
MMBench: Benchmarking End-to-End Multi-modal DNNs and
Understanding Their Hardware-Software Implications

Cheng Xu1 Xiaofeng Hou1 Jiacheng Liu1 Chao Li1 Tianhao Huang1 Xiaozhi Zhu1
Mo Niu1 Lingyu Sun1 Peng Tang1 Tongqiao Xu1

Kwang-Ting Cheng2 Minyi Guo1

1Shanghai Jiao Tong University
2Hongkong University of Science and Technology

Abstract
The explosive growth of various types of big data and

advances in AI technologies have catalyzed a new type of
workloads called multi-modal DNNs. Multi-modal DNNs are
capable of interpreting and reasoning about information from
multiple modalities, making them more applicable to real-
world AI scenarios. In recent research, multi-modal DNNs
have outperformed the best uni-modal DNN in a wide range of
distributed computing applications from traditional multime-
dia systems to emerging autonomous edge systems. However,
despite their importance and superiority, very limited research
attention has been devoted to understand the characteristics
of multi-modal DNNs and their implications on current
computing software/hardware platforms. Existing benchmarks
either target uni-modal DNNs or only focus on the algorithm
characteristics of multi-modal DNNs. There lacks represen-
tative benchmark suites that provide comprehensive system
and architecture level analysis of multi-modal networks.

To advance the understanding of these multi-modal DNN
workloads and facilitate related research, we present MM-
Bench, an open-source, end-to-end benchmark suite consisting
of a set of real-world multi-modal DNN workloads with
relevant performance metrics for evaluation. We then use
MMBench to conduct an in-depth analysis on the character-
istics of multi-modal DNNs. We demonstrate their unique
characteristics of clear multi-stage execution, frequent syn-
chronization and high heterogeneity, which distinguish them
from conventional uni-modal DNNs. Finally, we conduct a case
study and extend our benchmark to edge devices. We hope that
our work can provide insights for future software/hardware
design and optimization to underpin multi-modal DNNs on
both cloud and edge computing platforms.

1. Introduction
Multi-modal deep neural networks (DNNs) have at-

tracted significant attention [7, 43, 53] in recent years.
By fusing information from a variety of modalities, they
can provide higher prediction accuracy than the best
traditional uni-modal DNNs [19, 24, 53]. In fact, multi-
modal DNNs have been shown to outperform the best
uni-modal DNNs by 5% - 30% accuracy in many important

application fields [32]. Furthermore, the development of
perception technology and AI accelerators has facilitated
the deployment and development of multi-modal DNNs in
a wide range of real-world applications from conventional
multimedia to emerging autonomous systems.

Despite their superiority in performance, multi-modal
DNNs possess several unique characteristics, that have never
been explored before and would pose new challenges to
system and architecture designs previously applied to uni-
modal DNNs. These characteristics include:

• Three-stage Execution Pattern:Most multi-modal
DNN applications follow a common three-stage
execution pattern. In the first stage, known as
encoder, independent neural networks are utilized
to translate input modalities to distinct representa-
tions that are suitable for machine learning. These
representations are then fed to the second stage,
known as fusion where they are federated. Finally,
the task-specific head network produces the final
results in the third stage, known as head. The three
stages are executed in serial, and each stage exhibits
different execution and resource usage patterns.

• Intra-network Heterogeneity: A multi-modal
DNN shows great intra-network heterogeneity due
to the use of different encoder and fusion net-
works. The first stage inherently involves dif-
ferent networks and operators to process differ-
ent modalities e.g. CNNs for image modality and
RNN/Transformers for text modality. Additionally,
in the fusion stage, different fusion methods can
be applied to federate the features of different
modalities for different accuracy targets. As a result,
there are no universal architectural solutions to
optimize all modalities and stages, which are often
dominated by heterogeneous operations.

• Frequent Synchronization: The fusion stage in
multi-modal DNNs incurs substantial synchroniza-
tion operations compared to traditional uni-modal
networks. In this stage, the fusion network waits
for the completion of all modalities, and additional
CPU-GPU synchronization is needed to process in-

termediate data, such as the feature maps generated
from various modalities. These frequent synchro-
nization operations can become a key performance
bottleneck for multi-modal DNN computation, as
they add extra latency and overhead.

As multi-modal DNNs become increasingly popular and
differ significantly from conventional uni-modal DNNs, it
is crucial to understand these unique characteristics and
their implications for system and architecture designs. It
is preferable to analyze their features and assign agile
management strategies to maximize overall efficiency [15].
However, there is currently a lack of a well-designed
benchmark suite that provides system- and architecture-
level characterization of multi-modal DNNs. On one hand,
uni-modal DNN benchmarks in previous studies [13, 14,
36] cannot be directly applied to multi-modal DNNs due to
the differences in their characteristics. On the other hand,
existing multi-modal DNN benchmarks [24] only focus on
algorithm-level features such as accuracy, model complexity
and robustness without providing any analysis of system
and architecture. Therefore, there is a strong motivation to
develop benchmarks/tools specialized for multi-modal DNN
applications and to explore their implications on today’s
computing architecture and systems.

In this paper, we propose MMBench, an end-to-end
benchmark suite for multi-modal DNN applications. MM-
Bench covers a wide spectrum of representative multi-modal
applications across multiple major research areas. We also
leverage MMBench to study the characteristics of multi-
modal DNNs and their implications across the execution
stacks. To the best of our knowledge, MMBench is the
first benchmark suite specialized in architecture and system
research in multi-modal computing. We design MMBench
with the following principles:

• Representativeness. We construct MMBench using
9 end-to-end multi-modal DNN workloads from
five of the most representative application domains,
which cover traditional applications like multimedia
and emerging domains such as autonomous driving.
This approach ensures that MMBench is represen-
tative of multi-modal applications in use today.

• Thoroughness. We ensure that properties such as
modality types, fusion methods, network structures
in MMBench are diverse and cover a wide range of
multi-modal DNNs in different domains. This level
of thoroughness provides researchers with a detailed
understanding of performance and potential areas
for improvement for multi-modal DNNs.

• Comprehensiveness. At MMBench , we have gone
beyond offering just operational workloads and
result scoreboards. We also provide comprehensive
profiling tools and insights at the architecture
and system levels. This level of support enables
researchers to build on our work and advance the
state of the art in multi-modal computing.

The rest of the paper is organized as follows. First,
Section 2 provides the background and related work. Section

Figure 1: Schematic diagram of multi-modal and uni-modal
network structures.

TABLE 1: Commonly used fusion operators [50, 51].
Fusion type Formulation of F(x, y) Meaning
Zero 0 Discards these features
Sum x + y Sum features
Concat ReLU(Concat(x, y)W + b) Concat features
Tensor x ⊗ y Outer product-based attention
Attention Softmax(xyT

√
C

y) Use attention mechanism

LinearGLU GLU(xW1, yW2)
= xW1 ⊙ Sigmoid(yW2) linear layer with the GLU

3 details the designs of MMBench. Section 4 shows the
experimental methodologies and highlights the key features
of multi-modal DNNs and their hardware-software impli-
cations. Section 5 gives two case studies that demonstrate
how MMBench guides the system and architecture designs.
Finally, Section 6 concludes this paper.

2. Background and Related Work

2.1. Basics of Multi-modal DNNs
Multi-modal DNN is a kind of neural network that learns

and improves through the experience of data from multiple
modalities. Figure 1 shows the common structure of a multi-
modal DNN compared to a uni-modal DNN. At a higher
level, the multi-modal DNNs fuse the features from multiple
modalities to produce more accurate predictions. Specifically,
it consists of three main stages. In the first stage, input
modalities are transferred to distinct representations suitable
for machine learning by various representation learning
methods such as CNNs. In the second stage, it leverages a
fusion model to generate the multi-modal representation
by federating these processed uni-modal representations.
Finally, the multi-modal representation is fed into the task-
specific network to produce the final prediction.

