
MMExit: Enabling Fast and Efficient Multi-modal DNN
Inference with Adaptive Network Exits

Xiaofeng Hou1[0000−0003−4372−7851], Jiacheng Liu1[0000−0003−0378−2311], Xuehan
Tang1[0009−0000−4106−2759], Chao Li1�[0000−0001−6218−4659], Kwang-Ting

Cheng2�[0000−0002−3885−4912], Li Li1, and Minyi Guo1[0000−0003−0034−2302]

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University
2 ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers,

The Hong Kong University of Science and Technology

Abstract Multi-modal DNNs have been demonstrated to outperform the best
uni-modal DNNs by fusing information from different modalities. However, the
performance improvement of multi-modal DNNs is always associated with an
incredible increase in computational cost (e.g., network parameters, MAC opera-
tions, etc.) to handle more modalities, which ultimately makes them impractical
for many real-world applications where computing capability is limited.
In this paper, we propose MMExit, a multi-modal exit architecture that allows for
computing appropriate modalities and layers to predict results for different data
samples. To this end, we define a novel metric called utility of exit (UoE) to measure
the correlations of performance and computational cost for different exits. We then
use an equivalent modality serialization method to map the two-dimensional exit
space into an equivalent linear space and rank the exits according to their UoE
to achieve fast and adaptive inference. To train the MMExit network, we devise
a joint loss function which synthesizes the features of different modalities and
layers. Our results show that MMExit can slash up to 48.72% of MAC operations
with the best performance compared to SOTA multi-modal architectures.

Keywords: Multi-modal DNNs, Energy-efficient AI, Adaptive Inference

1 Introduction

Multi-modal DNNs [16,27,11] have recently attracted lots of attention due to their
superior performance. As shown in Figure 1, a multi-modal DNN typically consists
of multiple parallel encoder networks that take different modality data as inputs to
obtain the modality features and a subsequent fusion and decision network that fuses the
different features as well as outputs the final decision. By fusing the information from
different modalities, multi-modal DNNs have been demonstrated to outperform the best
uni-modal DNNs in many application domains. For example, in multimedia applications,
the multi-modal DNNs have been shown to outperform the best uni-modal DNNs by 5%
˜ 30% accuracy through fusing vast amounts of image, video and audio data [2].

Despite the performance advantages, multi-modal DNNs often involve more com-
putational costs such as network parameters and Multiply-Accumulate (MAC) opera-
tions [23]. It has been shown that multi-modal DNNs can lead to a 0.1× ˜ 80× increase



2 X. Hou et al.

(a) Execution path of simple and frequent samples.

(b) Execution path of difficult but less frequent samples.

Figure 1: The execution paths for different data samples in avmnist with MMExit.

in network parameters compared to uni-modal DNNs [16,17]. This would ultimately
increase the latency and energy required by inference tasks. For example, experimental
results on powerful servers with 17 GPUs and 32 CPUs installed show that the increased
parameters of the multi-modal DNNs can lead to a 10× increase in inference latency and
power consumption in affective computing applications [16]. This would further make
multi-modal DNNs prohibitive in many real-world scenarios such as next-generation
mobile robots where computational capability is limited.

In this paper, we propose MMExit, an adaptive multi-modal exit architecture that
enables the optimal performance and computational cost tradeoffs in multi-modal DNN
inference tasks for different data samples. MMExit exploits a unique feature of multi-
modal DNNs in that different modalities and layers can provide different levels of
confidence at different computational costs. For example, it has been shown that text-
based features perform better than visual or auditory features in a multi-modal language-
emotion analysis task [1]. Therefore, MMExit is designed to predict results for most
data samples with a minimal computational cost by exiting from appropriate modality
and layers as shown in Figure 1. For very complex data samples, which happen less
frequently, MMExit would compute more modalities to guarantee better accuracy.

Unlike the previous early-exit architectures for uni-modal DNNs, where exits are
explicitly related to the depth of layers, MMExit is a new problem of finding an optimal
exit in a 2-dimensional (2D) space composed of modalities and layers. In this regard,
one important challenge is to decide in which modality and layers to exit to reduce
the computation cost of the inference task while maintaining high accuracy. To this
end, we define a novel metric called utility of exit (UoE) to measure the correlations of
performance gain and computational effort for different exits. we also use an equivalent
serialization method to map the 2D exit space into an equivalent linear space which
enables us to find the optimal exit fast. Another challenge is how to train the MMExit



MMExit 3

Figure 2: An overview of MMExit.

