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Abstract—Serverless computing has recently become a signif-
icant application paradigm in data centers. However, existing
power management methods focus on optimizations at the coarse-
grained server level, making them unable to handle the charac-
teristics of these short-lived, dynamic serverless functions. In this
context, the unawareness of function-level characteristics by the
existing power management systems can severely degrade the
energy efficiency of the data centers. To address this challenge,
we design a function-level power management system. Instead
of relying on server-level schedulers, we propose a novel core-
level scheduling policy for serverless functions that can efficiently
allocate functions to the most suitable CPU core. Additionally,
we propose a power management mechanism for serverless
computing that can reduce system power consumption with
functions’ QoS guaranteed. Our evaluation shows that our system
achieves a maximum power saving of 8.5% and an average power
saving of 8% across the majority of loads without incurring any
loss in tail latency, as compared to the conventional server-level
scheduling system.

Index Terms—serverless computing, power efficiency, power
management, core-level scheduling

I. INTRODUCTION

Energy efficiency is one of the most critical metrics for
data centers in addition to computing performance. Energy
consumption is reported to account for 25% ∼ 40% of the total
cost of ownership (TCO) of a data center [1]. Even incremental
energy efficiency improvement can bring huge cost savings
in a cloud data center. In addition, achieving zero carbon
emissions and carbon neutrality is a global mandate under
the Paris Agreement Roadmap [2], [3]. All these incentives
have led researchers to work towards improving the energy
efficiency of data centers. Cloud companies also have a strong
desire to limit system power consumption to cut down energy
bills and achieve global environmental goals. Generally, there
are two ways to achieve this goal: increasing utilization and
making servers energy-proportional [4]. The first way is to
increase workload consolidation by co-locating different work-
loads which can be divided into two representative classes:
latency-critical and best-effort. The other way is to make
data center servers energy-proportional, i.e., scale the servers’
power consumption to match the instantaneous load.

Serverless computing has emerged as a significant paradigm
in the domain of cloud computing, which garners considerable
attention from both academia and industry, such as Open-
Whisk [5], OpenFaaS [6], Amazon Lambda [7], Google Cloud
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Functions [8], and Microsoft Azure Functions [9]. In contrast
to the conventional cloud computing paradigm, serverless
computing conceals the underlying infrastructure and platform
from the client. Rather than requiring customers to lease
virtual machines to execute their applications, this paradigm
enables them to focus solely on the functions necessary for
their applications instead of the infrastructure. The service
provider is responsible for scheduling these functions in an
efficient and auto-scaling manner, while also guaranteeing the
clients’ quality of service (QoS).

However, previous work mainly focuses on improving
serverless computing performance [10]–[12]. Very limited
work has been done to optimize the serverless system’s
energy efficiency with clients’ QoS guaranteed. Functions are
assigned to worker nodes or servers as opposed to individual
cores in current serverless systems [13]. Most serverless
systems delegate scheduling to the process scheduler of the
OS such as Linux’s Completely Fair Scheduler. We call it
the scheduling policy of intra-node processor sharing [10].
Given the power budget, the scheduler co-locates functions
together and assigns CPU resources according to the calcu-
lated maximum execution time. When the process reaches its
maximum execution time, the scheduler will stop the task and
reschedule it. Such coarse-grain policy results in the sharing
of physical and virtual resources among function invocations,
thereby causing performance variability.

In addition, it’s non-trivial to achieve function-level per-
formance tuning under the server-level scheduling policy.
Most existing power management methods [4], [14] depend
on customized performance tuning for each application with
mechanisms like Dynamic Voltage and Frequency Scaling
(DVFS). In the context of serverless computing which adopts
the policy of intra-node process sharing, we cannot build our
power management methods based on these mechanisms since
the scheduling system has no idea which core the function runs
on when we want to adjust its performance.

