing 𝑅, which incurs conflict with executing
RM tasks and requires further actions to eliminate the effect.
Therefore, the period between 𝑇2 and 𝑇4 is the resource
waiting delay and it extends the original shadow resource
survival time to gain more utilization of shadow resources.

Based on the analysis above, the trade-off between higher
utilization of shadow resources and lower conflicts with nor-
mal tasks is of great importance. The extended use of shadow
resources in resource waiting delay is risky and we design
two conservativemodes of RMiner due to two reasons: (1)We
cannot foresee the resource waiting delay and the timing of
conflicts in advance since the task allocation is unpredictable;

RMiner: Exploiting Shadow Resources in Shared-State Scheduler Architecture SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Table 2: Comparison of two optimization modes

SafeRM Mode SmartRM Mode
Shadow resource time 𝑈𝑑 𝑈𝑑 +𝑊𝑑

RM filter policy SJF LJF
RM scheduling policy Min Conflict Max Utilization
Task eviction policy Migrate - Kill Kill - Migrate
+𝑈𝑑 is shadow resource survival time and𝑊𝑑 is resource waiting delay.
+ SJF denotes shortest job first and LJF denotes lowest-priority job first.

(2) We follow the principle of intrusion avoidance such that
the utilization of shadow resources cannot harm others’ per-
formance. Therefore, we propose two modes, SafeRM Mode
and SmartRM Mode, respectively.

3.5.1 SafeRM Mode. In SafeRM mode, resource miner only
utilizes shadow resources in shadow resource survival time
instead of resource waiting delay. As shown in Table 2, in
SafeRM mode, the RM filter emphasizes estimated job execu-
tion time and gives priority to jobs with the shortest time.
It allows for more flexible scheduling and utilizes shadow
resources with conflicts as few as possible. For SafeRMmode,
we design a greedy scheduling policy to minimize conflict by
mapping shorter tasks to shorter shadow resources. In the
cluster, SafeRM also encounters RM tasks exceeding shadow
resource survival time, which invokes task eviction. Since
there is no actual conflict at the timing of the update, we
first try to migrate RM tasks with the normal scheduling
process, and then kill RM tasks if no successful migration.
Such design can guarantee the execution of RM tasks to the
greatest extent, without causing severe conflicts. Nonethe-
less, the purpose of SafeRM is to avoid conflict and limit
aggressive resource mining. So RMiner requires a more ag-
gressive mode that can maximize the utilization of shadow
resources as much as possible.

3.5.2 SmartRMMode. In SmartRM mode, the resource miner
utilizes shadow resources in both the resource survival time
and the resource waiting delay. As shown in Table 2, in
SmartRM mode, the RM filter emphasizes task resource de-
mand and eviction cost, and it gives priority to hungry tasks
with lower priority. Moreover, RM scheduling in SmartRM
aims to maximize the utilization of shadow resources and al-
locate RM tasks with higher resource demand to just the right
shadow resources. Nonetheless, under a high task submis-
sion rate and task throughput, there is a high probability of
causing conflicts. Thus RM scheduling should select shadow
resources on nodes holding most idle resources to avoid
conflicts with the following scheduling. To keep the intru-
sion avoidance principle, when conflicts happen, SmartRM
kills low-priority RM tasks first to guarantee the execution
of normal tasks and later tries to migrate RM tasks to the

Sampled
traces

Workload
Generator

Distribution
Expand

Parallel
schedulers

Central
state view

ClustersView update Task
Allocation

Logs
Resource status

RM Filter

Shadow
state view

Echo State

Commit
Allocation Decisions

Cluster status

RM tasks

RM
scheduler

Figure 9: Modification and workflow of the industrial
shared-state scheduling simulator

proper destination. It is obvious that SmartRM has better re-
source utilization than SafeRM due to the increased amount
of shadow resources while definitely causes more conflicts
affecting the performance of RM tasks.

4 EVALUATION
In this section, we thoroughly evaluate RMiner. Specifically,
we want to answer three questions:

(1) What performance improvements can RMiner bring
to shared-state architecture? (Section 4.2, 4.3, 4.4)

(2) What is the cost of adopting RMiner in the current
shared-state scheduler? (Section 4.5, 4.6)

(3) How do the introduced optimizations contribute to the
performance improvements? (Section 4.7)

4.1 Methodology
We conduct trace-driven evaluations to thoroughly analyze
RMiner on the industrial simulator. We write 2k+ LoCs of
Scala to integrate the design of shadow resource manager,
RM filter, and RM scheduler into the open-source Google
cluster simulator [1] as Figure 9. The white components are
original and the blue components are the implementation of
RMiner. This simulatormimics the complete process of sched-
uling in large-scale clusters with three types of scheduler
architectures and we mainly use the shared-state architec-
ture of Omega [32]. It can simulate various cluster settings
and various workload scenarios within a lightweight time
consumption. Therefore, it is trustworthy and capable of
evaluating the performance of RMiner in shared-state archi-
tecture in large-scale clusters. Without loss of generality, we
mimic a cluster of 1500 homogeneous nodes with 64 CPU
slots and 16 memory slots per node in the following exper-
iments. We execute the experiments on a server with Intel
(R) Xeon (R) CPU E5-2620, 32GB main memory, and Ubuntu
16.04.5 LTS installed.

