
M 2SN : Adaptive and Dynamic Multi-modal
Shortcut Network Architecture for Latency-Aware

Applications
Yifei Pu

Computer Science and Engineering
Shanghai Jiao Tong University

Shanghai, China
pkq2006@sjtu.edu.cn

Chi Wang
Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

wangchi@sjtu.edu.cn

Xiaofeng Hou*
Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

hou-xf@cs.sjtu.edu.cn

Cheng Xu
Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

jerryxu@sjtu.edu.cn

Jiacheng Liu
Computer Science and Engineering
Chinese University of Hong Kong

Hong Kong, China
jcliu@cse.cuhk.edu.hk

Jing Wang
Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

jing618@sjtu.edu.cn

Minyi Guo
Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

guo-my@cs.sjtu.edu.cn

Chao Li*
Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

lichao@cs.sjtu.edu.cn

Abstract—Multi-modal neural networks have demonstrated
exceptional performance by merging information across modalities,
surpassing the state-of-the-art uni-modal DNNs. However, this
accuracy improvement comes at the cost of increased computation,
leading to higher inference latency. This defect significantly
limits the practical value of multi-modal DNNs, especially for
latency-aware applications. Therefore, we propose an adaptive and
efficient multi-modal shortcut architecture called M2SN to reduce
the execution latency with accuracy guarantees. It skips ineffective
network layers to reduce computational costs as well as alleviate
the overfitting problem adaptive to specific models and scenarios.
The key contributions of M2SN are twofold: 1) We design and
insert shortcuts into each uni-modal network to perform adaptive
computing. 2) We design a navigator to dynamically choose the
optimal shortcuts. Unlike previous approaches, M2SN features
high generality as it does not rely on any prior knowledge. The
experimental results show that M2SN can reduce 28.3% average
latency while obtaining the same or higher accuracy compared
with SOTA baselines.

Index Terms—Multi-Modal Network, Dynamic Network,
Latency-Aware Optimization

I. INTRODUCTION

Recently, there is a growing trend to replace traditional uni-
modal networks with multi-modal neural networks [1], [2], [3]
for their performance superiority. Multi-modal DNNs generally
consist of multiple encoder DNNs to extract representations
from different modalities and a fusion and head DNN to fuse

*Corresponding author

the modality features. By federating information from different
modalities, multi-modal neural networks can outperform the
SOTA uni-modal neural networks with up to 30% accuracy in
different multimedia applications [4].

Despite the performance advantage, multi-modal networks
also possess certain shortcomings. The first challenge is the high
computation cost. Multi-modal networks inevitably introduce
repetitive encoder and extra fusion operations, which result in
unacceptable latency in latency-aware applications [5]. Taking
MM-IMDb dataset [1] as an example, using multiple modalities
gains less than 1% additional accuracy but brings more than
2× additional inference latency [6]. Secondly, multi-modal
networks may even achieve lower accuracy than uni-modal
networks in some cases. Fusing modalities on the deepest
features of networks may not produce the correct results due
to over-fitting problems. For example, The accuracy using the
fused feature produced by the language, visual, and audio
modalities is lower than merely using the language modality
on the MUStARD dataset [1], [6].

To solve these challenges, a dynamic and flexible execution
strategy is required. If some ineffective steps in the multi-
model networks can be simplified or skipped, the computational
overhead can be greatly reduced. In addition, one can gain
better accuracy from an adaptive decision of how to skip
each layer and modality. Although previous works can exit
the computation [7], they still lack a mechanism that enables
skipping at the granularity of network layers.

In 1921, DH Lawrence

travelled to Sardinia to

search for sun and a

simpler way of living. His

w r i t i n g a b o u t …

Image

Text

N
a

v
ig

a
to

r

Block Block Block

Block Block Block

Shortcut

F
u

sio
n

 N
e

t.

H
e

a
d

 N
e

t.

“History”

“Biography”

“Documentary”

Latency: 25.3ms

Speedup:29%

…

In Ventura, CA, Giuseppe

Andrews makes movies in

his trailer park where he…

Image

Text

N
a

v
ig

a
to

r

Block Block Block

Block Block Block

Shortcut

F
u

sio
n

 N
e

t.

H
e

a
d

 N
e

t.