DNNs efficiently. We devise a joint loss function which synthesizes the features of
different modalities and layers. The experimental results show that MMExit can reduce
22.64% ˜ 48.72% MACs and 21.44% ˜ 45.02% parameters of multi-modal fusion without
any performance degradation. To sum up, we make the following contributions:

1. We propose MMExit, a multi-modal exit architecture to adaptively reduce the com-
putational cost in multi-modal DNN inference tasks with different data samples.

2. We design a new metric called the utility of exit and the equivalent serialization
method to navigate the multi-modal DNN inference tasks to exit adaptively.

3. We define a joint loss function that synthesizes the features of different modalities
and layers with a double-stage adaptive re-weighting method to train the MMExit.

4. We verify MMExit with an extensive number of real-world multi-modal DNN models
and datasets based on an open-sourced benchmark.

2 MMExit: Architecture Design

2.1 Problem Setup

Background We first briefly introduce the fundamental multi-modal DNN architecture.
Without loss of generality, we consider a classification task that leverages the multi-
modal DNN to process and fuse the features from n modalities. We use m1, ...,mn

to denote these modalities. To train the multi-modal DNN, we construct a dataset that
contains N data samples denoted as D = {(xi

m1
, xi

m2
, · · · , xi

mn
, yi)}Ni=1. The goal is

to predict the correct label y with the network and dataset. Figure 2 shows the common
structure of the multi-modal DNN. It consists of multiple, parallel modality encoder
sub-networks as well as a sequential fusion and classification sub-network, i.e., icons
highlighted by black border and white background. These encoder sub-networks are
responsible for obtaining the representations of different modalities. Typically, they can
be implemented with standard uni-modal DNNs, determined by the characteristics of
modality [16]. After that, the fusion and classification sub-network is used to merge the
representations of all modalities and produce the final prediction.



4 X. Hou et al.

The MMExit Architecture The key behind MMExit is that for most data samples, the
feature learned from a fraction of modalities is sufficient to produce the final prediction
y with high confidence. For example, it is widely accepted that most data samples can
be addressed using simple models [8]. In multi-modal settings, some modalities achieve
better performance than others in many cases [16].

Therefore, in the MMExit network, we obtain the prediction label y through the exits
from the modality encoder sub-networks or the exit after fusion. As shown in Figure 2,
we define two classes of exits. The first is the encoder exit at each encoder sub-network
and the second is the fusion exit at the fusion and classification sub-network. Assuming
n modalities in the multi-modal DNN application, any inference task has n + 1 exits
including n encoder exits and one fusion exit. For the i-th sub-network, we assume the
j-th exit point in it is denoted as e(mi,j). We use a lightweight classification head to
transform the features learned at this point into the final predictions.

y(mi,j)
e = f (mi,j)

e (zi; θ
(mi,j)
e ) (1)

where y(mi,j)
e is a vector that represents the predicted probability. Then, we calculate the

normalized entropy as the confidence of the prediction result from exit e(i,j) as,

H(e(mi,j)) = − 1

log(C)
y(mi,j)
e log(y(mi,j)

e ) (2)

where C is the number of classes in the classification task.

2.2 Discussion on MMExit

In the DNN inference process, the optimal exit with minimal computational cost is the
earliest one to meet the accuracy. In the previous uni-modal early-exit architecture [24],
the accuracy and computational cost of an exit is only related to the depth of layers.
Thus, it is easy to find the optimal exit fast in the uni-modal network due to the explicit
relationship between different exits. However, in MMExit architecture, there is no fixed
relationship between performance and computational cost of the exits on different
modality encoder sub-networks. Thus, we have to determine which modality should be
processed in advance in order to provide the expected prediction results with the least
amount of computation. In the training process, the uni-modal exit network only needs
to set different weights for different exits. However, when training the MMExit networks,
we must determine the weights for different modalities and exits, which requires a joint
training approach to improve the robustness of MMExit.