Multi-modal DNNs have been demonstrated to outper-
form the uni-modal ones in various application fields [18,
24, 39]. Most of the current studies employ pretrained
DNN backbone models as modality encoders and mainly
focus on finding more effective fusion or representation
methods of different modalities [43, 52, 53]. Commonly
adopted fusion operators are presented in Table 1. Besides,
the fusion technique can further be categorized into two
main classes, namely early fusion methods [57] and late

2

fusion methods [6, 45] depending on the depth of encoders
to execute before fusion. Among these methods, Zhou
et al [57] used a multiple discriminant analysis scheme
to implement an early fusion approach that concatenates
different modality features. Uperkernel learning [45] is the
representative method of late fusion. Recently, motivated
by the ability of transformers [41], a branch of works use
multi-modal transformers to model different modalities [49].

With the significant performance advance, mutli-modal
DNNs have been widely adopted in various scenarios.
Thus it is in urgent need of benchmarking multi-modal
DNNs from system and architectural level to facilitate the
optimization in their deployment.

2.2. Benchmarking Conventional DNNs
Previous researches have paid extensive attention to

characterizing features of uni-modal DNN applications [20,
44, 46, 47]. We can broadly classify these works into
three types according to their associated evaluation metrics:
algorithm-oriented DNN benchmarks, architecture-oriented
DNN benchmarks and DNN simulation frameworks. Among
them, algorithm-oriented DNN benchmarks [3, 10, 36, 37]
strive to incorporate and build a collection of representa-
tive DNN models to empower the performance and accu-
racy comparison of different DNN training and inference.
Architecture-oriented DNN benchmarks [5, 54, 55] target on
analyzing the architectural features of DNNs on computing
systems of different sizes. MLPerf [36] is a comprehensive
benchmark for measuring ML inference performance across
a spectrum of use cases. MDLBench [55], Embench [5]
and AIoTBench [26] are representative benchmarks that
characterize the features of different AI models on edge
or mobile devices while NNBench-X [48], GNNMark [8]
target on acceleration hardware design for different DNNs.

However, the system and architecture level implications
drawn by uni-modal DNN benchmarks can not be directly
applied to multi-modal DNNs. Compared with uni-modal
DNNs, multi-modal DNNs possess several unique character-
istics such as clear stage divisions, frequent synchronization
and high workload heterogeneity [19]. There lack of spe-
cialized architecture-oriented multi-modal benchmarks.

2.3. Benchmarking Multi-modal DNNs
Some efforts have also been made in benchmarking the

emerging workload of multi-modal DNNs. MultiBench [24]
is a well-known benchmark suite in multi-modal algorithm
research. MultiBench implements a wide spectrum of multi-
modal applications and provides a reliable way to evaluate
the performance across domains and modalities, the com-
plexity during training/inference and the robustness to
noisy and missing modalities. However, it only evaluates
multi-modal DNNs from the algorithm aspect and does
not provide system and architecture-level insights. Besides,
MultiBench does not provide end-to-end implementation,
which makes it insufficient to support architecture research
especially for edge devices where raw data are collected
from sensors and processed locally.

TABLE 2: Comparison of MMBench and other bench-
marks [10, 24, 36, 40]. H refers to hardware, Ar refers
to architecture, S refers to system, Al refers to algorithm.

Uni-modal DNN Multi-modal DNNBenchmarks MLPerf DAWNBench AIBench MultiBench Ours
Applications 5 3 10 15 9

Objectives H H/Ar H Al H/Ar,
S/Al

Cloud ✓ ✓ ✓ ✓ ✓
Edge ✓ x x x ✓

End-to-End x ✓ ✓ x ✓
Easy-to-Use x x x x ✓

Architecture benchmarks such as MLPerf [36], DAWN-
Bench [10], and AI-Benchmark [40] can be applied to
benchmarking multi-modal DNNs but requires significant
modifications. MLPerf provides a comprehensive analysis
of how fast systems can train and inference to a target
quality metric while covering a wide range of models and
areas. It measures a wide range of metrics such as training
time, training cost, inference latency, and inference cost.
However, as general-purpose full-system benchmarks, they
lack specialized algorithm awareness and corresponding
analysis in this emerging area. Specialized multi-modal
benchmarks can better help design and deploy efficient
multi-modal DNN systems.

2.4. The Missing Piece of Multi-modal Research
Multi-modal DNNs are applied in a wide range of

applications in different fields. Generally, multi-modal DNNs
are more computing-intensive compared with traditional
uni-modal DNNs, which may possibly lead to the problem
of QoS and power budget violation [16, 17]. In data centers,
we need to analyze complex multi-modal data for the
highest algorithm performance (e.g., image- and text-based
intelligence applications); in edge devices, we need to
process raw data collected by multiple sensors locally
with limited computational resources within QoS (e.g.,
autonomous driving). Supporting the inference of such
diverse and heterogeneous workloads with high energy
efficiency and low latency is becoming a great challenge.

In order to support efficient reasoning on multi-modal
networks in data centers and edge devices, there is an
urgent need for benchmarks that can accurately model the
system and architecture level characteristics of multi-modal
networks. However, there have been no such well-designed
benchmark suites as presented in table 2. On one hand, the
architecture-oriented DNN benchmarks have not covered
this emerging research area yet. The implications of uni-
modal DNNs can not be directly applied to multi-modal
DNNs. On the other hand, existing multi-modal benchmarks
all focus on analyzing algorithm-level characteristics. Thus,
we present MMBench in this paper to bridge this gap and
benefit further research in this area.

3. The MMBench Suite
In this section, we introduce the unique features of MM-

Bench and the specific benchmark setup, i.e. the workloads
and the profiling pipeline.

3

TABLE 3: Characteristics of each applications in MMBench
Application
domain

Multimedia
Application

Affective
Computing

Intelligent
Medicine

Smart
Robotics

Automatic
Driving

Workload AV-mnist MM-imdb CMU-mosei MUStARD Medical VQA Medical Seg. Mujoco Push Vision & Touch TransFuser
Model size Small Large Large Large Large Medium Medium Medium Medium

Modalties 1.image,
2.audio

1.image,
2.text

1.language,
2.vision,
3.audio

1.language,
2.vision,
3.audio

1.image,
2.text

MRI scans
(T1, T1c,
T2, Flair)

1.position,
2.sensor,

3.image, 4.control

1.image, 2.force,
3.proprioception,

4.depth

1.image
2.LiDAR

Encoders 1,2: LeNet 1: VGG
2: Albert

1: BERT
2: OpenFace
3: Librosa

1: BERT
2: OpenFace
3: Librosa

1: DenseNet
2: Roberta All: U-Net 1,2,4: MLP

3: CNN
1,2,4: CNN
3: MLP 1,2: ResNet

Fusion
methods

Concate,
tensor

Concate,
tensor

Concate,
tensor,

transformer

Concate,
tensor,

transformer
Transformer Transformer

Concate,
tensor,

transformer

Concate,
tensor transformer

Task Class. Class. Reg. Class. Gen. Seg. Class. Class. Class.

3.1. Key Features of MMBench

Besides the general design principles, MMBench possess
the following unique features closely related with the
characteristics of multi-modal DNNs, which distinguishes
it from general-purpose benchmarks in this specific area:

• Fine-grained Network Characterization. From
network structure level, multi-modal DNNs can
be viewed as the assembly of multiple encoder
networks, fusion network and head network, which
require more fine-grained workload characteriza-
tion [24, 51]. It is inaccurate to use the average or
max value of the entire application to characterize
multi-modal DNNs since these sub-nets may greatly
differ in execution pattern and resource usage.
MMBench provides options to split the multi-modal
DNN into different stages and characterize the sub-
nets respectively.