“Documentary”

Latency: 15.2ms

Speedup:57%

…

Shortcut

Figure 1: M2SN can adaptively predict correct labels for
different data samples in MM-IMDb with significant speedup.

In this paper, we propose an adaptive and dynamic multi-
modal shortcut network architecture (M2SN) to achieve low
overhead with high accuracy. We show an example design
and results in Figure 1. The key design consideration behind
M2SN is that features from early layers in different modalities
are adequate to provide correct representations. By intelligently
choosing the modality features and fast skipping from early
layers, we can achieve satisfying performance with minimal
computation. There are two main modules in our design, namely
the shortcut and the navigator. We build shortcut modules
and insert them into each modality relatively to produce the
deepest features and skip the following steps. We design a
navigator to adaptively and dynamically choose the optimal
shortcuts. Unlike some previous adaptive multi-modal network
architectures, M2SN is a general method for multi-modal
networks using the late fusion method, which does not rely on
prior knowledge.

In this work, we make the following contributions:
• We propose M2SN , an adaptive, general multi-modal

shortcut architecture to reduce the execution latency of
multi-modal networks while keeping or even improving
the accuracy.

• We design specific shortcut modules for different modality
networks to directly propose the final extracted figure after
an arbitrary layer.

• We design a lightweight navigator to adaptively choose
the optimal shortcut for different samples.

• We evaluate M2SN on several real-world multi-modal
neural networks and datasets. M2SN can reduce 28.3%
average latency with the same or higher accuracy.

II. RELATED WORK

Multi-modal Neural Network. Multi-modal neural net-
works [2], [8] merge information from different modalities
like image, text, audio, video, etc to prduce the final result.
They have been demonstrated to perform much better than
uni-modal networks in many application fields [1], [6]. Late
fusion methods [9] are widely used in multi-modal networks,
which extract features from the modalities separately and then
fuse them to solve the tasks. M2SN can be applied to various
multi-modal neural networks based on late fusion methods to
reduce the inference latency while keeping the high accuracy.

D
e

cisio
n

N

e
tw

o
rk

Navigator Shortcut

F
u

sio
n

n

e
tw

o
rk

H
e

a
d

n

e
tw

o
rk

Embedding

Layer

Embedding Layers Decision Network

Layer Layer Layer

Shortcut

F
u

sio
n

 N
e

tw
o

rk

Navigator

Optimal

Shortcut

Decision

F
e

a
tu

re
 G

e
n

e
ra

to
r

Dimension Alignment

P
o

o
lin

g

1
1

 C
o

n
v

1
1

 C
o

n
v

1
1

 C
o

n
v

U
n

i-m
o

d
a

l F
e

a
tu

re
Multi-modal Network

Figure 2: An overview design of M2SN

Adaptive Multi-modal Network. Many adaptive methods have
been recently proposed to improve the computational efficiency
of multi-modal networks. SkipNet [10] proposes an adaptive
architecture of a uni-modal network that can skip some of the
layers while keeping the accuracy, which can easily apply to
multi-modal networks. AdaMML [11] is designed to adaptively
drop some input modalities for efficient multi-modal learning
in video recognition tasks. MMExit [7] implements a 2D early
exit architecture, which sorts the modalities based on their
importance and maps the 2D exit space into a linear space.
Differently, M2SN is a general adaptive multi-modal network
architecture that does not limit to the task, and can reduce the
inference latency without the dependence of priori knowledge.

III. M2SN ARCHITECTURE DESIGN

A. Overview of M2SN Architecture

To reduce the inference latency of multi-modal neural
networks, we propose M2SN , an adaptive multi-modal neural
network architecture to ensure satisfying performance with
minimal inference latency. M2SN is based on late fusion
multi-modal neural network architecture [9] and can be applied
to arbitrary late fusion multi-modal networks. A late fusion
multi-modal neural network uses several uni-modal networks
to extract respective features from each modality separately,
then fuses the features to solve the multi-modal tasks.

As shown in Figure 2, we design a module to transfer
the early feature into the deepest feature, called Shortcut. A
shortcut module connects a layer and the tail of the uni-modal
network, the input of a shortcut is the feature obtained after
an early layer, and the output is the deepest feature of the
uni-modal network, which can be directly sent to the fusion
network. While using the shortcut module, we ignore the rest
of the layers in the uni-modal network and produce the deepest
feature using the feature extracted by the early layer.