3 MMExit: Adaptive Inference

3.1 Utility Assessment Metric

We define a metric named utility of exit (UoE) to measure the benefit of an exit in
terms of its accuracy and computational cost. A larger UoE for an exit indicates the
benefit of the performance improvement from the exit outweighs its computational cost.
Conversely, a smaller UoE means that the utility of the exit is not good. The mission of



MMExit 5

the inference process is to find the optimal exit that has the highest UoE, thus avoiding
the waste of computation while satisfying the performance.

To compute the UoE of an encoder exit, for the i-th modality, we denote its modality
encoder sub-network as f i

u(·). We assume modality mi has emi different exits, forming a
set of exit classification network, which denoted by Emi

= ⟨f (mi,1)
e , f

(mi,2)
e , ..., f

(mi,emi
)

e ⟩.
For the j-th exit f (mi,j)

e ∈ Emi
of modality encoder sub-network for modality mi, we

assume that it can achieve an accuracy of ajmi
with a computational cost of cjmi

. Then,
we can define the utility of the encoder exit as,

U(ejmi
) = λaj

mi
− (cjmi

+
∑

f:1→i−1
g:1→emf

cgmf
+

∑
f=i

g:1→j−1

cgmf
) (3)

where λ represents the preference of different applications for performance and compu-
tational cost. Notably, we compute the UoE of the fusion exits in a similar way.

Then, we assume that for a standalone exit network a data sample will exit from
f
(mi,j)
e with a probability of pjmi

. Thus, in the MMExit network, we formulate the
probability of a sample exit from y-th exit in x-th modality as follows,

Pe(x, y) =
∏

i:1→x−1
j:1→emx

(1− pjmi
) ∗

∏
i=x

j:1→y−1

(1− pjmi
) ∗ pymx

(4)

3.2 Equivalent Modality Serialization

In the inference process of MMExit, the ultimate goal is to generate an order of exits that
can maximize the sum of the utility function for all data samples, which is formulated as,

max
∑

i:1→n
j:1→emi

U(ejmi
) (5)

As shown in Figure 2, the order of exits in a modality encoder sub-network is fixed
and the order between the encoder exits and fusion exit is also fixed. We only need to
define the execution order of different modalities. Considering the execution order of the
modalities as O = {o1, o2, ..., oM}, the overall target turns to,

argmax
O

U(O) = argmax
O

∑
i:1→M

j:1→emi

Pe(oi, j) ∗ U(ejoi) (6)

This is a hard problem that cannot be solved with a naive method. To order the
modalities, the most explicit way is to traverse all orders and select the order which
maximizes the utility sum. However, there is a drawback in that the computational
process requires traversing all possible modality orders, which leads to unacceptable
computational cost when the number of modalities is large. Therefore, we define an
equivalent metric ϕ, which defines a fast way to select the optimal modality execution
order. Assuming emi

is equal to em for all modalities and pjmi
is approximately close

to p for all exits (the experiments show that our method is able to achieve near-optimal
performance even when these assumptions are not satisfied.), the ϕ is formulated as,



6 X. Hou et al.

ϕ(i) = (1− qem) ∗
∑

j:1→em

qj−1 ∗ p ∗ (λaj
mi

− cjmi
−

∑
f=i

g:1→j−1

cgmf
)−

∑
j:1→em

(qem ∗ qj−1 ∗ p ∗
∑
f=i

g:1→em

cgmf
)

(7)

The validity of the proposed metric ϕ follows the following theorem (the proof is omitted
due to the limit of space, but can be easily established using proof by contradiction).

Theorem 1 Given a modality execution ordering O = {o1, o2, · · · , on}, if it is satisfied
that for any i and j (i ≤ j) we have ϕ(i) ≥ ϕ(j). Then we can conclude that O is the
optimal modality execution ordering.

3.3 MMExit Inference Process

In the inference process, the mission of the inference process is to find the optimal exit
for a set of data samples. To this end, we can profile the correlation between performance
gain and computational cost for each modality by computing the UoE. Then, we rank all
the modalities according to their utility functions in an order O = {o1, o2, · · · , on} with
the equivalent serialization method. Notably that the accuracy ajmi

and the probability
pjmi

can be collected in the training phase. In addition, we leverage a validation set to
estimate it and then dynamically change the ordering.