• End-to-End Application Execution. From appli-
cation level, the processing of raw data for multi-
modal DNNs is time-consuming and often require
end-to-end execution in real-world scenarios [25,
35]. Many networks take processed data as input [9,
42]. Existing algorithm-oriented benchmarks tend to
ignore these preprocessing and provide links to the
processed data [24]. Ignoring the preprocessing part
results in bias on the computing process. MMBench
provides an end-to-end multi-modal processing
benchmark that can help us understand the full
computational process of multi-modal networks.

• User-friendly Profiler Integration. From the
architecture profiler level, it is often unnecessary
and time-consuming to utilize the entire dataset.
A dataset-free computation abstraction can signif-
icantly ease the profiler usage. Many datasets in
multi-modal neural network research are not open-
sourced and require a lengthy application process.
Besides, some datasets can take up to hundreds of
Gigabyte [35]. MMBench still provides models and
links to the datasets to prove that all applications
are of high performance. However, MMBench also
provides the option to abstract the computation
when network accuracy is not needed. It can ran-
domly generate the input with the same shape as

the datasets, which allows computer architecture
researchers to skip the tedious work of downloading
and storing data and more easily analyze the sys-
tem and architecture characteristics of multi-modal
applications. Besides, popular accelerator simulation
frameworks such as timeloop [33] simply take the
data shape and network shape as input and outputs
the latency and energy consumption. MMBench is
able to directly provide this abstraction and free
users of manual conversion in the simulation.

3.2. Applications in MMBench
MMBench includes nine applications from the five

most important multi-modal research domains [24]. For
the majority the applications, MMBench provides multiple
fusion options covering popular fusion operators [50, 51].
MMBench implements all the applications in SOTA methods
to ensure the practical value. The detail of these applications
are presented in Table 3.

Multimedia Application: With the development of
the internet, multimedia data (language, image, video,
and audio) is becoming the largest source of the big
data. MMBench rebuilds two of the most representative
multimedia applications: (1) AV-mnist [34] is assembled
from images of handwritten digits and audio samples of
spoken digits. (2) MM-imdb [32] uses movie titles, metadata,
and movie posters to perform multi-label classification of
movie genres. We rebuild these applications based on the
implementation of MultiBench. To make these applications
end-to-end and represent the state-of-the-art performance,
we replace the fragmented image processing pipeline with
an end-to-end VGG network [38], and use the pre-trained
ALBERT model [21] to extract text features.

Affective Computing: Affect computing is the field
that studies the perception of human affective states (emo-
tions, sentiment, and personalities) from our natural display
of multi-modal signals [24] including spanning language
(spoken words), visual (facial expressions, gestures), and
acoustic (prosody, speech tone) [24]. MMBench selects two
of the most representative affective computing dataset that
involving language, video and audio. (1) MUStARD is a
video corpus used in sarcasm discovery [9]. (2) CMU-mosei
is the largest dataset of sentence-level sentiment analysis
and emotion recognition in real-world online videos [42].

4

Figure 2: The code snippet of a standard multi-modal
application implementation in MMBench.

We rebuild these applications from the original data to
make it an end-to-end application. We use MMSA-FET [27]
to extract features, and including all the modules in the
forward pass of the data.

Intelligent Medicine: Modern medical decision-
making often involves integrating complementary informa-
tion from several sources such as lab tests, imaging reports,
and patient-doctor conversations. Multi-modal DNNs can
help doctors make sense of high-dimensional data and assist
them in the diagnosis process. We build this workload based
on ViLMedic [11], a vision-and-language medical library.
We also consider a multi-modal segmentation task that can
accurately segment brain tumor from Magnetic Resonance
Imaging (MRI) [56]. We rebuild these applications to make
them easy to profile with the standard profiling tools.

Smart Robotics: Robotics is also a very important
example of multi-modal computing. In order to achieve
accurate control of robots, we add many sensors to them
and collect multi-modal information (e.g., visual, force etc.).
The decision making based on this multi-modal information
requires the use of multi-modal networks. MMBench in-
cludes two representative robotic tasks: (1) Mujoco Push [22],
the goal of which is to predict the pose of the object being
pushed by the robot end-effector using the collected multi-
modal information, i.e., visual (RGB and depth), force, and
proprioception sensors. (2) Vision & Touch [23], which aims
to predict action-conditional learning objectives that capture
forward dynamics of the different modalities. We rebuild
these workloads to add hooks to profile the different part
of the neural network.

Automatic Driving: Automatic Driving normally refers
to self-driving vehicles that move without the intervention
of a human driver. An autonomous driving systems typically
come equipped with both cameras and LiDAR sensors. In
MMBench , we modify TransFuser [35] which is an architec-
ture for end-to-end driving with two main components: (1) a
Multi-Modal Fusion Transformer for integrating information
from multiple modalities (single-view image and LiDAR),
and (2) an auto-regressive waypoint prediction network. To
ease the usage, we extract the TransFuser network and free
its dependency on the CARLA simulator [12].

3.3. Implementation Details
The entire MMBench is implemented in PyTorch, while

different applications may possess their own dependencies.
MMBench provide rich interfaces to enable users to control
the workloads. Figure 3 presents a standard MMBench

Figure 3: Profiling pipeline in MMBench.

implementation. For a multi-modal application in MMBench,
it applies specific encoder networks as the only options.
However, it generally includes several different implementa-
tions of fusion and head networks. Users can simply include
the model name as a command line parameter to choose
target multi-modal implementation. Besides, MMBench
abstracts the training and inference process and integrates
them with profiling tools. Users only need to choose proper
options to generate desired metrics.

MMBench targets both servers and edge devices. For
servers, the training process and inference process can be
done within a single python file. For edge devices, only
inference is supported due to limited energy and resources.
Models must first be trained on servers. Besides, edge
devices such as NVIDIA Jetson series [28] generally adopts
a unified memory architecture where GPUs and CPUs share
the same physical memory. In this case, adjusting batch
size will not affect the memory usage. For large datasets,
MMBench will manually split the datasets and inference
on partial datasets to ensure the performability.

3.4. Profiling Pipeline

In addition to the representative workloads, MMBench
also provides a series of profiling tools based on the most
commonly used hardware available today (CPU and NVIDIA
GPU) to help locate the system drawbacks and make corre-
sponding improvements. The overall profiling architecture
is shown in Figure 3. MMBench provides different command
line flags to support different measurements options. To
ensure the authority of the measured results, MMBench
measures the performance of the network based on standard
tools such as, PythonMemory Profiler [1], Pytorch Profiler [2],
NVIDIA Nsight Compute [30] and NVIDIA Nsight System [31].

5

To ease the usage, MMBench also automates the profiling
process using python and shell scripts.

The evaluation metrics can be categorized into three
main classes based on the profiling tools and granularity.
The first category includes the inference logs directly gen-
erated from the applications. Taking advantage of python
modules, MMBench is able to provide basic algorithm level
information such as model accuracy, parameter number
and FLOPs. The second category includes the entire system
information such as GPU information, CPU information
and the data transfer between host and device. The third
category includes more fine-grained GPU information such
as kernel information and GPU execution stall reasons since
GPU is in charge of nearly all the computation.

4. Evaluation
In this section, we present a detailed evaluation of the

proposed MMBench to conduct an in-depth analysis of
multi-modal DNNs. We first introduce the experimental
platforms and prove the effectiveness of our selected
applications. We then investigate the characteristics of multi-
modal DNNs from three main aspects: multi-stage execution,
workload heterogeneity and execution synchronization.

4.1. Experimental Setups
While MMBench supports various platforms with CPU

and NVIDIA GPU, we conduct the following experiments
on a GPU server and two edge devices to demonstrate the
utility of our benchmark. The GPU server is equipped with
two 2.4 GHz Intel 20-core, Xeon 6148 CPUs and four Nvidia
RTX 2080Ti GPUs connected via PCI-e ×16 interface with
11 GB of GDDR6 memory. We use a Jetson Nano with
128-core Maxwell, 4GB LPDDR4 and a Jetson Orin with
2048-core Ampere, 32GB LPDDR5 as our edge devices.