While shortcut can significantly reduce the inference latency,
the next critical problem is how to keep the correctness of
prediction while using shortcut. To solve this problem, we
design Navigator, a lightweight module that dynamically
decides the optimal shortcut for the corresponding input data.

B. Shortcut Design

In the design of M2SN , shortcut is a lightweight network
module that maps the feature obtained by the early layers into
the deepest feature of a uni-modal network. Shortcut module
behaves like a shortcut in the real world, skipping the original
network layers with high latency and going straight to the end
of the uni-modal network. Let x be the input of the uni-modal
network, Fi be i-th layer in the network, the original uni-modal
network can be denoted as

y = Fm
(
Fm−1

(
· · ·F 1 (x)

))
(1)

where m is the number of layers in the uni-modal network.
We use xi to represent the output feature of the i-th layer

in the network, then the shortcut connecting the i-th layer and
the end of the uni-modal network can be denoted as

y = Si (xi) = Fm
(
Fm−1

(
· · ·F i (xi)

))
(2)

which means we use a shortcut module to replace the rest
layers after the i-th layer.

There are two critical problems in the shortcut design. The
first problem is that shortcut must be lightweight, the time cost
of a shortcut module should be much lower than the original
skipped network layers. The second problem is correctness,
the feature obtained by a shortcut module must achieve the
same effect as the feature extracted by the original uni-modal
network.

As shown in Figure 2, to solve these problems, we design
a shortcut module with two paths. In some networks, such
as convolutional networks, the dimension of the input feature
does not match the output feature. For these networks, our
shortcut first uses a dimension alignment module that utilizes
one large-stride pooling layer and three 1 × 1 convolutional
layers to align the dimension of the input and output features.
For other uni-modal neural networks, such as transformer, the
input feature has the same dimension as the output feature, so
the shortcut module in these networks can skip the dimension
alignment module.

After the alignment module is a feature generator, which
transfers the aligned input feature into the deepest feature of
the original uni-modal network. To keep the lightweight of
shortcut module, we use a linear layer to undertake this task.
We show the feasibility of this design in Section V below.

C. Navigator Design

In the design of M2SN , navigator is a lightweight network
module that leverages the input data samples to choose the
optimal shortcuts. The main task of a navigator module is
choosing the shortcuts that can produce correct results with the
least latency, and the time cost of navigator should be much
lower than the total latency of the multi-modal network.

As shown in Figure 2, in the design of navigator module,
we utilize multiple lightweight embedding layers to obtain
the corresponding embedding of each modality, fuse the
embeddings using a fusion network, and design a decision
network to produce the optimal shortcut decision. Specifically,

in the implementation of navigator, we use a short ResNet [12]
with a few blocks for image/video modality and a few attention
layers for language modality to construct the embedding layers.
After fusing the embeddings by a concatenate layer, we use
a linear layer with softmax activation function to produce the
optimal shortcut decision.

D. Inference Algorithm

In the inference process of M2SN , for an input data sample,
we first send it to navigator module to obtain the corresponding
embeddings of each modality and produce the optimal shortcut
decision. While the uni-modal neural networks receive the input
data sample and the shortcut decision, the encoder layers of
each uni-modal network start to execute until meet the chosen
shortcut, then the shortcut module transfers the feature obtained
by the first several encoder layers into the deepest feature of
the uni-modal network, and send it to the multi-modal fusion
network. After all the uni-modal networks finish the process,
the multi-modal fusion network fuses the features and produce
the prediction result by a head network.

IV. M2SN TRAINING METHOD

The training process of M2SN consists of two stages.
The first stage is to train the parameters of the multi-modal
network part, which contains the shortcut modules, the uni-
modal networks, and the fusion network. The second stage is
to train the navigator, which is used to decide the choice of
shortcuts.

A. Shortcut Module Training

For an existing multi-modal neural network, we first choose
some layers in each uni-modal network to be the shortcut
points. A layer in a uni-modal network is chosen to be an
shortcut point means we add a shortcut module that transforms
the feature extracted by the layer to the final feature extracted
by the whole uni-modal network directly. We define the layers
between two shortcut points as a block.