In this work, we take the first step to schedule serverless
functions in a core-level way to excavate the potential of
fine-tuning power management in serverless environments. We
delve into the power and performance features of different
functions and train a linear regression model with high ac-
curacy to predict their execution time under different function
inputs. We define priority for the invoked functions to maintain
better core allocation with functions’ QoS guaranteed. Further-
more, we introduce a serverless computing scheduling system



with core-level resource binding for each function. Overall, our
work provides a better trade-off of power and performance by
fully considering function behavior and resource conditions.
Through extensive evaluation of realistic prototypes, we show
that our designs can make the FaaS system more sustainable
by reducing power consumption by 8% on average without
harming the tail latency performance.

In summary, this paper makes the following contributions:
• We build a QoS-aware request queue to prioritize the

function requests with profiled function characterization,
including function latency prediction and request priori-
tization with high accuracy and efficiency.

• We propose a novel core-level serverless scheduling sys-
tem, that can manage functions in a fine-grained way.
Furthermore, we design a frequency adaption mechanism
for dynamic trade-offs of serverless function performance
and power consumption with QoS guaranteed.

• We conduct a real system experiment to evaluate the
effectiveness of our core-level scheduler. Our system
achieved 8.5% maximum power saving and 8% average
power saving across most loads while maintaining the
functions’ tail latency within QoS constraints compared
to the server-level one.

The rest of this paper is organized as follows: Section
II provides background and current challenges. Section III
presents function characterization. Section IV proposes the
system design. SectionV specifies the implementation details
of the system. Section VI describes experimental methodolo-
gies and presents experimental results. Section VII introduces
related work. Section VIII concludes the paper.

II. BACKGROUND & CHALLENGE

In this section, we introduce the conventional server-level
serverless function management system and further specify
core-level optimization challenges.

A. Server-Level Serverless Function Management

Current serverless computing systems adopt the server-
level function management method as shown in Fig. 1. The
function requests from the clients are scheduled by the server-
level function scheduler. There are three primary strategies
for the scheduler [10]: Shortest-Remaining-Processing-Time
(SRPT), Processor Sharing (PS), and First-Come-First-Serve
(FCFS). Simulation experiments have shown that PS outper-
forms the other strategies, making it the most effective server-
level scheduling strategy. As a result, both in academia and
industry, PS has become the preferred strategy for server-level
scheduling in the majority of serverless computing platforms.
In the context of PS, each function receives an equal share
of the processor’s capacity, which does not apply to real
systems. Therefore, most serverless platforms end up using
Linux’s Completely Fair Scheduler (CFS) as an approximation
of PS. As a result, functions that run as containers will be
automatically allocated computing resources by CFS.

In detail, when a container process begins to be scheduled
by CFS, CFS calculates its virtual runtime, which is the
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Fig. 1. An overview of the server-level serverless computing system.

number of CPU time slices the container has used. Then, CFS
inserts the container into the red-black tree scheduler and sorts
it according to its virtual runtime. CFS chooses the container
with the lowest virtual runtime to run and inserts it at the
end of the red-black tree. When the container is running, it
uses CPU time slices, and its virtual runtime increases. When
the container finishes running and relinquishes the CPU, CFS
recalculates the container’s virtual runtime and reinserts it into
the red-black tree, until all processes finish.

However, during the scheduling process, prevailing server-
less computing systems do not explicitly delegate cores for
each function, making it difficult to determine which core the
function is actually running on. It is impossible to achieve
per-function performance tuning in this situation. Thus, it is
effective to simply adopt PS in server-level scheduling but not
optimal. If we want to achieve maximal energy efficiency, we
need to step further making scheduling more granular. Our
research explores optimizations along with this idea.