4.2. Network-level Characterization
In this section, we characterize the algorithm charac-

teristics of multi-modal DNNs. We analyze their overall
performance, and the effect of different fusion schemes and
modalities in different applications.

4.2.1. Performance analysis. We first validate that multi-
modal DNNs are able to outperform uni-mdoal DNNs. The
performance results are presented in different metrics such
as accuracy, F-score and MSE. To ensure the practical
value of MMBench, we first need to guarantee that all the
applications are representative and with high performance.
Figure 4 presents the performance of all the applications
included in MMBench. For applications with multiple
fusion implementations, we only present several results. For
Transfuser, multiple metrics such as driving score and route
completion are used to evaluate its performance. And the
lidar modality is seldom executed without image modality.
With specific adjustment and optimization, some of the
performance can be further improved.

Observations: Multi-modal DNNs are proved to outper-
form uni-modal DNNs in different scenarios. However, multi-
modal DNNs generally have various implementations yielding

40

50

60

70

80

35

45

55

65

0

1

2

3

4

5
AV-mnist(Acc.) MM-imdb(F-1) Mujoco Push(MSE)

Medical VQA(Acc.) Medical Seg.(DSC) Vison & Touch(Acc.)

CMU-mosei(Acc.) MUStARD(ACC.) Transfuser

40

50

60

70

80

90

image text MULT

60

65

70

75

80

85

90

95

60

65

70

75

80

85

90

95

100

60

70

80

90

55

60

65

70

50

60

70

80

90

100

20

30

40

50

R
o

u
te

 C
o

m
p

le
ti

o
n

D
ri

v
in

g
 S

co
re

Figure 4: Performance of the applications in MMBench.
Lowercase in yellow such as image and audio indicates
uni-modal implementations, upper case in blue such as EF
and LF indicates multi-modal implementations.

different results. They should be well studied to fully grasp their
performance advantage.

4.2.2. Fusion analysis. Most of the current multi-modal
researches employ pretrained DNN backbone models as
modality encoders and focus on finding more effective
fusion or representation methods of different modalities.
We examine the influence of different fusion methods on
the application performance with same encoders.

Figure 4 also presents different fusion implementations
for the datasets. Take Mujoco Push as example, the MSE of its
implementation in late fusion utilizing LSTM is less than 0.3
while the MSE of its implementation in tensor fusion reaches
0.58. Similarly, in MM-imdb, the maximum performance
difference between different fusion schemes can be as large
as 1.1 in Micro F1. Some ineffective fusion schemes even
lead to lower performance compared with only leveraging
single modality. The choice of fusion schemes can lead to
significant performance variance.

Observations: While not significantly influencing the
amount of computation for most of the scenarios, different
fusion schemes can lead to several percents of absolute perfor-
mance variance. It’s of great importance to design or search for
the most effective fusion method.

4.2.3. Modality analysis. In many real-world scenarios,
the importance of different modalities differs depending on
the tasks and it is feasible to skip or discard some modality
features. Typically, some modalities provide higher accuracy
with less computational effort than others in different

6

0

20

40

60

80

100

AV-mnist MM-imdb CMU-mosei MUStARD

P
er

ce
n
ta

g
e(

%
)

image audio text image

78.2%

3.1%

86.3%

3.8%

82.9%

4.9%

75.4%

5.0%

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

0

0.25

0.5

0.75

1

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

AV-mnist MM-imdb Mujoco Push Vision & Touch Medical VQA Medical Seg. CMU-mosei MUStARD Transfuser

IP
C

E
ff

ic
ie

n
cy

DRAM_UTI GPU_OCU GLD_EFF GST_EFF IPC

Figure 5: Distribution of mutually exclusive data sample
sets correctly processed by different modalities.

1

10

100

1000

10000

Ti
m
e(
m
s)

encoder fusion head

Figure 6: Execution time of a batch of data of the three
stages for different MMBench applications.

applications. For example, it has been proven that text-based
features perform better than visual or auditory modalities
in multi-modal language-emotion analysis tasks [4].

We present the distribution of mutually exclusive data
sample sets correctly processed by different modalities
in Figure 5. For the four selected datasets, more than
75% of the correct samples can be processed using only
a major modality while the major modality differs on
different tasks. Only less than 5% of all the correct samples
are required to be processed by the multi-modal fusion
methods. Therefore, one can only rely on some of the
encoders given certain tasks to reduce model complexity.
Under such circumstances, intuitively we can simply throttle
sensors for less crucial modalities to save energy. However,
applying this conventional wisdom is ineffective since it
can lead to avoidable task failures resulting from the loss
of situation awareness. There exists no retrieval for the
extreme conditions where failures occur.

Observations:Differentmodalities possess different level of
importance in multi-modal DNNs. Smartly activating one of the
encoders can fulfill the requirements in most of the cases. There
exists room for adaptive execution strategies to achieve a better
performance-complexity tradeoff according to the application-
specific characteristics.

4.3. System-/Architecture-level Analysis
In this section, we analyze the system and architecture

characteristics of multi-modal DNNs. We analyze them
according to their three-stage execution pattern, intra-
network heterogeneity and frequent synchronization.

4.3.1. Stage Analysis. As introduced in Section 2, most
multi-modal DNNs can be divided into encoder, fusion
and head stages. In this section, we analyze the three-
stage execution pattern of multi-modal DNNs. We perform

the stage analysis by modifying the forward function. We
first record the time consumption of the three stages of
the datasets, and investigate the resource usage pattern of
different stages. Figure 6 presents the execution time of the
applications. The execution time distribution depends on
specific encoder, fusion and head DNN structures. Generally,
encoder stage takes much longer time compared with fusion
and head stages. This is because the fusion network takes
the learned feature as input, thus having much smaller data
size to deal with. However, for complex fusion schemes
such as transformer fusion in the case of Mujoco Push and
Vision & Touch, it can take even longer time compared with
the encoder stage.

We then analyze the resource usage pattern of the
MMBench applications in different stages. We trace 5 micro-
architectural metrics with nsight compute [29], including
DRAM utilization (1), achieved occupancy (2), ipc (3), gld
efficiency (4) and gst efficiency (5). The detailed results
are presented in Figure 7. Generally, the encoder stages
present higher DRAM utilization, IPC and GPU occupancy
compared with fusion and head stages since they include
more computation. For gld efficiency and gst efficiency, all
the stages presents nearly the same resource usage pattern.
For complex fusion schemes such as transformer fusion in
Mujoco Push, although it takes nearly 3× more execution
time compared with the encoder stage, it does not consume
much more resources. While it shows slight increase in IPC
and GPU occupancy, the DRAM utilization of the encoder
stage is still higher.

Observations: There exists significant time and resource
imbalance in different stages, which leads to possible resource
under-utilization. If we assign fixed resources to a multi-DNN
application according to its encoder stage, more than half of
the resources, especially memory, may actually stay idle when
the application enters the fusion and head stages.

4.3.2. Heterogeneity Analysis. Each of the multi-modal
encoder sub-network and the fusion network of a multi-
modal DNN approximates an independent uni-modal net-
work. Therefore, there is a high degree of heterogeneity
within the multi-modal DNNs. In this section, we first
analyze the GPU kernel type breakdown of multi-modal
DNNs. We then delve further to analyze the kernel-level
information of some hotspot kernels. We only select one
of the implementations for all the applications.