4 MMExit: Joint Training

4.1 Joint Loss Function

To train the proposed MMExit classification network, we use the cross-entropy between
the predicted and real label as the loss function. We assume the loss function for the
j-th exit from the i-th modality encoder sub-network and the fusion sub-network is
respectively represented as Lj

i and Lc,

Lj
i (y

j
i , ŷ) = −

∑
ŷ log(yj

i ); Lc(yc, ŷ) = −
∑

ŷ log(yc) (8)

where ŷ is the real label and yji and yc is the predicted label.
Considering that the MMExit network has n predicted labels from the n encoder

exits and one predicted label from the fusion exit, we formulate the overall loss function
using the weighted sum of the losses from all exits.

L =

M∑
i=1

emi∑
j=1

wijLj
i (y, ŷ) + Lc(y, ŷ) (9)

4.2 Objective Analysis

The training loss of the MMExit network is determined by the features of both the
modalities and exit layers. We first analyze the effect of the modalities on training
loss. We consider the multi-modal classification network fc(z; θc) with parameters



MMExit 7

θc = {W ∈ Rdz1+dz2+··· ,+dzM , b ∈ RM} as shown in Section 2, the layer of which
can be represented as,

fc (xi) = W
[
f1
u

(
θ1u, x

i
1

)
⊕ · · · ⊕ fM

u

(
θ1u, x

i
M

)]
+ b (10)

It’s obvious that the weight matrix W can be split into several blocks represented as
W = [Wm1 ;Wm2 ; · · · ;WmM

], then we can rewrite the above equation as,

fc (xi) = Wm1 · f1
u

(
θ1u, x

i
1

)
+ · · ·+WmM fM

u

(
θv, xi

M

)
+ b. (11)

The update of the weight parameter is,

W t+1
mi

== W t
mi

− η
1

N

N∑
j=1

∂L

∂fc (xj)
f i
u

(
θiu, x

j
i

)
(12)

Then, we can update the overall loss as,

∂L

∂f (xi)c
=

e(fc(xi))c∑M
k=1 e

(fc(xi))k
− 1c=yi (13)

where f(xi)c is the logits output for class c. It is obvious that the overall gradient will
be dominated by the stronger modality (with a smaller gradient), which finally makes
the other modalities not converge to the optimal value. To alleviate this, we need to give
larger weights to the strong modalities (with lower loss).

Then, we consider the effect of the multi-exit network. We assume training the exits
at the sub-network for modality i with loss Li. Some previous studies have found that
training exits sequentially is sub-optimal compared to jointly optimizing all exits [12]. It
involves two aspects of the learning objective. On the one hand, the earlier features are
not sufficiently predictable and have larger gradients. On the other hand, the earlier part
of the network will receive gradient back-propagation from all later exits. The gradient
of the s-th block is contributed by the s-th node and the subsequent (emi

− s) exits
denoted as,

∇
θ
i,s
u

Li =

emi∑
j=s

wj
mi

∇
θ
i,s
u

Lj
i (14)

where θi,su is the features at s-th block. This illustrates that the earlier exits usually have
more weight, making them more important in the optimization process and dominating
the training process. So, we need to give smaller weights to the earlier exits, which have
higher losses in the training process.

Training MMExit contains two conflict objectives in terms of the loss value [20].
For the multi-modal part, the training process can be dominated by strong modalities
(with less loss), which suppresses the training of weak modalities and is not conducive
to better performance of the overall multi-modal model. For the multi-exit part, its exit
structure leads to the fact that the early blocks receive the gradient back-propagate from
all the later exits, which leads to its possible domination of the whole training process,
resulting in poor performance of the whole network. Traditional adaptive methods tend
to solve one of these problems by weighting the losses according to the gradient values
(or similar metrics) in various ways. They cannot be directly applied to more complex
MMExit training.



8 X. Hou et al.

Algorithm 1: MMExit Training Algorithm
Input: Trained model M, preference λ, threshold ϵ.
Output: Trained MMExit model.