As we can see in Section III, the output of a shortcut is a
feature with the same size as the original feature extracted by
the uni-modal network. It is hard to design a loss function that
measures the difference between two features, so we design
a task head to directly predict the result of the whole multi-
modal network using the uni-modal feature. While training the
parameters of shortcuts, we just need to predict the result by
the shortcut and the corresponding task head, then calculate
the task loss and update the parameters with gradient descent.

Two training methods are then introduced to train the shortcut
module. The integral training method performs better, while
the peripheral training method can save most of the training
time using the frozen pre-trained model.

1) Integral Training Method: In the integral training method,
we use the parameters of the pre-trained multi-modal model to
help train our shortcuts, but we do not freeze the pre-trained
model during the training process. As shown in Algorithm
1 (Line 3-9), we 1) predict the label by the first block with
pre-trained parameters, the first shortcut module, and the first

Algorithm 1: M2SN Training Algorithm
Input: Pre-trained model M0, preference λ
Output: Trained model M, trained navigator N

1 for i = 1, · · · , n do
2 for j = 1, · · · ,mi do
3 if Integral Training then
4 for k = 1, · · · , e do
5 //Train j-th shortcut in i-th modality using

k-th epoch.
6 Predict label by j-th shortcut .
7 Calculate the task loss.
8 Update j-th shortcut and block parameters.

9 Freeze j-th block parameters.
10 if Peripheral Training then
11 for k = 1, · · · , e do
12 Predict label by j-th shortcut .
13 Calculate the task loss.
14 Update j-th shortcut parameters.

15 for i = 1, · · · , e do
16 Decide shortcut weights by navigator.
17 Predict label using weighted features.
18 Calculate loss according to Eq. (4).
19 Update N parameters.
20 Anneal temperature parameter τ .

task head; 2) calculate the task loss; 3) update the parameters
of the first block and shortcut. When the parameters converge
after we use several epochs of data samples to train, we just
freeze the parameters of the first block, and then start to train
the next block and the next shortcut. We repeat the training
processes one by one until all the shortcut modules and uni-
modal networks are trained.

2) Peripheral Training Method: However, integral training
leads to extremely long training time in real practice. In integral
training, we must re-train the parameters of the whole multi-
modal network, even if we already have the pre-trained model.
So we propose another training method to reduce the training
time, called peripheral training. As shown in Algorithm 1 (Line
10-14), in this method, we use the pre-trained parameters of
the multi-modal network to train our shortcut modules. While
training the parameters of shortcut modules, the parameters
of the pre-trained multi-modal model are frozen, only the
parameters of shortcut modules are updated in the backward
propagation process.

B. Navigator Training

The training process of the navigator starts after training
all the shortcut modules. The direct predicted result of the
navigator is the chosen probabilities of shortcuts, and we choose
the shortcut with the highest probability to produce the one-hot
decision in the inference part, which can be denoted as

ei = one-hot
(
argmax

j
(yi,j)

)
(3)

However, we cannot use the one-hot decisions in the training
process, since it is not directly differentiable. As shown in
Algorithm 1 (Line 15-20), we predict the chosen probabilities

Research Area Size Dataset Modalities # Samples Task
Affective

Computing
S MUStARD {l, v, a} 690 sarcasm
M CMU-MOSI {l, v, a} 2,199 sentiment
L CMU-MOSEI {l, v, a} 22,777 sentiment, emotions

Multimedia
S Kinetics-S {v, a, o} 2,624 human action
M MM-IMDb {l, i} 25,959 movie genre
L Kinetics-L {v, a, o} 306,245 human action

Table I: Description of the used M2C tasks and datasets.

of the shortcuts and adopt the probabilities as computational
weights. Then for each uni-modal network, we produce the
features by each shortcut using the trained shortcut network and
fuse the features using the weights of corresponding shortcuts
to be the extracted feature of this uni-modal network. We use
the weighted fused features to predict the task result, calculate
the loss introduced below, and update the parameters.

1) Training Loss with Latency Awareness: To keep the
prediction accuracy while reducing the inference latency, we
design a loss function to help train the navigator:

L = Ltask + λ

n∑
i=1

Latencyi,ei (4)

where Latencyi,ei include the inference latency of the layers
before the ei-th shortcut point in the i-th modality and the
latency of the j-th shortcut module.