4.1.1 Trace Processing. We adopt widely-used industrial
cluster traces to drive the simulation [4, 37]. We adopt differ-
ent processing to Google’s trace and Alibaba’s trace based
on their information. For the original traces of Google [37],

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Xinkai Wang et al.

Table 3: Processing of industrial traces

Traces Alibaba Trace Google Trace
Average task execution time Sampled (4.94) 5
Average task resource demand Sampled (1.03/64) Sampled (0.01)

Average size of jobs Sampled (12) 10
avgJobInterarrvialTime 1.43 (1x) - 0.7 (2x)

we mainly follow the original method in the simulator to
process the data, including generating exponential execution
time, job inter-arrival time, and job size. Then we sample the
resource demand of 10k jobs and expand to an input stream
containing 1m jobs. For the open-source trace of Alibaba [4]
containing execution time and resource demand, we sample
this information of 10k jobs and expand to an input stream
containing 1m jobs. Similarly, we generate exponential job
inter-arrival time to mimic different task submission rates.
Due to the high fidelity of the latter, we mainly use Alibaba’s
trace in the following experiments and use Google’s trace to
validate the results further.

4.1.2 Baseline Selection. In order to evaluate the improve-
ment of RMiner over conventional shared-state schedul-
ing architecture, we choose the typical shared-state sched-
uler architecture implemented in the open-source simula-
tor, Omega [32]. The following shared-state designs have
orthogonal design objectives with RMiner and have many
important features (e.g., multiple scheduling algorithms and
accurate task duration estimation) that are hard to reproduce
in the lightweight simulator. Moreover, it is hard to create an
environment in the cluster simulator for a fair comparison, if
possible, with these systems. Therefore, we optimize Omega
with fixed updating delay and enhanced scheduling capac-
ities as the baseline NoRM. For RMiner, we use the default
modes first and test various settings of SafeRM and SmartRM
introduced in Section 3.5 to evaluate their performance.

4.1.3 Detailed Settings. More specifically, there are many
hyper-parameters to drive the simulation experiments. The
updating delay is set as 0.5s [17] and the scheduler’s schedul-
ing rate is set to 1000 tasks per second. The whole simulation
execution time is set to 300 seconds. We set the number of
distributed schedulers as 8 and 16. For the execution time
generation of Google’s trace, we fit the average time of sam-
pled Alibaba’s trace ([= 4.94𝑠) and set the average execution
time as 5s to produce exponential distribution. The size of
jobs is sampled as 12 for Alibaba’s trace, which means each
job contains 12 tasks on average, and we set this metric of
Google’s trace as 10 to generate similar settings. To compare
RMiner under different workload scenarios, we tune the
avgJobInterarrivalTime from 1.43 to 0.7 to mimic differ-
ent levels of pressures, where the former generates 200+ thou-
sands of jobs in 300s to drive the experiments. For SmartRM

0

20

40

60

80

100

120

0.98

1

1.02

1.04

1.06

1x 1.25x 1.5x 1.75x 2x 1x 1.25x 1.5x 1.75x 2x

8schedulers 16 schedulers

S
h

a
d

o
w

 r
e

s
o

u
rc

e
 u

ti
liz

a
ti
o

n
 (

%
)

N
o

rm
a

liz
e

d
 R

e
s
o

u
rc

e
 U

ti
liz

a
ti
o

n

Task Submitted Per Minute

NoRM SafeRM SmartRM SafeRM SmartRM

58%

112%

31%

72%

26%

82%

8%

50%

Higher is better.

Figure 10: RMiner greatly improves resource utiliza-
tion via mining shadow resources.

and SafeRM, we select appropriate filter thresholds based on
our design. We set the default filter threshold as updating
delay and filter ratio as 50%. We further tune the thresholds
and ratios to investigate the optimizations.

4.2 Resource Utilization
As for the first question about the performance improve-
ments of RMiner, we record three widely used metrics to
answer it. Resource utilization is one of the crucial system
performance indicators of cloud computing clusters. We re-
port the utilization-related results with Alibaba’s trace in
Figure 10. The bars indicate the CPU utilization improve-
ments. Obviously, RMiner improves cluster CPU utilization
via mining shadow resources. In different scenarios, shadow
resources take up 1.5% to 5.0% of the cluster resource. SafeRM
outperforms NoRM by 1.5% to 4% and SmartRM outperforms
NoRM by 1.6% to 5.8% by utilizing resources in resource
waiting delays. More specifically, RMiner works better un-
der the 8 schedulers scenario (average utilization of 36.9%)
than under 16 schedulers (average utilization of 71.8%) since
fewer schedulers make it easier to find suitable RM tasks for
shadow resources. Moreover, RMiner performs better under
higher task submission rates (2x) since more tasks offer more
released resources to be utilized.

We also report the utilization ratio of shadow resources un-
der each setting as the marked lines. By recording the overall
shadow resources and allocated shadow resources, SafeRM
utilizes 26% to 82% shadow resources and SmartRM utilizes
58% to 112% shadow resources. SafeRM is more conserva-
tive by limiting tasks for shadow resource survival time only
while SmartRMworks more aggressively by utilizing shadow
resources in resource waiting delays, which even exceeds
the upper bound of invisible shadow resources. Moreover,
more parallel schedulers increase the total amount of shadow
resources while reducing their utilization ratio due to the
reduced number of suitable RM tasks.