B. Challenges of Core-Level Optimizations

Challenge 1: The complexity of co-located serverless func-
tions makes it challenging to seize the core-level effi-
ciency opportunities. Although operating system abstractions
can expose power capping and provide fine-grained control
mechanisms, such as power containers [15] and sandboxes
[16], [17], existing works mainly leverage straight-forward
methods, e.g. Linux CFS [18], to schedule the large amounts
of arrived functions with extremely short execution time. They
often adopt server-level scheduling policies, which assign
available sockets (instead of physical or logical CPU cores)
to a batch of arrived functions. Furthermore, existing works
pay more attention to function interference handling when
assigning them to the same socket. For example, Kaffes [13]
proposes a centralized and core-level scheduler to reduce
resource interference of functions, while missing the precious
opportunity of saving power.
Challenge 2: Core-level power management cannot be
directly implemented in current serverless computing plat-
forms. Power monitoring at the hardware core level is difficult
to configure, as it requires hardware support in computer
systems. The frequency of a CPU core is an effective indicator
of its power consumption because they are positively corre-
lated. However, when the fair method is applied to scheduling



TABLE I
S,M,L INPUTS FOR EACH FUNCTION

Function Input Small Medium Large

Compression file size 500KB 1000KB 1500 KB
Chameleon # rows and columns 100,100 200, 200 300, 300
Download file size 25MB 50 MB 75MB

Upload file size 25MB 50 MB 75MB

functions, it’s hard to indicate functions’ power consumption
simply by frequency, since a function can be assigned to
any core in the server and we cannot locate which core it
runs on. Therefore, the development of a robust core-level
scheduling mechanism is crucial to enable effective serverless
power management.
Summary: We seek to design a fair serverless function core-
level scheduling algorithm and implement it with a QoS-aware
CPU frequency tuning mechanism to achieve power saving
with QoS guaranteed.

III. PRELIMINARY OF FUNCTION CHARACTERIZATION

In this section, we characterize four representative func-
tions to find underlying power-saving chances for serverless
computing. The functions are selected from typical serverless
benchmarks [19]–[21]. The functionalities of them can be re-
ferred to in Table II. Characterizing the behaviors of functions
under certain CPU settings becomes crucial. The relationship
between power consumption and performance can guide the
performance decline within QoS constraints. We manipulate
various aspects of the execution environment to characterize
the performance of functions by assigning different numbers
of CPU cores, and CPU frequencies. We plot the curves of
serverless execution latency with different scales of inputs
and assigned CPU cores over growing CPU frequency from
0.8GHz to 2.2GHz. Detailed information about their settings
is presented in Table I.

A. Analysis on Core Allocation

Overall, we observe that all the serverless functions main-
tain a performance improvement when increasing the CPU
frequency. However, different function types perform slightly
different trends as CPU frequency changes. One can make
a better trade-off between the CPU frequency and execution
runtime. In addition, the normalized latency curves of the same
input but different core numbers overlap completely in Fig. 2-
(a) and (b). This tells us that functions have the same trend
under various CPU cores quantity. This phenomenon suggests
that these functions show insensitivity to the number of CPU
cores, in which case there is no need to allocate additional
core resources. Primarily single-threaded mode is sufficient.
Generally, serverless functions maintain few intra-function
parallelisms. In the philosophy of serverless computing, de-
velopers are encouraged to implement parallelism between
different functions rather than in an individual function [13].
Observation 1: Functions hardly suffer performance loss
when assigned to only a single CPU core due to limited intra-
function parallelism.

B. Analysis on Various Function Inputs

Known from Fig. 2 that the performance of functions is
improved with the increase of CPU frequency, we further
normalize the performance by performance on 2.2GHz with
single-core configuration. We plot the variation of the normal-
ized execution latency with different scales of inputs, as shown
in Fig. 3. It shows that each function has similar normalized
performance trends over different function inputs. This means
that we can build a certain mapping between normalized
latency and allocated CPU frequency. Then we can further
predict the overall latency of the function by analyzing inputs.
Furthermore, different functions exhibit unique performance
curves. For example, the execution latency of Compression
at 1.4GHz rises to about 150% of that at 2.2GHz, while the
execution latency of Upload at 1.4GHz rises to just 120% of
that at 2.2GHz. Thus, distinct tuning strategies are necessary
for different functions.
Observation 2: Different functions have specific mappings
of normalized latency and allocated frequency, which remain
consistent across diverse inputs.