Figure 8 presents the GPU kernel type breakdown for
the applications in MMBench. We classify all the GPU
operations into 8 categories including convolutions (Conv),
batch normalization (BNorm), element-wise operation (Ele-
wise), pooling (Pooling), relu activation (Relu), general matrix
multiply (Gemm), reduce (Reduce) and else (Other). In this
regard, each kernel type contains a subset of function calls
that execute similar tasks. We observe that different stages
within a same application are dominated by different type of
operations, not to mention the difference between different
applications. Besides, the encoder networks for different
modalities are highly diverse. Some applications, such as
AV-mnist, apply same encoder network (Lenet) for both

7

0

20

40

60

80

100

AV-MNIST MM-IMDB CMU-MOSEI MUStARD

P
er

ce
n
ta

g
e(

%
)

image audio text image

78.2%

3.1%

86.3%

3.8%

82.9%

4.9%

75.4%

5.0%

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

0

0.25

0.5

0.75

1
en

co
d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

AV-mnist MM-imdb Mujoco Push Vision & Touch Medical VQA Medical Seg. CMU-mosei MUStARD Transfuser

IP
C

E
ff

ic
ie

n
cy

DRAM_UTI GPU_OCU GLD_EFF GST_EFF IPC

Figure 7: Resource usage of the three stages for different MMBench applications.

0%

20%

40%

60%

80%

100%

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

en
co

d
er

fu
si

o
n

h
ea

d

AV-mnist MM-imdb Mujoco Push Vision & Touch Medical VQA Medical Seg. CMU-mosei MUStARD Transfuser

Conv BNorm Elewise Pooling Relu Gemm Reduce Other

Figure 8: Kernel operation breakdown of the three stages for different MMBench applications.

0

50

100

N
o

rm
al

iz
ed

 R
es

u
lt

 encoder head fusion

0

1

2

3

Hit

Rate

L2 Hit

Rate

L2

Read

Hit

L2

Write

Hit

encoder head fusion

0

5

10

15

20

encoder head fusion

(a) Hotspot kernel: Reduce in different stages

1

10

100

N
o

rm
al

iz
ed

 R
es

u
lt

concat tensor

0

1

2

3

Hit

Rate

L2 Hit

Rate

L2

Read

Hit

L2

Write

Hit

concat tensor

0

0.5

1

1.5

2

concat tensor

(b) Hotspot kernel: Element-wise in different fusion methods

Figure 9: Dedicated kernel comparison different stages and
fusion methods on AV-mnist. The result is normalized.

modalities. However, MM-imdb apply VGG and Albert to
encoder the different modalities. While VGG is dominated
by Gemm (72%), Albert is dominated by relu (66%). Different
acceleration strategies are required for these two encoders.

We further choose two hotspot kernels in the case of
AV-mnist and analyze their fine-grained performance in
Figure 9. We study the computation, cache and memory
patterns of two specific GPU kernels in different stages
and different fusion implementations. The resource usage
of the same kernel in different fusion methods is basically
at the same level despite a significant increase in DRAM
read bytes. However, when it comes to the same kernel
in different stages, its average resource usage can vary
from 15× in the total number of fp32 operations to 80×

in read TPS. The large difference in memory and compute
resources possibly results from the input data size, since
fusion and head only handle the learned representations
from the encoder stage.

Observations: There exists different dominant operations
in different subnets, and the same operations may perform
differently in different stages. In this regard, it is hard to find a
universal optimization for the whole multi-modal application.
Multi-modal applications must be analyzed first to identify the
bottlenecks. It is hard to design specialized hardware accelera-
tors for multi-modal DNN applications.

4.3.3. Synchronization Analysis. In this section, we
analyze the synchronization problem of multi-modal DNNs.
From application level, there exists the problem of modality
synchronization. The fusion stage must wait until the
completion of all modalities. From network level, multi-
modal DNNs suffer from data synchronization. There exists
additional intermediate data and data preparation operations
which can even overweight GPU computation. We first
record the execution time of different modalities and then
investigate the proportion of CPU+Runtime/ GPU execution.

Modality synchronization. We record the execution
time for different modalities. In Figure 10, it’s obvious that
the execution time of different modalities are different. This
problem is especially usual for multi-modal tasks involving
image modality since image modality generally produces
larger amounts of data and require more computation. For
example, the straggler (uni2: image) modality in Mujoco
Push takes up to 4.09× of inference time compared to
other modalities. If executed concurrently, nearly 75% of
the resources assigned to the application will stay idle for
more 77% of the entire encoder execution.

8

0

2.5

5

uni0 uni1 uni0 uni1 uni0 uni1 uni2 uni3

AV-mnist MM-imdb Mujoco Push

N
o
rm

.
T

im
e

Figure 10: Execution time for different modalities for
MMBench applications.

0%

20%

40%

60%

80%

100%

uni multi uni multi uni multi uni multi

AV-mnist Mujoco Push Medical Seg. Vision & Touch

CPU+Runtime GPU

Figure 11: Comparison between synchronization and com-
putation for MMBench applications.

Data synchronization. Most of the network computa-
tion are executed on GPUs, and CPUs are mainly in charge
of data processing operations, such as to and copy. Thus
we consider that a higher CPU+Runtime ratio indicates
more data synchronization operations as GPU are more
frequently kept stalled for lack of data. We choose several
applications in different research domains to investigate
their inference time breakdown. The detailed results are
shown in Figure 11. We can observe that for all applications,
the multi-modal implementation possess larger proportion
of CPU+Runtime operations compared with the uni-modal
implementations. Complex fusion such as Mujoco push can
lead to a significant increase in CPU+Runtime of 66%.

Observations: Multi-modal DNNs suffer from two-level of
synchronization. From application level, its encoder subnets
requires modality synchronization before the fusion stage.
The fusion network must always wait for the straggler. From
operator level, lengthy intermediate data operations lead to
frequent data synchronization. These altogether leads to the
resource under-utilization problem, as GPUs may stay idle for
most of the application time.

5. Two Case Studies Using MMBench
5.1. Effect of Batch Size

Beyond simply executing the multi-modal DNN appli-
cations, MMBench also provides multiple tuning knobs to
study the effect of different parameters and help adjust
the system. Here we provide a case study, demonstrating
how MMbench help explore the effect of batch size on
multi-modal DNNs compared with uni-modal DNNs.

Generally, when a batch of tasks arrive, the operating
system schedules the appropriate kernels to handle those
tasks. If we ignore the computational differences among
various kernels of different sizes, a batch size of 400 tasks
will be executed in 10× less time than a batch of 40
tasks. However, this is impossible during real execution

0% 20% 40% 60% 80% 100%

b40

b400

b40

b400

sl
fs

im
ag

e

Kernel Size Distribution

0-10 10-50 50-100 >100

0

50

100

150

200

250

300

b
4
0

b
4

0
0

b
4

0

b
4

0
0

slfs image

G
P

U
 T

im
e

(m
s)

0

0.5

1

1.5

2

2.5

3

b
4
0

b
4
0
0

b
4
0

b
4
0
0

slfs image

In
fe

re
n
ce

 T
im

e
(s

)

-1.41

(51%)
-0.78

(47%)

-81

(32%)

-32.7

(73%)

Figure 12: Larger batch size can accelerate the execution
of multi-modal DNNs on AV-mnist. Slfs is a multi-modal
implementation, and image is the uni-modal counterpart. b
refers to batch size.

0

3

6

9

20 40 100 200 400P
ea

k
 M

em
o
ry

 (
M

B
)

Batch Size

model dataset intermediate

(a) Uni-modal DNN

0

100

200

300

20 40 100 200 400P
ea

k
 M

em
o
ry

 (
M

B
)

Batch Size

model dataset intermediate

(b) Multi-modal DNN

Figure 13: Peak memory for processing models, datasets,
and intermediate results on AV-mnist.

due to resource contention and constraints. The current OS
often leverages larger kernels which yield better tradeoff
between GPU time and non-GPU time (e.g., data transfer
time, synchronization time etc.) to process a large batch
of tasks. In this regard, it is more beneficial to process
multi-modal DNN tasks in large batch size. Figure 12 shows
our analysis. We consider 10000 inference tasks which are
scheduled with batch size of 40 and 400 respectively.