RMiner: Exploiting Shadow Resources in Shared-State Scheduler Architecture SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

Av
er

ag
e

CP
U

Ut
iliz

at
io

n
[%

]

SmartRM

SafeRM

No RM

(a) 8 schedulers

50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

Av
er

ag
e

CP
U

Ut
iliz

at
io

n
[%

]

SmartRM

SafeRM

No RM

(b) 16 schedulers

Figure 11: RMiner improves the sampled CPU Utiliza-
tion within the scheduling process

1

2

3

4

5

8schedulers 16 schedulers

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

Task Submitted Per Minute

SmartRM

SafeRM

NoRM

10%

28%

4%

13%

1

2

3

4

5

8 schedulers 16 schedulers

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

Task Submitted Per Minute

9%

28%

2%

10%Higher is better.

(a) Results on Alibaba’s trace (b) Results on Google’s trace

(a) Results on Alibaba’s Trace

1

2

3

4

5

8schedulers 16 schedulers

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

Task Submitted Per Minute

SmartRM

SafeRM

NoRM

10%

28%

4%

13%

1

2

3

4

5

8 schedulers 16 schedulers

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

Task Submitted Per Minute

9%

28%

2%

10%Higher is better.

(a) Results on Alibaba’s trace (b) Results on Google’s trace

(b) Results on Google’s Trace

Figure 12: RMiner improves the total task throughput

Moreover, we sample the utilization of each node in the
cluster within the whole scheduling process with Google’s
trace and report the average results in Figure 11. The line
is the resource utilization and the stained part represents
the standard deviation. We find that SmartRM improves uti-
lization at all timestamps compared with SafeRM and NoRM
while it has smaller fluctuations due to the aggressive sched-
uling policies. The average utilization under 16 schedulers
is higher than that under 8 schedulers such that RMiner im-
proves higher utilization but lower ratio compared to others.
Overall, RMiner achieves considerable resource utilization
improvements via the proper use of invisible resources.

4.3 Task Throughput
Besides resource utilization improvements, RMiner also im-
proves the overall task throughput of the cluster, which is
the number of scheduled tasks within the 300s period. Figure
12 reports the results on two industrial traces under var-
ious scenarios. Figure 12 (a) shows the improvements on
Alibaba’s trace, where SafeRM achieves up to 10% through-
put improvements over NoRM and SmartRM achieves up
to 28% throughput improvements. We find that under high
workloads (task submission rate), RMiner performs better
than lower workloads since more finished tasks produce

0

5

10

15

20

25

30

8schedulers 16 schedulers

J
o

b
 W

a
it
 T

im
e

 (
s
)

Task Submitted Per Minute

25.4%

10.4%Lower is better.

0

5

10

15

20

25

30

35

8schedulers 16 schedulers

J
o

b
 W

a
it
 T

im
e

 (
s
)

Task Submitted Per Minute

NoRM

SafeRM

SmartRM

59.9%

24.9%

(a) Results on Alibaba’s trace (b) Results on Google’s trace

(a) Results on Alibaba’s Trace

0

5

10

15

20

25

30

8schedulers 16 schedulers

J
o

b
 W

a
it
 T

im
e

 (
s
)

Task Submitted Per Minute

25.4%

10.4%Lower is better.

0

5

10

15

20

25

30

35

8schedulers 16 schedulers

J
o

b
 W

a
it
 T

im
e

 (
s
)

Task Submitted Per Minute

NoRM

SafeRM

SmartRM

59.9%

24.9%

(a) Results on Alibaba’s trace (b) Results on Google’s trace

(b) Results on Google’s Trace

Figure 13: RMiner achieves lower job wait time

more resource fragments, that is, shadow resources. Similarly,
both SafeRM and SmartRM work better under fewer parallel
schedulers (scenario of 8) like utilization comparisons. More
parallel schedulers utilize more visible resources and leave
less optimization space for RMiner, where SafeRM still out-
performs 4% and SmartRM outperforms 13% on throughput.
More specifically, under the 8 schedulers scenario, 1.75x

workload exceeds the scheduling capacity of the system and
NoRM achieves the same throughput under higher work-
loads. But RMiner finishes more RM tasks with shadow re-
sources and still achieves throughput improvements, which
means RMiner can enlarge the scheduling capacity with en-
hanced resource visibility.Moreover, we compare the through-
put of three schemes on Google’s trace in Figure 12. It shows
that SafeRM achieves 2% to 9% improvements and SmartRM
achieves 10% to 28% improvements, which are similar to
Alibaba’s results and further validate RMiner’s performance.

4.4 Job Wait Time
The job wait time metric reflects the waiting time between
the job being submitted to the cluster and being fully sched-
uled [20]. It acts as an important indicator of quality of ser-
vice (QoS). We present the results on job wait time in Figure
13. It shows that RMiner performs similarly to NoRM un-
der lower workloads since tasks do not need to wait in the
queue in such situations. However, under higher workloads
(1.75x and 2x), more tasks are submitted in parallel, and
normal schedulers have almost reached the scheduling ca-
pacity. RMiner outperforms greatly due to the utilization
of more short-lived tasks to reduce the overall queuing de-
lay. RMiner improves job wait time by up to 25.4% under 8
schedulers and up to 10.4% under 16 schedulers. More sched-
ulers reduce the pressure of scheduling tasks concurrently
but cause more scheduling conflicts. Moreover, we further
validate the improvements on Google’s trace and find that
RMiner achieves 59.9% improvements under 8 schedulers
and 24.9% improvements under 16 schedulers. Further, the

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Xinkai Wang et al.