C. Analysis on Function Co-location

Core-granular scheduling involves two basic core-binding
approaches: allocating individual functions to unique cores to
mitigate scheduling delays caused by time-sharing and under-
lying last-level cache pollution and packing multiple functions
to a single core to attain higher utilization. To determine
the appropriate core-binding strategy for a given function,
it is necessary to evaluate the performance behavior of all
functions under co-location. In Fig. 4, it indicates that CPU-
intensive functions such as Compression and Chameleon
tend to fully utilize the available CPU time, thereby making
co-location of these functions ineffective in raising utilization.
Conversely, functions like Download and Upload, which do
not heavily rely on CPU usage, have the potential to effectively
increase core utilization through co-location.
Observation 3: We need to co-locate non-CPU-intensive
functions to leverage available CPU resources and execute
CPU-intensive functions independently by assigning unique
CPU cores to maintain QoS.

IV. SYSTEM DESIGN

In this section, we propose our core-level power manage-
ment mechanism which is orthogonal to the prevailing system.
Therefore, we can implement our mechanism to most intra-
node serverless systems to enable power efficiency. The key
contribution of our work is to design a fair serverless function
core-level scheduling algorithm and implement it with a QoS-
aware CPU frequency tuning mechanism to achieve power
saving with QoS guaranteed.

Our system consists of four key components: (1) function
level tuning table, (2) function latency predictor, (3) QoS-
aware request queue, and (4) core-level scheduler. Fig. 5
shows the architecture of our system in detail. Leveraging
serverless function features, we organize function requests in a
QoS-aware manner. The scheduler is responsible for handling
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Fig. 2. Execution latency of evaluated functions on growing CPU frequency.
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Fig. 4. Performance comparison of co-location serverless functions.

requests and assigning functions to suitable containers. During
the scheduling process, adjustments to the CPU frequency are
made to save power, while also ensuring that QoS require-
ments are met.

A. System Overview

The overall structure of our system is shown in Fig 5. Before
scheduling, we need to do profiling for new functions to learn
functions’ performance features. A function predictor will be
trained to estimate the latency of each function under different
CPU frequencies with the help of profiling information. The
process of training the latency prediction model and function
profiling is conducted offline.

Once a request is received, it is checked if it has been
previously profiled. If it has not, the request is sent to the
function profiler and executed on an exclusive CPU core with
the highest frequency until profiling is complete. If the request
has already been profiled, it is directly sent to the latency
predictor for estimation of its execution time.

The request is then added to the QoS-aware request queue,
where it is dispatched to the scheduler based on priority.

The core-level scheduler manages the requests and allocates
CPU resources to functions by binding CPU cores to proper
containers. The frequency estimator determines the feasible
CPU frequency by referring to the function level tuning
table. The frequency tuner then applies the setting to the
corresponding CPU core. The core-level status record keeps
track of the container status to guide the container allocator.
Synchronously, the state monitor records the list of functions
being executed and the length of the request queue and
determines the busy or idle state of the workload based on
current resource pressure. This procedure enables dynamic and
accurate power management while guaranteeing QoS.

B. Function Level Tuning Table

A smart scheduler and power tuning module require ad-
ditional knowledge of function requests, including execution
time and performance features of each function, which is kept
track of by function level tuning table (FLTT). The function
profiler is responsible for profiling new functions. Specifically,
we execute functions at different CPU frequencies to obtain
a normalized performance curve for each type of function.
Thus we can build a mapping of the CPU frequency and the
normalized overall execution latency, which helps the actual
latency prediction.

We also analyze the function behavior by collecting the CPU
utilization rate when co-location. The CPU utilization rate of
the container is used to define a function’s quota, which helps
to make the decision of assigning cores. Those functions with
high quotas can monopolize a core while functions with low
quotas will co-locate with other functions per core. All these
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profiling results will be updated in the table, which provides
useful knowledge for core-level scheduling.

C. Function Latency Predictor

The function latency predictor estimates function exe-
cution time according to a specified set of inputs, differing
among each type of function. We design an algorithm that
can estimate latency accurately in a low inference overhead.