We first analyze the distribution of kernels of different
sizes. Based on the GPU execution time of each kernel, we
divide the kernels into four different kernel sizes. Figure
12 illustrates the comparison results of uni-modal and
multi-modal DNNs. 0-10 indicates a small kernel, where
the kernel executes in less than 10 microseconds. >100
indicates a large kernel, where the kernel executes in more
than 100 microseconds. The leftmost result shows that
existing operating system (OS) uses more large kernels
whose execution time exceed 50 microseconds to process a
larger batch size with 400 tasks. Meanwhile, the OS calls
more large kernels to process the multi-modal DNN tasks.
The results on the right show that a 10x increase in batch
task size does not reduce the processing latency by 10x.

Besides, as shown in Figure 13, larger batch size leads
to higher peak memory usage for model, dataset and
intermediate features. The model sizes remain generally the
same, while the dataset and intermediate features present
a linear order relative to batch size. Multi-modal DNNs
also tend to produce higher proportion of intermediate
data. When changing batch size, multi-modal DNNs are
easier to achieve GPU memory capacity since they involve

9

0
0.5
1
1.5
2

0
10
20
30
40

40 80 160 320 40 80 160 320 40 80 160 320

nano orin 2080ti

R
at

io
 (

ti
m

es
)

In
fe

re
n

ce
 t

im
e

(s
)

uni (s) slfs (s) ratio:slfs/uni

0

0.5

1

1.5

2

0

10

20

30

40

40 80 160 320 40 80 160 320 40 80 160 320

nano orin 2080ti

R
at

io
 (

ti
m

es
)

In
fe

re
n

ce
 t

im
e(

s)

uni slfs ratio:slfs/uni

Figure 14: Inference time of AV-mnist on GPU server and
edge devices with the change of batch size. slfs refers to
an implementation of multi-modal with 31x parameters.

more intermediate features with multiple modalities and
additional fusion networks.

Observations: Our analysis shows that different compo-
nents of multi-modal DNNs benefits differently from batch
size. The GPU time of multi-modal DNNs decrease in a smaller
scope, which possibly results from the kernel composition of the
networks. Besides, batch size increase leads to higher growth
rate in peak memory usage for multi-modal DNNs.

5.2. Migration to Edge Computing
In recent years, there has been an increasing trend to

deploy DNN models at the edge due to the connectivity,
latency and privacy concerns of transferring data to the
cloud. Therefore, we also characterize the features of multi-
modal DNNs at the edge. We run AV-mnist on one of the
most representative AIoT boards, i.e., Jetson Nano.

Figure 14 presents the inference time of AV-mnist on
both GPU servers and edge devices. On Jetson nano where
resources are limited, 6.48× more time is needed compared
with GPU servers. With the increase of batch size, while
the latency of GPU server is constantly decreasing, the
latency of Jetson nano is even higher when batch size
reaches 320. It is because certain resources are used up.
On Jetson orin with abundant resources, the multi-modal
DNNs perform similarly as on GPU servers. The ratio of
multi-modal execution time compared with uni-modal is
higher on Jetson nano and orin, since GPU servers possess
more idle resources.

In Figure 15-(a) and (b), we illustrate the execution stall
breakdown and resource usage patterns of multi-modal
DNN both on edge devices and on GPU servers. We divide
the stall reasons into 7 main categories: cache dependency
(Cache), memory dependency (Mem), execution dependency
(Exec), busy pipeline (Pipe), synchronization blocked (Sysn),
instruction not fetched (Inst.), other stalls (Else). The stall
caused by execution dependency and instruction not fetch
increases dramatically on edge devices, while memory
dependency and cache miss are the main causes of stall on
GPU servers. It possibly results from the lack of computing
power so that requisite operations cannot be finished in
time. As shown in Figure 15-(c), on edge devices with
limited resources, DRAM utilization is almost always kept
at the highest level. Unlike GPU servers in Figure 7, fusion
stage now possesses higher GPU occupancy on edge devices.

Observations: Migration to edge devices leads to higher
latency and new bottlenecks. Due to limited power and resources,

0% 20% 40% 60% 80% 100%

uni0

uni1

slfs

encoder

fusion

head

Stall Breakdowns

Cache Mem Exec Pipe Sync Inst. Else

0% 20% 40% 60% 80% 100%

uni0

uni1

slfs

cca

tensor

multi

Stall Breakdowns

Cache Mem Exec Pipe Sync Inst. Else

(a) Breakdown of stall cycles on Jetson Nano
0% 20% 40% 60% 80% 100%

uni0

uni1

slfs

encoder

fusion

head

Stall Breakdowns

Cache Mem Exec Pipe Sync Inst. Else

0% 20% 40% 60% 80% 100%

uni0

uni1

slfs

cca

tensor

multi

Stall Breakdowns

Cache Mem Exec Pipe Sync Inst. Else

(b) Breakdown of stall cycles on 2080ti

0

1

2

3

0

0.25

0.5

0.75

1

uni0 uni1 multi encoder fusion head

IP
C

E
ff

ic
ie

n
cy

DRAM(MB) GPU OCP GLD_Eff GST_Eff IPC

(c) Computation and memory usage on Jetson Nano

Figure 15: Execution stall breakdown and resource usage
on edge devices. uni0 refers to audio, uni1 refers to image.

the inference time grows dramatically when we switch from
uni-modal DNN to multi-modal DNNs even on small datasets. It
would be a huge challenge to enable multi-modal DNNs on edge
devices. Some of the modalities may be skipped to guarantee the
QoS on edge devices as long as the result meets the requirement.

6. Conclusion
We present MMBench, an open-source benchmark suite

for end-to-end cloud and IoT multi-modal neural networks.
The suite includes multiple representative multi-modal com-
puting applications, such as multimedia analysis, affective
computing, medical analysis, etc. We use MMBench to
study the system and architectural implications of multi-
modal neural networks across different computing stacks
and conclude three unique characteristics. We also provide
two case studies to demonstrate how MMBench guides
the system and architecture designs. We expect that our
work could pave the way for better system and architecture
research for multi-modal computing.

Acknowledgments
This work is supported by the National Natural Science

Foundation of China (No.62122053). Corresponding authors
are Xiaofeng Hou and Chao Li. We thank all the anonymous
reviewers for their valuable comments and suggestions.

10

Appendix
1. Abstract

This artifact reproduces the results shown in Evaluation
part, showing how we use MMBench to conduct an in-depth
analysis of multi-modal DNNs.

2. Artifact check-list (meta-information)
• Program: Pytorch Profiler NVIDIA Nsight Systems, and

NVIDIA Nsight Compute
• Compilation: PyTorch
• Model: multi-modal models made up of Lenet, VGG,

Transformer, Albert, Resnet
• Data set: Avmnist, MMimdb, CMU-MOSEI, Sarcasm,

Medical VQA, Medical Segmentation, MuJoCo Push, Vison
& Touch, TransFuser

• Run-time environment: Linux5.4.0-113.x86_64
• Hardware: GPU: NVIDIA RTX 2080Ti; edge device:

Jetson Nano, Jetson Orin
• Run-time state: Run-time varies based on model type

and configuration
• Execution: Executing commands can be found on GitHub
• Output: PyTorch Profiler, NVIDIA Nsight Systems and

NVIDIA NSIGHT Compute trace files
• Experiments: Analyzing the profiling results of the

inference phase of each model and investigating GPU
behavior of the models

• How much disk space required (approximately)?:
100 GB.

• How much time is needed to prepare workflow
(approximately)?: About one hour to install related
python packages and install NVIDIA Nsight Systems and
NVIDIA Nsight Compute tools.