In this loss function, we use the original task loss to evaluate
the prediction accuracy of the decision made by the navigator
and use the inference latencies of all the uni-modal networks
to control the latency. Parameter λ is used to control the
importance of latency. Lower λ may lead to higher accuracy
with lower latency.

2) Optimization using Gumbel-Softmax: Gumbel-
Softmax [13] is used to make the one-hot decisions
differentiable. Although we use the fused features instead of
a one-hot chosen feature to avoid the problem of gradient
descent, Gumble-Softmax is also useful to control the training
process. We transform the probability vectors with the
following form:

êi,j =
exp((log(yi,j) +Gi,j)/τ)

Σj exp((log(yi,j) +Gi,j)/τ)
(5)

where Gi,j are samples independently drawn from the distri-
bution Gumbel(0, 1), and τ denotes the softmax temperature.

When we use a large τ to be the temperature, the distribution
of ê is similar to a uniform distribution, and a small τ leads to a
categorical distribution. During the training process, we anneal
τ from a large value, which means we adopt approximately
uniform probabilities to each shortcut at first, and ê becomes
similar to a one-hot vector with the decrease of τ , which means
we obtain a certain chosen of the best shortcut.

V. EVALUATION

A. Experimental Setup

Datasets. We use 6 representative multi-modal datasets pro-
vided by the Multibench [1] and the MMBench [6] benchmark.
As shown in Table I, the sizes of data samples range from
690 to 306,245. These 6 datasets cover the most common
modalities, including image, language, audio, video and optical

Type Scheme Description

Uni-modal
Networks

image [12] ResNet
audio [14] Librosa
language [15], [16] BERT/GloVe

SOTA
M2C Model

LF (BL) [6] Concatenation (Baseline)
MMExit [7] MMExit schema

Table II: SOTA M2C models for performance evaluation.

flow, and the corresponding multi-modal classification tasks
include sarcasm, sentiment, emotions, human action and movie
genre.
Implementation. We use the uni-modal networks mentioned
in Table II to extract the features of different modalities. We
implement M2SN by adding 3 shortcuts per uni-modal neural
network using late fusion networks. For ablation studies, we
implement Fixed Shortcut (FS) method that chooses the fixed
shortcuts instead of the decision shortcuts by the navigator to
compare with our method, and implement Non-Latency (N-L)
method that sets the parameter λ in Eq. (4) to 0 in order to
ignore the effect of inference latency. We train and run models
on a server with one GeForce RTX 2080Ti GPU.
Baselines and the State-Of-The-Art We implement Late
Fusion (LF) method as our baseline. In each of the modalities,
we use only the uni-modal model (uni1 − uni3) mentioned in
Table II and connect it to the head network to obtain the
prediction. We also implement the state-of-the-art method
MMExit [7] and compare it with the performance.

B. Experimental Results

1) Comparison with Baselines and SOTA: Latency Re-
duction. The purpose of the shortcuts module and navigator
module we designed is to reduce the latency of multi-modal
networks. In order to verify whether they play their role and
whether the cost is worth it, we conducted delay comparisons
on six datasets over four sets of models. Since the inference
time between different model groups is not at the same level,
for better demonstration, we use the total inference time of
LF as baseline, and divide the inference time of M2SN by
the baseline to achieve a unified quantitative comparison. The
green part in Figure 3 is the latency reduction percentage. It is
obvious that the module design has achieved our ideal effect.
The latency cost of these modules accounts for between 12%
and 16% of the baseline inference time, and the improvement
ratio it brings ranges from 16% to 42%. In view of different
datasets characteristics also differ. Our results here can prove
to some extent that the design of these modules throws light
on the latency reduction problem.
Performance Evaluation. In order to verify the performance of
our method, as shown in Table III we compare the accuracy and
inference time of different uni-modal and multi-modal models
in different datasets. M2SN shows significant improvement
in both accuracy and inference latency compared with baseline
(LF). For the special datasets that obtain higher accuracy
in uni-modal models than the LF method, M2SN can also
achieve higher accuracy than the best uni-modal models.
When comparing with the state-of-the-art method MMExit,
M2SN achieves fewer inference latencies in all 6 datasets and

 Baseline(LF) Backbone Navigator Shortcuts Latency Reduction

No
rm

al
iz

ed
 T

im
e

Ra
tio

0.16 0.19 0.42 0.31

0.70 0.66
0.46 0.53

Figure 3: Relative inference latency of M2SN and the
baseline LF, and the latency proportion of modules in M2SN .