Obtaining training data is the primary step in developing
a predicting model. By referring to several representative
serverless function benchmarks [19], [20], we classify the
input of the functions into two types, numeric input and
composite input. For example, in the case of the function
chameleon used for HTML/XML table generation, the input
parameters are numeric values representing the number of
rows and columns in the HTML table. On the other hand,
functions used for image processing typically take an image
as input, which can be seen as an aggregate of several attributes
such as pixel height and width.

When dealing with functions that have numeric inputs, it
is straightforward to define the training data format. When
dealing with functions that have composite inputs, simply
obtaining properties such as file size, which are directly
available, is often not sufficient to train a highly accurate
model. Therefore, it’s necessary for us to define the features
of some composite inputs that are prevalent in the production
environment where our system will be deployed. For example,
we can define pixel height, pixel width, image size, and image
format as features of the image.

To obtain training data, a common approach is to collect
data during the execution of the functions. Based on obser-
vations from the characterization of the FaaS workload of
Azure Functions [22], we learn that 18.6% functions generate
99.6% invocations, which means that FaaS workloads follow
the Pareto principle in the production environment. For the

frequently invoked functions, training data will accumulate
quickly to train the predicting model so that the system can
turn on performance tuning on these popular functions. For
the rarely invoked functions, the power savings of our system
won’t be significantly reduced since they bring a limited
number of function invocations.

In particular, we add a training data auto generator in
our system to speed up training data collecting for functions
with numeric inputs. It will autonomously generate a range
of function inputs and run functions offline to obtain data
for latency predictor to train the model. We use the linear
regression model as our latency prediction model and adopt
the R2 score (a coefficient of determination) and Root Mean
Square Error (RMSE) as metrics to evaluate our models. The
definition of these two metrics is shown in Equ. 1.

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)
2 (1a)

R2 = 1−

∑
i

(yi − ŷi)
2∑

i

(yi − ȳi)2
(1b)

Generally, we train specific models for different types of
serverless functions so that the latency can be quickly inferred
when scheduling. The training overhead of each function is
acceptable, and we show the results in our later evaluation.

The latency predictor is convenient to infer an estimated
result, i.e. the latency at the highest frequency setting. We
predict the actual execution time under the maximum CPU
frequency as the basic normalized latency. Then we can cal-
culate any actual latency on each CPU frequency by referring
to FLTT. This step can significantly reduce profiling overhead,
especially when latency prediction inference is a critical path
of scheduling.



Algorithm 1: Core-Level Scheduling Process
Input: Fair request queue: Q, Free core list: free core list

1 is busy ← False;
2 executed num ← 0;
3 while True do
4 if Q is empty() then
5 continue;

6 r ← Dequeue(Q);
7 cont ← FindFreeContainer(r.function);
8 if r.func is CPU-intensive then
9 if cont.core is not in free core list then

10 cont.core ← free core list.pop();
11 UpdateCore(cont, cont.core);

// Core Rebinding

12 if executed num + Q.length + r.quota ≤ free core list.length then
13 is busy ← False;
14 SetFrequency(cont.core, QoS2Freq(r.RR, QoS));

15 else
16 if cont.core.quota + r.quota ≤ 1 then
17 cont.core.quota ← cont.core.quota + r.quota;
18 else
19 cont.core ← free core list.pop();
20 cont.core.quota ← r.quota;
21 UpdateCore(cont, cont.core);

22 SetFrequency(cont.core, max(QoS2Freq(r.RR, QoS),
cont.core.freq));

23 executed num ← executed num + r.quota;
24 cont.send request(r.inputs);
25 executed num ← executed num - r.quota;
26 if r.func is CPU-intensive then
27 free core list.add(cont.core);
28 else
29 if cont.core.quota == 0 then
30 free core list.add(cont.core);

31 if executed num + Q.length + r.quota > free core list.length and not
is busy then

32 is busy ← True;
33 SetFrequency(all cores, 2200);

D. QoS-Aware Request Queue

In the scenario of core-level scheduling, if all cores are
occupied by invoked functions, any subsequent requests must
be placed in a queue and await the release of a free core
before being serviced. We design a QoS-aware request queue
to handle upcoming requests and fairly dispatch them to the
core-level scheduler.