2

3

4

5

20

30

40

50

60

70

80

90

0 5 10 15

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

Job Conflict Rate (%)

Base-R

SafeRM-R

Base-T

SafeRM-T

Gain 4% throughput

with <3% conflict.

Gain 4% utilization

with <3% conflict.

2

3

4

5

6

20

30

40

50

60

70

80

90

0 5 10 15

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

R
e
s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

Job Conflict Rate (%)

Base-R

SmartRM-R

Base-T

SmartRM-T

Gain 13% throughput

with <3% conflict.

Gain 6% utilization

with <3% conflict.

Higher is better.Higher is better.

(a) Conflict results of SafeRM (b) Conflict results of SmartRM
(a) 8 schedulers

2

3

4

5

20

30

40

50

60

70

80

90

0 5 10 15

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

R
e
s
o

u
rc

e
 U

ti
liz

a
ti
o
n

 (
%

)

Job Conflict Rate (%)

Base-R

SafeRM-R

Base-T

SafeRM-T

Gain 4% throughput

with <3% conflict.

Gain 4% utilization

with <3% conflict.

2

3

4

5

6

20

30

40

50

60

70

80

90

0 5 10 15

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

R
e
s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

Job Conflict Rate (%)

Base-R

SmartRM-R

Base-T

SmartRM-T

Gain 13% throughput

with <3% conflict.

Gain 6% utilization

with <3% conflict.

Higher is better.Higher is better.

(a) Conflict results of SafeRM (b) Conflict results of SmartRM
(b) 16 schedulers

Figure 14: RMiner trade minor scheduling conflicts for
performance improvements

important tail latency metric in datacenters could be inferred
from job wait time. Although our evaluation environment
cannot support the measure of tail latency due to the fixed
task execution time, the reduction in job wait time results
in better overall tail latency since the execution latency is
composed of shorter job wait time and fixed execution time.

4.5 Job Conflict
In order to answer the second question about the cost of
adopting RMiner in current shared-state schedulers, we first
illustrate the conflict cost of RMiner. The main problem faced
by shared-state scheduler architecture is the scheduling con-
flict of parallel schedulers and RMiner should cause as little
impact on the original scheduling system as possible. More
schedulers cause more scheduling conflicts and we record
the conflict under different workload levels of 16 schedulers
settings. Figure 14 reports the relations between performance
improvements and induced conflicts. Figure 14 (a) shows the
comparison between baseline and SafeRM, which shows that
SafeRM causes less than 3% conflict increase in the worst case
to improve resource utilization and task throughput by 4%.
On average, SafeRM causes 0.5% more conflicts compared
with current shared-state schedulers, which is acceptable
compared to the performance earnings.
Moreover, we report the results of SmartRM in Figure 14

(b). Similarly, SmartRM causes a 3% conflict increase in the
worst case for 6% resource utilization improvements and
13% throughput improvements. The average conflict cost
of SmartRM is 0.73%, which is a little higher than SafeRM
due to more aggressive mining strategies. We also find that
conflict costs are more severe under higher workloads since
more concurrent task submission makes SmartRM easier
to conflict with normal schedulers. In summary, from the
perspective of job conflict, the cost is negligible compared
with the performance improvements.

0

5

10

15

20

25

2

2.5

3

3.5

4

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

0.3 0.4 0.5 0.6 0.7

R
M

 T
a
s
k
 R

a
ti
o
 (

%
)

T
a

s
k
 T

h
ro

u
g

h
p
u

t
(1

e
6

)

Updating Delay (s)

Throughput RM Task Ratio

52

52.5

53

53.5

54

2

2.5

3

3.5

4

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

0.3 0.4 0.5 0.6 0.7

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

Updating Delay (s)

Throughput Utilization

Up

Down

Same

0

2

4

6

8

10

0.3 0.4 0.5 0.6 0.7

K
ill

e
d

 R
M

 T
a

s
k
 R

a
ti
o

 (
%

)

Updating Delay (s)

SafeRM SmartRM-C SmartRM-A

Different GoalsLower is Better.

Higher is better.

Figure 15: Comparisons on throughput and utilization
of different settings of RMiner

4.6 Overhead Analysis
Besides observed conflict costs, the extra overhead of RMiner
is also an important aspect to answer question 3. Unfortu-
nately, the industrial simulator does not model overhead for
scheduling so we conduct a comprehensive theoretical analy-
sis. The overhead of RMiner contains shadow resource man-
aging overhead and RM scheduling overhead. The shadow
resource manager occupies additional memory space to store
and update shadow resource state indexes, which is about
3%-12.5% to the space of CSV. The frequency of the manag-
ing algorithm is frequent under higher workloads but the
complexity of the action is 𝑂 (1) via hash mapping, leading
to acceptable computing overhead. Overall the management
of shadow resources incurs negligible overhead.
As for additional scheduling overhead, current shared-

state scheduler designs [11, 32] are equipped with tens of par-
allel distributed schedulers with global state views. RMiner
adds one more RM scheduler to enhance the visibility of the
current designs greatly, and the scheduling cost of the RM
scheduler is lower than one conventional parallel scheduler
since both the scheduling scopes and entities are smaller
than before. Thus, the scheduling overhead of RMiner is
roughly a single-digit increase from current shared-state
designs. Overall, the costs of adopting RMiner in current
shared-state schedulers are negligible compared to the con-
siderable cluster performance improvements