Figure 4: Latency comparison between M2SN and MMExit
with various difficulties, SC-N refers to Shortcut position.

obtains higher accuracy in 4 of the 6 datasets with the default
parameters. In the rest 2 datasets, the accuracy loss is small, and
it is easy to achieve higher accuracy than MMExit by ignoring
the awareness of latency, M2SN (N-L) shows higher accuracy
with close latency compared to MMExit. The performance
of Fixed Shortcut (FS) shows the necessity of navigator, the
fixed choice of shortcuts leads to a much worse result both in
accuracy and latency than the dynamically chosen shortcuts
by navigator, even if we adopt the best shortcuts.
Hard Sample Resolver. It is easy to think that the inference
latency of M2SN and MMExit will increase a lot in some hard
data samples because the models need more original layers to
produce the exact features. As shown in Figure 4, we build 3
sample sets of the MM-IMDb dataset with the difficulties of the
data samples, from “Easy” to “Hard”. We give an example
from each of the three sets and show that as the difficulty
increases M2SN can get better latency reduction. In “Hard”
set, the average latency of MMExit is 33.2ms, which is close
to the latency of the baseline LF (35.3ms), while M2SN can
still keep a low average latency 28.5ms.

2) Ablation Studies: Impact of Training Method. During
the training process of the shortcut module, we mentioned two
training methods in Section IV-A. To compare the training cost
and the effect of improvement between the integral training and
the peripheral training method, we conducted corresponding
experiments in MM-IMDb dataset. It is intuitive that more
effort will bring higher returns. As shown in Table IV, the
training time of the integral training method is 3-5 times, and
training resource requirements are also at the same magnitude,
resulting in improved accuracy.
Impact of Latency Awareness. Obviously, the choice of λ in
our navigator design is very important, related to whether it can

Model
MUStARD CMU-MOSI CMU-MOSEI Kinetics-S MM-IMDb Kinetics-L

Acc F1 Time Acc F1 Time Acc F1 Time Acc F1 Time Acc F1 Time Acc F1 Time

uni1 0.605 0.611 27.5 0.741 0.688 358.5 0.613 0.565 3652.3 0.573 0.554 269.3 0.556 0.434 10.8 0.716 0.673 269.3

uni2 0.481 0.472 25.3 0.487 0.435 340.1 0.429 0.381 3481.5 0.386 0.352 902.3 0.262 0.104 20.5 0.187 0.155 902.3

uni3 0.548 0.552 22.5 0.439 0.402 341.0 0.407 0.352 3551.3 - - - - - - - - -

LF 0.539 0.528 43.3 0.753 0.721 570.1 0.615 0.573 5902.2 0.583 0.568 1271.6 0.563 0.452 35.3 0.705 0.659 1271.6

MMExit 0.623 0.622 40.7 0.758 0.702 523.3 0.623 0.588 5172.8 0.579 0.571 978.2 0.572 0.459 25.6 0.702 0.662 978.2

M2SN 0.621 0.622 36.5 0.762 0.718 462.3 0.622 0.587 4782.3 0.607 0.582 873.7 0.561 0.457 20.5 0.724 0.685 873.7
M2SN (N-L) 0.625 0.631 39.6 0.763 0.723 528.5 0.627 0.591 5207.2 0.612 0.597 994.5 0.575 0.468 25.3 0.735 0.698 994.5

FS 0.529 0.515 42.3 0.731 0.714 530.4 0.608 0.562 5472.3 0.565 0.558 1021.3 0.552 0.442 26.4 0.683 0.652 1107.3

Table III: Accuracy, F1 score, and inference latency of the baseline, SOTA, M2SN and its ablation studies model in 6 datasets.

Train Method Accuracy F1 Score
Infer
time
(ms)

Train
time (s)

Peak
memory
(MB)

Train
parame-
ters (M)

Peripheral LF 0.561 0.457 35.3 1638 1531 0.5
M2SN 0.573 0.461 20.5 1826 2251 11.1

Integral LF 0.575 0.463 35.3 6532 7251 38.2
M2SN 0.582 0.472 19.8 8110 8766 49.3

Table IV: Shortcut module training method comparison.