• How much time is needed to complete experiments
(approximately)?: 4 hours.

• Publicly available?: Yes
• Code licenses (if publicly available)?: CCA 4.0 Inter-

national
• Archived (provide DOI)?: 10.5281/zenodo.8266664

3. Description
3.1. How to access. Our source codes are available at
github (https://github.com/xfhelen/MMBench) and zenodo
(https://zenodo.org/record/8266664)

3.2. Hardware dependencies. Most of the benchmarks
consume a few megabytes when running. so anything
modern should be fine. However, The GPU server We use is
equipped with two 2.4 GHz Intel 20-core, Xeon 6148 CPUs
and four Nvidia RTX 2080Ti GPUs connected via PCI-e ×16
interface with 11 GB of GDDR6 memory. We use a Jetson
Nano with 128-core Maxwell, 4GB LPDDR4 and a Jetson
Orin with 2048-core Ampere, 32GB LPDDR5 as our edge
devices.

3.3. Software dependencies. The operation system we
used is Linux5.4.0-113.x86_64. The software framework is
Pytorch.

3.4. Data sets. Avmnist, MMimdb, CMU-MOSEI, Sarcasm,
MuJoCo Push, Vison & Touch, Medical VQA, Medical
Segmentation, TransFuser

3.5. Models. Multi-modal models made up of Lenet, VGG,
Transformer, Albert, Resnet, ...

4. Installation
About python environment, you just need to git clone

our repository and use conda to create a new environment
by running command:
conda env create -f environment.yml
-n new_env_name

For more information related to PyTorch Profiler, please
refer to the tutorial (https://pytorch.org/tutorials/recipes/
recipes/profiler_recipe.html).

For NVIDIA Nsight Systems and NVIDIA Nsight
Compute, download them from the following links:
https://developer.nvidia.com/gameworksdownload#?dn=
nsight-systems-2022-3 and run the installer.

5. Experiment workflow
Before running the benchmark, you should download

the datasets following the instruction of README file of the
application that you want to run.

Then make sure the working directory is the MMBench
folder. The scripts to run are stored in the scripts folder,
and all the applications are stored in the applications
folder. You can run the python code of a application directly
to test whether it can work on you python environment,
for example:
python applications/CMU-MOSEI/
affect_late_fusion.py

You can also skip the aforementioned process to run
the benchmark directly. If you want to obtain data such as
DRAM utilization, achieved occupation, IPC, GLD efficiency,
and GST efficiency, you can run the script ncu_metric.sh.
Here is an example of how to run it:
./scripts/ncu_metric.sh applications/CMU-MOSEI
/affect_late_fusion.py applications/
CMU-MOSEI/ncu_info.csv

The last parameter in the example above is used to specify
the location where the measurement data will be stored. In
addition, our benchmark also provides the functionality to
measure specific stages of the encoder, fusion, or head. You
can specify a particular stage for parameter measurement.
./scripts/ncu_metric.sh applications/CMU-MOSEI
/affect_late_fusion.py applications/CMU-MOSEI
/ncu_info_encoder.csv --option encoder

If you want to obtain the allocation of GPU op-
erators during the code execution, you can run the
nsys_metric.sh script. Here is an example:
./scripts/nsys_metric.sh applications/CMU-MOSEI
/affect_late_fusion.py

The results obtained will be ultimately stored in the file
scripts nsys_temp_file.txt.

11

https://github.com/xfhelen/MMBench
https://zenodo.org/record/8266664
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://developer.nvidia.com/gameworksdownload#?dn=nsight-systems-2022-3
https://developer.nvidia.com/gameworksdownload#?dn=nsight-systems-2022-3

6. Evaluation and expected results
For NVIDIA NSIGHT Compute, you can get profiling

results as Figure 16 shows:

Figure 16: Results of NSIGHT Compute

For Pytorch Profiler, you can get profiling results as
Figure 17 shows:

Figure 17: Results of Pytorch Profiler

The obtained results should reflect the figures in the
article with python-based collection and processing.

7. Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

References
[1] “Python memory profiler,” https://pypi.org/project/memory-profiler/.
[2] “Pytorch profiler,” https://pytorch.org/tutorials/recipes/recipes/

profiler_recipe.html/.
[3] R. Adolf, S. Rama, B. Reagen, G. Wei, and D. M. Brooks, “Fathom:

reference workloads for modern deep learning methods,” in 2016
IEEE International Symposium on Workload Characterization, IISWC
2016.

[4] M. S. Akhtar, D. S. Chauhan, D. Ghosal, S. Poria, A. Ekbal, and
P. Bhattacharyya, “Multi-task learning for multi-modal emotion
recognition and sentiment analysis,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019.

[5] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D. Lane,
“Embench: Quantifying performance variations of deep neural net-
works across modern commodity devices,” CoRR, vol. abs/1905.07346,
2019.

[6] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, “Multiple kernel
learning, conic duality, and the SMO algorithm,” in Machine Learning,
Proceedings of the Twenty-first International Conference (ICML 2004).

[7] T. Baltrusaitis, C. Ahuja, and L. Morency, “Multimodal machine
learning: A survey and taxonomy,” IEEE Trans. Pattern Anal. Mach.
Intell., 2019.

[8] T. Baruah, K. Shivdikar et al., “Gnnmark: A benchmark suite
to characterize graph neural network training on gpus,” in IEEE
International Symposium on Performance Analysis of Systems and
Software, ISPASS 2021.

[9] S. Castro, D. Hazarika, V. Pérez-Rosas, R. Zimmermann, R. Mihalcea,
and S. Poria, “Towards multimodal sarcasm detection (an _obviously_
perfect paper),” in Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019.

[10] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Dawnbench: An
end-to-end deep learning benchmark and competition,” Training,
2017.

[11] J.-B. Delbrouck, K. Saab, M. Varma, S. Eyuboglu, P. Chambon,
J. Dunnmon, J. Zambrano, A. Chaudhari, and C. Langlotz, “Vilmedic:
a framework for research at the intersection of vision and language
in medical ai,” in Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics: System Demonstrations,
ACL, 2022.

[12] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun,
“CARLA: an open urban driving simulator,” in 1st Annual Conference
on Robot Learning, CoRL 2017.

[13] U. Gupta, C. Wu et al., “The architectural implications of facebook’s
dnn-based personalized recommendation,” in IEEE International
Symposium on High Performance Computer Architecture, HPCA 20200.

[14] R. Hadidi, J. Cao, Y. Xie, B. Asgari, T. Krishna, and H. Kim,
“Characterizing the deployment of deep neural networks on com-
mercial edge devices,” in IEEE International Symposium on Workload
Characterization, IISWC 2019.

[15] X. Hou, C. Li, J. Liu, L. Zhang, Y. Hu, and M. Guo, “Ant-man: towards
agile power management in the microservice era,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA,
November 9-19, 2020, 2020.

[16] X. Hou, M. Liang, C. Li, W. Zheng, Q. Chen, and M. Guo, “When
power oversubscription meets traffic flood attack: Re-thinking data
center peak load management,” in Proceedings of the 48th International
Conference on Parallel Processing, ICPP 2019, Kyoto, Japan, August
05-08, 2019, 2019.

[17] X. Hou, J. Liu, C. Li, and M. Guo, “Unleashing the scalability
potential of power-constrained data center in the microservice era,” in
Proceedings of the 48th International Conference on Parallel Processing,
ICPP 2019, Kyoto, Japan, August 05-08, 2019, 2019.

[18] X. Hou, J. Liu, X. Tang, C. Li, J. Chen, L. Liang, K. Cheng, and M. Guo,
“Architecting efficient multi-modal aiot systems,” in Proceedings of
the 50th Annual International Symposium on Computer Architecture,
ISCA 2023, Orlando, FL, USA, June 17-21, 2023, 2023.