1 for i = 1, · · · , e do
2 Get the predictions from the model.
3 Calculate the losses and update the running mean according to Eq. (15).
4 if i % 2 = 0 then
5 Calculate {wmi

i }Mi=1 according to Eq. (16).
6 Calculate the loss Le according to Eq. (17).
7 else
8 Calculate exit weights according to Eq. (16).
9 Calculate the loss Lo according to Eq. (18).

10 Update model parameters with gradient descent.

4.3 MMExit Training Algorithm

Based on previous analysis, we propose a double-stage adaptive re-weighting method to
train the MMExit network. Firstly, we use the running average of the gradients to weigh
the predictive capabilities of different exits. A high gradient always implies a fairly large
gap between the predicted label and the true label. For exit j in each modality i, we
denote the gradient as g(i,j), then we can formulate the average gradient at step t as,

ḡt(i,j) = αḡt−1
(i,j) + (1− α)g(i,j) (15)

where α is the weight parameters to control the importance of the current value and
previous values. Then, we define the weight for different exits as,

wt
i,j =

exp(ḡt(i,j)/τ)

(mi − j + 1)
∑

x∈Q exp(ḡtx/τ)
(16)

where Q is the set of exits considered in the update step, τ is the temperature parameter
for softmax function. We decrease the temperature parameter during training to help the
model focus on some hard parts of the model. With this, we can make better use of the
strong modalities and alleviate the effect of the earlier sub-network. Then we can train
MMExit effectively by balancing different components in the network.

Given the aforementioned discussions, we introduce a novel double-stage cross-
training strategy to train the MMExit network. The proposed training algorithm is
depicted in Algorithm 1. The training process comprises two stages that alternate in
consecutive epochs. Specifically, in the even-numbered epochs, the training of the multi-
modal part of the network is achieved by using the following model representation,

minLe =

M∑
i=1

wt
i,miLmi

i + Lc (17)

In the odd-numbered epochs, the model trains the remaining exits and is denoted as,

minLo =

M∑
i=1

mi−1∑
j=1

wt
i,jLj

i (18)



MMExit 9

Table 1: Description of the multi-modal Datasets used.
Dataset Data Samples Modality (Encoder sub-network) Classes

sarcasm [5] 690
spoken language (BERT/GloVe),
visual (ResNet), audio (Librosa)

2
mosi [25] 2,199 5
mosei [25] 22,777 5

avmnist [21] 70,000 image (Raw), audio (Spectogram) 10

Lt =

{∑M
i=1 w

t
i,miLmi

i + Lc, t%2 = 1∑M
i=1

∑mi−1
j=1 wt

i,jL
j
i , t%2 = 0

5 Experiments and Evaluations

5.1 Experiment Setup

Implementation. We conduct our experiment based on 4 representative multi-modal
DNNs and datasets provided by the Multibench benchmark [16] from real-world ap-
plications (details are shown in Table 1). We construct the MMExit networks for each
dataset by adding 2 exits per modality to their late fusion (LF) networks. LF is the
most fundamental method that combines multiple modalities with the concatenation
operation. We implement the exits by using one linear layer, which only results in an
extra computational cost of less than 0.02% to produce the prediction label. We train
and run all these models on a server with one GeForce RTX 2080Ti GPU. We run each
experiment 5 times with different random seeds for reliability. Notably that it is easy to
apply our MMExit method to other state-of-the-art multi-modal networks such as MIM,
TF and LRTF to reduce their computational effort. However, for the space limitation,
we only apply the MMExit to the Humor Knowledge enriched Transformer (HKT) [9],
which is one of the latest multi-modal transformer networks and omit the most content
of the integration of MMExit with other fusion methods.

Baselines and the state-of-the-art. We use the late fusion (LF) method as our
baseline. We also compare MMExit with both the uni-modal methods and the most
representative multi-modal methods. In each of the uni-modal models (Uni1 ˜ Uni3),
we only use the encoder sub-network of one modality and connect it to the classification
network to obtain the output predictions. Among these multi-modal methods, Tensor
fusion network (TF) [26] uses tensor outer product to fuse information from different
modalities. Low rank tensor fusion network (LRTF) [18] leverages a modality-specific
set of low-rank factors to improve the efficiency of tensor fusion. Multiplicative interac-
tion model (MIM) [13] further generalizes the tensor products to capture and learn the
interactions between different modalities. We also implement another multi-exit method
called RExit, which inserts exits without the equivalent serialization optimization.