4.7 Comparison of RM Modes
To answer the third question about the detailed optimizations
of RMiner, we conduct extensive experiments by fine-tuning
the parameters of RMiner. SafeRM remains the filter thresh-
old of updating delay to guarantee minimized conflict. The
default threshold of SmartRM is updating delay as well and
we tune the filter threshold to 2x updating delay and 4x up-
dating delay to compare the performance. The former has
a lower likelihood of conflict and is defined as conservative

RMiner: Exploiting Shadow Resources in Shared-State Scheduler Architecture SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

0

5

10

15

20

25

2

2.5

3

3.5

4

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

S
a
fe

R
M

S
m

a
rt

R
M

-A

S
m

a
rt

R
M

-C

0.3 0.4 0.5 0.6 0.7

R
M

 T
a
s
k
 R

a
ti
o
 (

%
)

T
a
s
k
 T

h
ro

u
g

h
p
u
t
(1

e
6
)

Updating Delay (s)

Throughput RM Task Ratio

52

52.5

53

53.5

54

2

2.5

3

3.5

4

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

S
a
fe

R
M

S
m

a
rt

-C
S

m
a

rt
-A

0.3 0.4 0.5 0.6 0.7

R
e

s
o

u
rc

e
 U

ti
liz

a
ti
o

n
 (

%
)

T
a

s
k
 T

h
ro

u
g
h

p
u

t
(1

e
6

)

Updating Delay (s)

Throughput Utilization

Up

Down

Same

0

2

4

6

8

10

0.3 0.4 0.5 0.6 0.7

K
ill

e
d

 R
M

 T
a
s
k
 R

a
ti
o
 (

%
)

Updating Delay (s)

SafeRM SmartRM-C SmartRM-A

Different GoalsLower is Better.

Higher is better.

Figure 16: Scheduling conflicts comparison of different
settings of RMiner

SmartRM (SmartRM-C). Conversely, the latter is defined as
aggressive SmartRM (SmartRM-A). Moreover, we vary the
default updating delay of 0.5s to investigate the impact on
results. The experiments are conducted under 1x workload
level and 16 parallel schedulers.
We firstly report the performance comparisons in Fig-

ure 15. Counter-intuitively, filtering more tasks to RMiner
(SmartRM-A) increases resource utilization while decreas-
ing task throughput. It is because this setting leaves fewer
short-lived tasks to normal schedulers, which tend to sched-
ule heavy-weight tasks to the cluster, which occupies more
resources concurrently while finishing fewer tasks in total.
Therefore, we need to control the filter principles carefully to
avoid both over-filter and under-filter tasks in RMiner. The
updating delay influences the performance of RMiner as well.
The larger the updating delay is, the more the resource waste
is, leading to lower task throughput and resource utilization.
Under higher updating delay, SmartRM-A performs worse on
utilization than in lower situations since the improvements
of RMiner are masked by the degradation of normal sched-
ulers, but it performs almost the same on utilization since
more heavy-weight tasks are executed under such scenarios.

Further, we report the details of conflicts in Figure 16. We
record the killed tasks due to conflict and normalize the num-
ber to RM tasks. The lower value of this metric means fewer
RM tasks cause conflict with normal scheduling. It is obvious
that SafeRM rarely causes conflicts with normal schedul-
ing. As for SmartRM, the higher the filter threshold is, the
higher the killed RM task ratio is, leading to more conflict
with parallel schedulers. There is a trade-off between perfor-
mance improvements and conflict costs and the two sides of
the trade-off represent different design objectives of RMiner:
highest performance improvements or lowest intrusion into
the normal system. Overall, different RMiners achieve con-
siderable performance improvements with acceptable costs
and they can be flexibly configured for different goals.

5 RELATEDWORK AND DISCUSSION
In this section, we summarize the advances in scheduler
architectures and policies. Then we demonstrate the differ-
ences and uniqueness of shadow resources and our designs.

5.1 Scheduler Architectures and Policies
As stated in Section 2.1, there are three major scheduler
architectures in current data centers. The monolithic sched-
ulers work in high-performance computing [2, 3] and large-
scale cluster computing [20, 40, 47]. The only scheduler, like
Quasar[13] and Paragon[12], runs in a monolithic machine
and processes all jobs with the same logic and the sched-
uler is obviously the bottleneck of scheduling. However, the
visibility of such architecture is global and up-to-date due
to the one and only design. The two-level architecture con-
tains a central resource manager and multiple distributed
schedulers [22, 39, 45]. The manager statically/dynamically
partitions global resources to different schedulers and each
scheduler could implement application-specific policies. This
design is more scalable while suffering from low utiliza-
tion due to partial view [32]. More recently, the shared-state
scheduler architecture was proposed by Google [32] in 2013.
It inherits the application-specific scheduling advantage of
the two-level architecture and solves its problem of partial
visibility of resources [7, 17, 31]. This work focuses on the
stale shortcomings of shared-state architecture, which few
works have studied before.