[19] X. Hou, C. Xu, J. Liu, X. Tang, L. Sun, C. Li, and K.-T. Cheng,
“Characterizing and understanding end-to-end multi-modal neural
networks on gpus,” IEEE Computer Architecture Letters (CAL), 2022.

[20] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath, T. G. Rogers,
T. M. Aamodt, and N. Hardavellas, “Accelwattch: A power modeling
framework for modern gpus,” in 54th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO, 2021.

[21] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A lite BERT for self-supervised learning of language repre-
sentations,” in 8th International Conference on Learning Representations,
ICLR 2020.

[22] M. A. Lee, B. Yi, R. Martín-Martín, S. Savarese, and J. Bohg,
“Multimodal sensor fusion with differentiable filters,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2020,
2020.

12

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://pypi.org/project/memory-profiler/
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html/
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html/

[23] M. A. Lee, Y. Zhu, P. Zachares, M. Tan, K. Srinivasan, S. Savarese,
L. Fei-Fei, A. Garg, and J. Bohg, “Making sense of vision and touch:
Learning multimodal representations for contact-rich tasks,” IEEE
Trans. Robotics, 2020.

[24] P. P. Liang, Y. Lyu, X. Fan, Z. Wu, Y. Cheng, J. Wu, L. Chen, P. Wu,
M. A. Lee, Y. Zhu, R. Salakhutdinov, and L. Morency, “Multibench:
Multiscale benchmarks for multimodal representation learning,” in
Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021.

[25] S. Liu, B. Yu, J. Tang, Y. Zhu, and X. Liu, “Communication challenges
in infrastructure-vehicle cooperative autonomous driving: A field
deployment perspective,” 2022.

[26] C. Luo, X. He, J. Zhan, L. Wang, W. Gao, and J. Dai, “Comparison
and benchmarking of AI models and frameworks on mobile devices,”
CoRR, vol. abs/2005.05085, 2020.

[27] H. Mao, Z. Yuan, H. Xu, W. Yu, Y. Liu, and K. Gao, “M-SENA: an
integrated platform for multimodal sentiment analysis,” in Proceedings
of the 60th Annual Meeting of the Association for Computational
Linguistics, ACL 2022.

[28] NVIDIA, “Nvidia jetson nano developer kit,” 2020.
[29] ——, “Cuda toolkit v11.7.0,” https://docs.nvidia.com/cuda/

profiler-users-guide/index.html, 2022.
[30] ——, “Nsight compute,” https://developer.nvidia.com/nsight-compute,

2022.
[31] ——, “Nsight systems,” https://developer.nvidia.com/nsight-systems,

2022.
[32] J. E. A. Ovalle, T. Solorio, M. Montes-y-Gómez, and F. A. González,

“Gated multimodal units for information fusion,” in 5th International
Conference on Learning Representations, ICLR 2017.

[33] A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. S. Emer, “Timeloop:
A systematic approach to DNN accelerator evaluation,” in IEEE
International Symposium on Performance Analysis of Systems and
Software, ISPASS 2019.

[34] H. Pham, P. P. Liang, T. Manzini, L. Morency, and B. Póczos,
“Found in translation: Learning robust joint representations by cyclic
translations between modalities,” in The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019.

[35] A. Prakash, K. Chitta, and A. Geiger, “Multi-modal fusion transformer
for end-to-end autonomous driving,” in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021.

[36] V. J. Reddi, C. Cheng et al., “Mlperf inference benchmark,” in 47th
ACM/IEEE Annual International Symposium on Computer Architecture,
ISCA 2020.

[37] T. Schefke, “Deepbench: Open-source tools for a.i. in the sky,” 2020.
[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015.

[39] Z. Sun, P. K. Sarma, W. A. Sethares, and Y. Liang, “Learning
relationships between text, audio, and video via deep canonical
correlation for multimodal language analysis,” in The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020.

[40] F. Tang, W. Gao et al., “Aibench: An industry standard AI benchmark
suite from internet services,” CoRR, 2020.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems, 2017.

[42] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell:
Lessons learned from the 2015 MSCOCO image captioning challenge,”
IEEE Trans. Pattern Anal. Mach. Intell., 2017.

[43] W. Wang, D. Tran, and M. Feiszli, “What makes training multi-
modal classification networks hard?” in 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020.

[44] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-
level energy estimation methodology for accelerator designs,” in
Proceedings of the International Conference on Computer-Aided Design,
ICCAD 2019.

[45] Y. Wu, E. Y. Chang, K. C. Chang, and J. R. Smith, “Optimal multimodal
fusion for multimedia data analysis,” in Proceedings of the 12th ACM
International Conference on Multimedia, 2004.

[46] A. Wudenhe and H. Tseng, “Tpupoint: Automatic characterization
of hardware-accelerated machine-learning behavior for cloud com-
puting,” in IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 2021.

[47] S. L. Xi, Y. Yao, K. Bhardwaj, P. N. Whatmough, G. Wei, and D. Brooks,
“SMAUG: end-to-end full-stack simulation infrastructure for deep
learning workloads,” ACM Trans. Archit. Code Optim., 2020.

[48] X. Xie, X. Hu, P. Gu, S. Li, Y. Ji, and Y. Xie, “Nnbench-x: Benchmarking
and understanding neural network workloads for accelerator designs,”
IEEE Comput. Archit. Lett., 2019.

[49] P. Xu, X. Zhu, and D. A. Clifton, “Multimodal learning with
transformers: A survey,” CoRR, 2022.

[50] Z. Xu, D. R. So, and A. M. Dai, “Mufasa: Multimodal fusion
architecture search for electronic health records,” in Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022.

[51] Y. Yin, S. Huang, and X. Zhang, “BM-NAS: bilevel multimodal neural
architecture search,” in Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022.

[52] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L. Morency, “Tensor
fusion network for multimodal sentiment analysis,” in Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017.

[53] C. Zhang, Z. Yang, X. He, and L. Deng, “Multimodal intelligence:
Representation learning, information fusion, and applications,” IEEE
J. Sel. Top. Signal Process., 2020.

[54] Q. Zhang, L. Zha, J. Lin, D. Tu, M. Li, F. Liang, R. Wu, and X. Lu, “A
survey on deep learning benchmarks: Do we still need new ones?”
in Benchmarking, Measuring, and Optimizing - First BenchCouncil
International Symposium, Bench 2018.

[55] Q. Zhang, X. Li, X. Che, X. Ma, A. Zhou, M. Xu, S. Wang, Y. Ma,
and X. Liu, “A comprehensive benchmark of deep learning libraries
on mobile devices,” in The ACM Web Conference, WWW, 2022.

[56] Y. Zhang, N. He, J. Yang, Y. Li, D. Wei, Y. Huang, Y. Zhang, Z. He,
and Y. Zheng, “mmformer: Multimodal medical transformer for
incomplete multimodal learning of brain tumor segmentation,” in
Medical Image Computing and Computer Assisted Intervention, MICCAI
2022.

[57] X. Zhou and B. Bhanu, “Feature fusion of side face and gait for
video-based human identification,” Pattern Recognit., 2008.

13

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems

	Introduction
	Background and Related Work
	Basics of Multi-modal DNNs
	Benchmarking Conventional DNNs
	Benchmarking Multi-modal DNNs
	The Missing Piece of Multi-modal Research

	The MMBench Suite
	Key Features of MMBench
	Applications in MMBench
	Implementation Details
	Profiling Pipeline

	Evaluation
	Experimental Setups
	Network-level Characterization
	Performance analysis
	Fusion analysis
	Modality analysis

	System-/Architecture-level Analysis
	Stage Analysis
	Heterogeneity Analysis
	Synchronization Analysis

	Two Case Studies Using MMBench
	Effect of Batch Size
	Migration to Edge Computing

	Conclusion
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models

	Installation
	Experiment workflow
	Evaluation and expected results
	Methodology

	References