5.2 Visualization

We first illustrate that MMExit has the ability to adaptively exit from appropriate modali-
ties and network layers for different data samples. In Figure 3, we plot the results for the



10 X. Hou et al.

Figure 3: Visualization of MMExit under the avmnist dataset.

(a) sarcasm. (b) mosi.

(c) avmnist. (d) mosei.

Figure 4: Computational effort under the two exit schemes.

avmnist dataset which classifies data samples based on two modalities including image
and audio. The data samples of image are represented in pixels, and the data samples
of audio are represented with a 112 × 112 spectrogram. First of all, we can see that
for a very “Easy” sample, MMExit is able to perform an accurate recognition at the
first exit which significantly saves the computational effort. For more complex sample,
MMExit extracts more features from the modality of image by exiting later at the second
exit to obtain the prediction result with high accuracy. For both “Easy” and “Medium”
samples, they can be classified accurately by exiting from different layers of the image
modality. However, for some “Hard” samples, which happens less frequently, it is
difficult to obtain its correct label only from the image modality. In this case, MMExit
has to complete both image and audio modalities to compute the final prediction.



MMExit 11

(a) Accuracy. (b) F1-score.
Figure 5: Performance comparison of the two exit schemes.

Figure 6: The impact of different training algorithms on the performance gain and
computational effort of MMExit.

5.3 Ablation Study

Utility Analysis: To evaluate the equivalent serialization method, We compare both the
performance and computation cost including network parameters and MAC operations
under RExit and MMExit. As shown in Figure 4, both the RExit and MMExit can reduce
the number of MACs and parameters of the LF baseline method. For these datasets,
MMExit can reduce the computation load by 23% ˜ 49%. Although RExit can reduce
1.4% ˜ 44% computational effort as well, RExit cannot guarantee the performance (i.e.,
accuracy and F-scores) with unawareness of the trade-off between the accuracy gain and
computational effort as shown in Figure 5. Overall, the proposed MMExit can always
find the optimal tradeoffs between computation load and performance.

Joint training algorithm: To verify the effectiveness of the training algorithm, we
compare it with two commonly-used training strategies. In Figure 6, the Eloss represents
the ones which treat and train all the exits equally with the same weight [22]. The Sloss
stands for the ones which group different layers and assign different groups with static
weights increasing from previous to latter groups. In the figure, the more overlap of two
bars means requiring more computational effort to obtain the performance gains. For
example, Eloss and Sloss explicitly consumes more MACs than MMExit . We can see
that MMExit always intends to guarantee higher accuracy and less computation load
compared with other training loss functions under all the datasets.

5.4 Performance Evaluation

In Table 2, we compare the performance of MMExit with both the uni-modal and
multi-modal methods under various datasets. It is evident that MMExit obtains better



12 X. Hou et al.

Table 2: Accuracy and weighted F1 score of the 4 datasets.
sarcasm mosei mosi avmnist

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
Uni1 0.536 0.538 0.573 0.422 0.286 0.130 0.651 0.649
Uni2 0.470 0.440 0.575 0.420 0.289 0.137 0.421 0.421
Uni3 0.613 0.611 0.612 0.571 0.287 0.128 - -
TF 0.535 0.492 0.612 0.567 0.287 0.130 0.712 0.710

LRTF 0.467 0.364 0.591 0.484 0.287 0.128 0.715 0.714
MIM 0.455 0.352 0.611 0.557 0.285 0.128 0.716 0.714
LF 0.588 0.583 0.614 0.570 0.288 0.134 0.717 0.715

MMExit 0.622 0.622 0.617 0.570 0.295 0.220 0.722 0.720

Table 3: The benefits of applying MMExit to HKT on sarcasm dataset.
Methods Accuracy F1 Score Parameters (MB) Time (ms)