Apart from scheduler architecture designs, many sched-
uling policies have been proposed for different architec-
tures. These works are variants of traditional scheduling
algorithms [15, 16, 33] and focus on various goals like fair-
ness [19, 26, 45], resource utilization [8, 23, 24, 27], and job
completion time [21, 34, 38]. There are also some works tar-
geting emerging resources like far memory [5, 41, 42] and
opportunistic resources [35], which improve scheduling effi-
ciency from remote and intermittent perspectives. Moreover,
some works improve resource utilization by predicting dy-
namic utilization in real time [6, 9, 30], which is difficult in
long-term and large-scale. Also, a bunch of works harvest
idle resources from executing services to improve resource
utilization [18, 44]. Our work is orthogonal and complemen-
tary to these works focusing on utilizing shadow resources
within shared-state schedulers. Our scheduling resources
are invisible to the above methods while the scheduling al-
gorithms of RMiner can be enhanced with state-of-the-art
complex policies and goals.
5.2 Shared-state Scheduler Deep Dive
There are many works following the shared-state design [7,
14, 17, 28, 31] to optimize various aspects as shown in Table 4.
Apollo [7] of Microsoft uses the wait-time matrix to estimate
jobs’ wait time and infers future resource availability in the

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Xinkai Wang et al.

Table 4: Comparison of related work on scheduler architectures

Categories Schemes Goal Resource choice Spatial V Temporal V
Monolithic Quasar[13], Paragon[12] Resource Utilization All available Global Up-to-date
Two-level Mesos[22], Yarn[39] Scalability Subset available Partial Up-to-date

Shared-state
Omega[32], ParSync[17] Schedule quality All visible Par-global Stale
Yaq-d[31], Tarcil[14] Job complete time All visible Par-global Stale
RMiner (Ours) Scheduling visibility All available Global Up-to-date

+ V denotes resource visibility.

cluster. Yaq-d [31] optimizes queue sizing and reordering
strategies of distributed schedulers. Tarcil [14] dynamically
adjusts the sampling to reduce conflict rates and job comple-
tion time. Other frameworks [10, 11, 28] utilize work stealing,
federated scheduling, and more advanced techniques to op-
timize. However, the gap between the update of schedulers’
view and actual resource release causes the intermittently
stale states of distributed schedulers (detailed in Section 2.3).
Neither of the above works noticed such problems and failed
to utilize the following invisible shadow resources.

To the best of our knowledge, ParSync [17] mentions the
stale state problem within shared-state architecture, and it
proposes a partial solution from the schedulers’ perspective.
ParSync partitions the cluster state into 𝑁 parts and each
scheduler maintains 1/𝑁 up-to-date resource view as pri-
oritized scheduling destinations. It could eliminate shadow
resources when specific schedulers have just the right jobs
for the 1/𝑁 partition. However, it incurs great overhead
to keep distributed schedulers up-to-date and cannot man-
age overall invisible resources. Therefore, our work is the
first systematic analysis of shadow resources in shared-state
scheduler architecture and enhances the spatial and tempo-
ral visibility of current designs by fully utilizing the invisible
yet precious resources from a central perspective.

5.3 Discussion and Future Work
In this paper, we enhance the visibility of shared-state design
by exploiting invisible shadow resources. Through experi-
ments on industrial traces, we find that shadow resources
are highly related to the overall workloads in the cluster. In
traditional heavy-weight and long-lasting traces, the shadow
resources are fewer because the fleeting resource fragments
are negligible to normal occupation. However, the increase in
the proportion of short tasks significantly increases the ratio
of shadow resources. We keep the original distribution of in-
dustrial traces in our experiments and observe performance
improvements with a wide range of fluctuations. Looking for-
ward, lightweight and short-lived workloads provide more
resource fragments to be utilized and the enhanced visibility
definitely results in greater profits.

Meanwhile, there is no practical open-source shared-state
scheduler at present, which hinders the realistic evaluation
of the subsequent optimizations to the shared-state architec-
ture. Given the only open-source industrial cluster simulator,
we try our best to adjust the industrial traces and enhance
the original scheduling process to evaluate RMiner fairly.
However, the evaluation methodology and results could be
better and more valid on top of a commercial shared-state
scheduler in the cluster.

In the future, we will continuously optimize RMiner in two
ways. Firstly, we will actively integrate RMiner into indus-
trial shared-state scheduling systems, which could further
validate the effectiveness of RMiner in realistic environments
and the enhancement of current schedulers. Then, the cur-
rent filter principles and scheduling algorithms in this paper
are simple yet effective and they can be enhanced with more
complex and intelligent techniques like machine learning
techniques, which lead to more practical and efficient shared-
state scheduler architecture.

6 CONCLUSION
In this paper, we take the first step to enhance the visibility
of shared-state scheduler architecture to support utilizing
shadow resources in the cluster. We conduct thorough theo-
retic and experimental analysis about the invisible shadow
resource fragments and propose RMiner to both agilely mine
shadow resources and transparently utilize them. Through
industry-grade simulation, we show that RMiner can boost
the overall performance of server clusters with minor over-
head and conflicts. We expect that our design can help im-
prove the resource efficiency of big data centers and various
distributed micro data centers near the edge.

7 ACKONWLEDGEMENTS
We sincerely thank our shepherd, Yannis Chronis, and other
anonymous reviewers for their valuable comments that helped
us to improve the paper. This work is supported by the Na-
tional Key R&D Program of China (No. 2022YFB4501702),
and the National Natural Science Foundation of China (No.
62122053). Xinkai Wang, Hao He, and Yuancheng Li have
contributed equally. The corresponding author is Chao Li.