0.563

0.452

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

Figure 5: Training results with λ in Eq. (4) scales the latency.
The gray horizontal line is the performance of baseline (LF),
and the vertical orange area is a recommended range for λ to
get a better trade-off between accuracy loss and latency gain.

choose a good shortcut. After experimental tests on the order
of 0 to 100, we have currently obtained empirical results. As
marked by the orange area in Figure 5, the acceleration effect is
more obvious when the ratio of the cost part to task loss ranges
from 0.05 to 1. and the accuracy loss is incomprehensible, but
the improvement effect after 1 is weakening, and the accuracy
loss begins to spike.

VI. CONCLUSION

Multi-modal networks, while significantly improving accu-
racy, also lead to an explosion in inference latency, which
will make them difficult to deploy into many latency-aware
real-world applications. To address this problem, we propose
a novel multi-modal shortcut architecture called M2SN .
M2SN adaptively adjusts its parameters according to latency
constraints to achieve the highest accuracy within a limited
latency. M2SN can better apply multi-modal networks to next-
generation latency-aware scenarios such as automated driving,
mobile robotics, etc.

VII. ACKNOWLEDGEMENTS

We sincerely thank all the anonymous reviewers for their
valuable comments that helped us to improve the paper.
This work is supported by the Shanghai S&T Committee
International Cooperation Project (No. 23510713200). Xiaofeng
Hou is also sponsored by Shanghai Pujiang Program (No.
23PJ1405100). Corresponding authors are Xiaofeng Hou and
Chao Li.

REFERENCES

[1] P. P. Liang, Y. Lyu, X. Fan, Z. Wu, Y. Cheng, J. Wu, L. Y. Chen,
P. Wu, M. A. Lee, and Y. Zhu, “Multibench: Multiscale benchmarks for
multimodal representation learning,” in NeurIPS, 2021.

[2] C. Zhang, Z. Yang, X. He, and L. Deng, “Multimodal intelligence:
Representation learning, information fusion, and applications,” in STSP,
2020.

[3] J.-M. Pérez-Rúa, V. Vielzeuf, S. Pateux, M. Baccouche, and F. Jurie,
“Mfas: Multimodal fusion architecture search,” in CVPR, 2019.

[4] J. Arevalo, T. Solorio, M. Montes-y Gómez, and F. A. González, “Gated
multimodal units for information fusion,” in ICLR, 2017.

[5] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger, “Trans-
fuser: Imitation with transformer-based sensor fusion for autonomous
driving,” PAMI, 2023.

[6] C. Xu, X. Hou, J. Liu, C. Li, T. Huang, X. Zhu, M. Niu, L. Sun,
P. Tang, T. Xu, K.-T. Cheng, and M. Guo, “Mmbench: Benchmarking
end-to-end multi-modal dnns and understanding their hardware-software
implications,” in IISWC, 2023.

[7] X. Hou, J. Liu, X. Tang, C. Li, K.-T. Cheng, L. Li, and M. Guo,
“Mmexit: Enabling fast and efficient multi-modal dnn inference with
adaptive network exits,” in Euro-Par, 2023.

[8] Z. Sun, P. Sarma, W. Sethares, and Y. Liang, “Learning relationships
between text, audio, and video via deep canonical correlation for
multimodal language analysis,” in AAAI, 2020.

[9] Y. Wu, E. Y. Chang, K. C.-C. Chang, and J. R. Smith, “Optimal
multimodal fusion for multimedia data analysis,” in ACMMM, 2004.

[10] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet:
Learning dynamic routing in convolutional networks,” in ECCV, 2018.

[11] R. Panda, C.-F. Chen, Q. Fan, X. Sun, K. Saenko, A. Oliva, and R. S. Feris,
“Adamml: Adaptive multi-modal learning for efficient video recognition,”
in ICCV, 2021.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[13] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” in ICLR, 2017.

[14] B. McFee, C. Raffel, D. Liang, D. P. W. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in python,” in
SciPy, 2015.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in ACL,
2019.

[16] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014.