HKT 0.7647 0.7639 12.12 28.43
MMExit+HKT 0.7941 0.7941 8.63 21.73
Improvements +0.0294 +0.0302 -3.50 (28.9%) -6.7 (23.6%)

output predictions than the uni-modal models by fusing multiple modalities. In addition,
MMExit can achieve the same or even higher accuracy and F-scores than the LF baseline
method in all the scenarios. It also achieves the best performance compared to the
most state-of-the-art multi-modal methods. It is notable that MMExit can be easily
applied to more advanced multi-modal networks such as MIM, LRTF and HKT to
reduce their computational effort. Table 3 shows that applying the MMExit to HKT can
reduce its parameters, thus significantly reducing the inference latency and improving
the performance. Overall, MMExit can reduce the computational effort of multi-modal
networks without any performance degradation.

5.5 Reduction of Computation

An important design objective of MMExit is to reduce the computational effort of the
existing multi-modal methods. In this part, we compare the MACs and parameters of
different methods. As shown in Figure 7, the MMExit reduces 22.64% ˜ 48.72% MACs
and 21.44% ˜ 45.02% parameters of the LF method. It even consumes less MACs and
parameters that the uni-modal networks. For example, MMExit has 13.0% less MACs
than the uni-modal network for the mosi dataset. Combined with the results in Table 2,
MMExit offers the probability to improve the existing model in terms of performance
and efficiency, which is important for real-world deployments. Moreover, the reduction
in computation complexity would lead to additional benefits such as speeding up the
inference processes as shown in Table 3.

6 Related Work

Multi-modal DNNs: Multi-modal deep neural networks [27] are designed to merge
complementary information from various modalities like text, audio, image, etc. They
have been demonstrated to outperform the uni-modal networks in many application



MMExit 13

Figure 7: Comparison of computational effort.

fields [16]. The most typical multi-modal architecture consists of multiple heterogeneous
encoders to obtain representations of different modalities. These representations are
then fused using either early fusion methods [19] or late fusion methods [3]. Recently,
multi-modal transformers [14] are proposed, which are powerful but computationally
intensive, using only transformers to obtain and fuse multi-modal features. MMExit is
orthogonal to all these methods. It can be used to reduce their computational effort.

Early Exit Neural Network: Early exit which has been extensively studied for
uni-modal DNN inference tasks [8], is the most similar to our work. Compared to
other state-of-the-art neural network (NN) compression methods such as pruning [6]
and quantization [4], early exit [22,8,15,7] aims to reduce the computation of network
layers adapted to different inference tasks, thus making DNNs more applicable in some
resource-limited application scenarios. For example, some previous work leverages early
exit [22,8,10] to adapt edge DNN tasks to resource-limited AIoT devices. MMExit is a
new adaptive neural architecture for multi-modal DNNs.

7 Conclusion

While multi-modal DNNs have culminated in significant accuracy gain, they also lead
to an explosive increase in computational cost, which would hinder their deployment
in many real-world applications. To address this, we propose a novel multi-modal exit
architecture called MMExit. To the best of our knowledge, it is the first multi-modal exit
network that provides adaptive inference with minimal computational effort. MMExit
shows great potential in applying multi-modal networks to the next-generation resource-
constrained scenarios such as smart networking devices, mobile robots, etc.

Acknowledgements

This work is supported in part by the National Key R&D Program of China under
grant No.2021ZD0110104, and the National Natural Science Foundation of China under
grant No.62122053. It was also partially supported by ACCESS - AI Chip Center
for Emerging Smart Systems, InnoHK funding, Hong Kong SAR. We thank all the
anonymous reviewers for their valuable feedback.



14 X. Hou et al.

References

1. Akhtar, M.S., Chauhan, D.S., Ghosal, D., Poria, S., Ekbal, A., Bhattacharyya, P.: Multi-task
learning for multi-modal emotion recognition and sentiment analysis. In: NAACL-HLT (2019)

2. Arevalo, J., Solorio, T., Montes-y Gómez, M., González, F.A.: Gated multimodal units for
information fusion. In: ICLR (2017)

3. Bach, F.R., Lanckriet, G.R., Jordan, M.I.: Multiple kernel learning, conic duality, and the smo
algorithm. In: ICML (2004)

4. Bhattacharjee, A., et al.: Mime: adapting a single neural network for multi-task inference with
memory-efficient dynamic pruning. DAC (2022)