RMiner: Exploiting Shadow Resources in Shared-State Scheduler Architecture SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

REFERENCES
[1] 2014. Google cluster scheduler simulator. https://github.com/google/

cluster-scheduler-simulator.
[2] 2014. SLURM. https://github.com/chaos/slurm.git.
[3] 2020. TORQUE. https://github.com/adaptivecomputing/torque.git.
[4] 2022. Alibaba Cluster Trace Program. https://github.com/alibaba/

clusterdata.
[5] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy

Ousterhout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. 2020. Can far memory improve job throughput?. In
Proceedings of the Fifteenth European Conference on Computer Systems.
1–16.

[6] Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree Kodak,
and Rohit Jnagal. 2021. Take it to the limit: peak prediction-driven
resource overcommitment in datacenters. In European Conference on
Computer Systems.

[7] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: scalable and
coordinated scheduling for cloud-scale computing. In Operating Sys-
tems Design and Implementation.

[8] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource central: Understand-
ing and predicting workloads for improved resource management in
large cloud platforms. In Proceedings of the 26th Symposium on Operat-
ing Systems Principles. 153–167.

[9] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource Management in
Large Cloud Platforms. In Symposium on Operating Systems Principles.

[10] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao,
Giovanni Matteo Fumarola, Botong Huang, Kishore Chaliparambil, A.
Suresh, Young Chen, Solom Heddaya, Roni Burd, Sarvesh Sakalanaga,
Chris Douglas, Bill Ramsey, and Raghu Ramakrishnan. 2019. Hydra:
a federated resource manager for data-center scale analytics. In Net-
worked Systems Design and Implementation.

[11] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy
Zwaenepoel. 2015. Hawk: Hybrid datacenter scheduling. In Proceedings
of the 2015 USENIX Annual Technical Conference. USENIX Association,
499–510.

[12] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-
aware scheduling for heterogeneous datacenters. ACM SIGPLAN No-
tices 48, 4 (2013), 77–88.

[13] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
efficient and QoS-aware cluster management. ACM SIGPLAN Notices
49, 4 (2014), 127–144.

[14] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015.
Tarcil: reconciling scheduling speed and quality in large shared clusters.
In Symposium on Cloud Computing.

[15] Dror G Feitelson. 1996. Packing schemes for gang scheduling. In Job
Scheduling Strategies for Parallel Processing: IPPS’96 Workshop Honolulu,
Hawaii, April 16, 1996 Proceedings 2. Springer, 89–110.

[16] Dror G Feitelson and Ahuva Mu’alem Weil. 1998. Utilization and
predictability in scheduling the IBMSP2with backfilling. In Proceedings
of the First Merged International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing. IEEE, 542–546.

[17] Yihui Feng, Zhi Liu, Yunjian Zhao, Tatiana Jin, Yidi Wu, Yang Zhang,
James Cheng, Chao Li, and Tao Guan. 2021. Scaling Large Produc-
tion Clusters with Partitioned Synchronization.. In USENIX Annual
Technical Conference. 81–97.

[18] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan
Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eugene Bak,

Mehmet Iyigun, and Ricardo Bianchini. 2022. Memory-harvesting
vms in cloud platforms. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems. 583–594.

[19] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant resource fairness: Fair alloca-
tion of multiple resource types.. In Nsdi, Vol. 11. 24–24.

[20] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and
Steven Hand. 2016. Firmament: Fast, centralized cluster scheduling
at scale. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 99–115.

[21] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh
Ananthanarayanan. 2016. Altruistic Scheduling in Multi-Resource
Clusters.. In OSDI, Vol. 16. 65–78.

[22] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thonyD Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos:
A Platform for Fine-Grained Resource Sharing in the Data Center. In
8th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI).

[23] Xiaofeng Hou, Chao Li, Jiacheng Liu, Lu Zhang, Yang Hu, and Minyi
Guo. 2020. ANT-Man: Towards agile power management in the mi-
croservice era. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–14.

[24] Xiaofeng Hou, Chao Li, Jiacheng Liu, Lu Zhang, Shaolei Ren, Jingwen
Leng, Quan Chen, and Minyi Guo. 2021. AlphaR: Learning-powered
resource management for irregular, dynamic microservice graph. In
2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 797–806.

[25] Xiaofeng Hou, Jiacheng Liu, Chao Li, and Minyi Guo. 2019. Unleash-
ing the scalability potential of power-constrained data center in the
microservice era. In Proceedings of the 48th International Conference on
Parallel Processing. 1–10.

[26] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. 2009. Quincy: fair scheduling for
distributed computing clusters. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. 261–276.

[27] Tatiana Jin, Zhenkun Cai, Boyang Li, Chengguang Zheng, Guanxian
Jiang, and James Cheng. 2020. Improving resource utilization by
timely fine-grained scheduling. In Proceedings of the Fifteenth European
Conference on Computer Systems. 1–16.

[28] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,
Kishore Chaliparambil, Giovanni Matteo Fumarola, Solom Heddaya,
Raghu Ramakrishnan, and Sarvesh Sakalanaga. 2015. Mercury: hybrid
centralized and distributed scheduling in large shared clusters. In
USENIX Annual Technical Conference.