5. Castro, S., Hazarika, D., Pérez-Rosas, V., Zimmermann, R., Mihalcea, R., Poria, S.: Towards
multimodal sarcasm detection (an obviously perfect paper). In: ACL (2019)

6. Choi, K., Yang, H.: A gpu architecture aware fine-grain pruning technique for deep neural
networks. In: Euro-Par (2021)

7. Cui, W., Zhao, H., Chen, Q., Wei, H., Li, Z., Zeng, D., Li, C., Guo, M.: Dvabatch: Diversity-
aware multi-entry multi-exit batching for efficient processing of dnn services on gpus. In:
USENIX ATC (2022)

8. Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural networks: A
survey. In: TPAMI (2021)

9. Hasan, M.K., Lee, S., Rahman, W., Zadeh, A., Mihalcea, R., Morency, L.P., Hoque, E.: Humor
knowledge enriched transformer for understanding multimodal humor. In: AAAI (2021)

10. Hou, X., Liu, J., Tang, X., Li, C., Chen, J., Liang, L., Cheng, K.T., Guo, M.: Architecting
efficient multi-modal aiot systems. In: ISCA (2023)

11. Hou, X., Xu, C., Liu, J., Tang, X., Sun, L., Li, C., Cheng, K.T.: Characterizing and under-
standing end-to-end multi-modal neural networks on gpus. In: IEEE CAL (2022)

12. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.Q.: Multi-scale dense
networks for resource efficient image classification. In: ICLR (2018)

13. Jayakumar, S.M., Czarnecki, W.M., Menick, J., Schwarz, J., Rae, J., Osindero, S., Teh, Y.W.,
Harley, T., Pascanu, R.: Multiplicative interactions and where to find them. In: ICLR (2020)

14. Kim, W., Son, B., Kim, I.: Vilt: Vision-and-language transformer without convolution or
region supervision. In: ICML (2021)

15. Laskaridis, S., Kouris, A., Lane, N.D.: Adaptive inference through early-exit networks: Design,
challenges and directions. In: MobiSys (2021)

16. Liang, P.P., Lyu, Y., Fan, X., Wu, Z., Cheng, Y., Wu, J., Chen, L.Y., Wu, P., Lee, M.A., Zhu,
Y.: Multibench: Multiscale benchmarks for multimodal representation learning. In: NeurIPS
(2021)

17. Liu, J., Hou, X., Tang, F.: Fine-grained machine teaching with attention modeling. In: AAAI
(2020)

18. Liu, Z., Shen, Y., Lakshminarasimhan, V.B., Liang, P.P., Zadeh, A., Morency, L.P.: Efficient
low-rank multimodal fusion with modality-specific factors. In: ACL (2018)

19. Natalia, N., Christian, W., Graham, W.T., Florian, N.: Multi-scale deep learning for gesture
detection and localization. In: ECCV (2014)

20. Peng, X., Wei, Y., Deng, A., Wang, D., Hu, D.: Balanced multimodal learning via on-the-fly
gradient modulation. In: CVPR (2022)

21. Pham, H., Liang, P.P., Manzini, T., Morency, L.P., Póczos, B.: Found in translation: Learning
robust joint representations by cyclic translations between modalities. In: AAAI (2019)

22. Scardapane, S., Scarpiniti, M., Baccarelli, E., Uncini, A.: Why should we add early exits to
neural networks? In: Cognitive Computation (2020)

23. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks. In:
Synthesis Lectures on Computer Architecture (2020)



MMExit 15

24. Teerapittayanon, S., McDanel, B., Kung, H.T.: Branchynet: Fast inference via early exiting
from deep neural networks. In: ICPR (2016)

25. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: Lessons learned from the 2015
mscoco image captioning challenge. In: TPAMI (2016)

26. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for
multimodal sentiment analysis. In: EMNLP (2017)

27. Zhang, C., Yang, Z., He, X., Deng, L.: Multimodal intelligence: Representation learning,
information fusion, and applications. In: JSTSP (2020)


	MMExit: Enabling Fast and Efficient Multi-modal DNN Inference with Adaptive Network Exits