[29] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: distributed, low latency scheduling. In Symposium on Oper-
ating Systems Principles.

[30] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and Subru Krish-
nan. 2016. PerfOrator: eloquent performance models for Resource
Optimization. In Symposium on Cloud Computing.

[31] Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula, Rodrigo Fon-
seca, Milan Vojnovic, and Sriram Rao. 2016. Efficient queue man-
agement for cluster scheduling. In European Conference on Computer
Systems.

[32] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. 2013. Omega: flexible, scalable schedulers for large com-
pute clusters. In Proceedings of the 8th ACM European Conference on
Computer Systems (EuroSys). 351–364.

[33] Uwe Schwiegelshohn and Ramin Yahyapour. 1998. Analysis of first-
come-first-serve parallel job scheduling. In SODA, Vol. 98. 629–638.

https://github.com/google/cluster-scheduler-simulator
https://github.com/google/cluster-scheduler-simulator
https://github.com/chaos/slurm.git
https://github.com/adaptivecomputing/torque.git
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata

SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA Xinkai Wang et al.

[34] Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and Pon-
nuswamy Sadayappan. 2002. Characterization of backfilling strategies
for parallel job scheduling. In Proceedings. International Conference on
Parallel Processing Workshop. IEEE, 514–519.

[35] Amoghavarsha Suresh and Anshul Gandhi. 2021. ServerMore: Oppor-
tunistic Execution of Serverless Functions in the Cloud. In Symposium
on Cloud Computing.

[36] Muhammad Tirmazi, Adam Barker, Nan Deng, E. Haque, Zhijing Gene
Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes. 2020. Borg:
the next generation. In European Conference on Computer Systems.

[37] Muhammad Tirmazi, Nan Deng, Md Ehtesam Haque, Zhijing Gene
Qin, Steve Hand, and Adam Barker. 2019. Google cluster-usage 2019
trace. The clusterdata-2019 trace dataset provides information about
eight different Borg cells for the month of May 2019. https://github.
com/google/cluster-data/blob/master/ClusterData2019.md.

[38] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch,
Mor Harchol-Balter, and Gregory R Ganger. 2016. TetriSched: global
rescheduling with adaptive plan-ahead in dynamic heterogeneous clus-
ters. In Proceedings of the Eleventh European Conference on Computer
Systems. 1–16.

[39] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. 2013. Apache hadoop yarn: Yet an-
other resource negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing. 1–16.

[40] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Op-
penheimer, Eric S. Tune, and John Wilkes. 2015. Large-scale cluster
management at Google with Borg. In European Conference on Computer
Systems.

[41] JingWang, Chao Li, Junyi Mei, Hao He, TaoleiWang, PengyuWang, Lu
Zhang, Minyi Guo, Hanqing Wu, Dongbai Chen, et al. 2022. HyFarM:

Task Orchestration on Hybrid Far Memory for High Performance Per
Bit. In 2022 IEEE 40th International Conference on Computer Design
(ICCD). IEEE, 33–41.

[42] Jing Wang, Chao Li, Taolei Wang, Lu Zhang, Pengyu Wang, Junyi Mei,
and Minyi Guo. 2022. Excavating the potenFtial of graph workload on
rdma-based far memory architecture. In 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 1029–1039.

[43] Xinkai Wang, Chao Li, Lu Zhang, Xiaofeng Hou, Quan Chen, and
Minyi Guo. 2022. Exploring efficient microservice level parallelism. In
2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 223–233.

[44] YawenWang, Kapil Arya,Marios Kogias,Manohar Vanga, Aditya Bhan-
dari, Neeraja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos
Kozyrakis, and Ricardo Bianchini. 2021. Smartharvest: Harvesting idle
cpus safely and efficiently in the cloud. In Proceedings of the Sixteenth
European Conference on Computer Systems. 1–16.

[45] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. 2010. Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling.
In Proceedings of the 5th European conference on Computer systems.
265–278.

[46] Lu Zhang, Chao Li, Xinkai Wang, Weiqi Feng, Zheng Yu, Quan Chen,
Jingwen Leng, Minyi Guo, Pu Yang, and Shang Yue. 2023. FIRST:
Exploiting the Multi-Dimensional Attributes of Functions for Power-
Aware Serverless Computing. In 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE.

[47] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu.
2014. Fuxi: a fault-tolerant resource management and job scheduling
system at internet scale. In Proceedings of the VLDB Endowment, Vol. 7.
1393–1404.

https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Shared-state Scheduler Architecture
	2.2 Shadow Resources in Shared-State Scheduler Architecture
	2.3 Analysis of Shadow Resources
	2.4 Challenges Faced by Shadow Resources

	3 Design of Resource Miner
	3.1 Overview and Design Principles
	3.2 Shadow Resource Manager
	3.3 RM Filter
	3.4 RM Scheduler
	3.5 Optimization of Resource Miner

	4 Evaluation
	4.1 Methodology
	4.2 Resource Utilization
	4.3 Task Throughput
	4.4 Job Wait Time
	4.5 Job Conflict
	4.6 Overhead Analysis
	4.7 Comparison of RM Modes

	5 Related Work and Discussion
	5.1 Scheduler Architectures and Policies
	5.2 Shared-state Scheduler Deep Dive
	5.3 Discussion and Future Work

	6 Conclusion
	7 Ackonwledgements
	References