Our priority design of the request queue depends on the
waiting time and service time. The waiting time can be
collected by detecting hardware information, such as the real-
time value of the process collected by time tools in Linux
OS. The service time is equal to the estimated latency in our
latency predictor. We use a metric that is Response Ratio (RR)
to represent the priority of each task, as shown in Equ. 2.
The design is inspired by the Highest Response Ratio Next
(HRRN) scheduling algorithm [23].

RR =
Waiting Time + Service Time

Service Time
(2a)

Generally, the request with a higher response ratio(RR) will
be prioritized. If two requests have the same waiting time,
the request with a shorter service time will be prioritized. If
two requests have the same service time, the request with a
longer wait time will be prioritized. This method combines
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Fig. 6. Cases of container selection.

the advantage of Shortest Job First and First Come First Serve
algorithms to fairly handle both short tasks and long tasks.

E. Core-Level Scheduler

The scheduler receives requests from the QoS-aware request
queue and allocates resources for each function request in a
core-granular manner. Furthermore, it performs function-level
frequency adaption to trade-off between power saving and
acceptable performance within QoS constraints. The algorithm
of the scheduling procedure is shown in Alg.1. The major
components of the scheduler are illustrated as follows.

The container allocator takes responsibility for allocating
functions containers and performs core binding if needed. To
make the allocation more efficient and avoid unnecessary core
binding, we design the core-level status record (CLSR) to
maintain lists of containers for each core and mark whether
cores are occupied or not. When a request is popped from the
QoS-aware request queue, the container allocator will find a
free container by referring to CLSR. To explain the rule of the
container selection(Line 7-22), we demonstrate three cases in
detail as shown in Fig 6.

1) If the CPU cores bound by an available idle container
are all in use and there are still free CPU cores not
bound by other containers, the container allocator will
bind an idle container to that CPU core and allocate the
function to it.

2) If there is a CPU core bound by an available idle
container that is free, the container allocator will directly
allocate the function to it.

3) If the CPU cores bound by an available idle container
are all in use and there are no CPU cores that have
not been bound to a container, the container allocator
will preempt a core from other functions, bind an idle
container to it, and run the function.

After the container and its bound core are both confirmed,
we need to update the remaining resources of it, if the
function is non-CPU-intensive. We define a function’s quota
by CPU utilization rate which is profiled by docker stats
(Line 17). The frequency estimator determines the best CPU
frequency by referring to the tuning table. We define the
best degradation rate (BDR) in Equ. 3, which indicates the
performance degradation that the current function can afford.

BDR =
QoS

Service Time
− Waiting Time

Service Time
(3a)

= QoS Ratio − RR + 1 (3b)



The corresponding frequency can be found by searching
from the lowest frequency to the highest frequency in FLTT
until you find a frequency under which the normalized perfor-
mance is greater than BDR. If the core is shared by several
functions. the frequency adaptor selects the highest frequency
among them (Line 22).

The state monitor collects state information from the QoS-
aware request queue and scheduler at regular intervals and it
checks whether functions that are being executed or in the
queue exceed the limit that the server can handle. Usually, the
system does not need to run processes in the highest frequency,
which we name as the idle mode. If there are too many waiting
tasks in the queue, the system will be switched to the busy
mode in which all cores work at the highest CPU frequency
(Line 31-33).

V. IMPLEMENTATION DETAILS

We implement a proof-of-concept system to show the effec-
tiveness of our system. The implementation is mainly written
in Python, which includes the base scheduler, the core-level
scheduler, the power management module, and the container
management module. Each component is independently devel-
oped. Besides, all functions selected are modified to the format
defined by our system. Thus, they can be easily invoked with
different input arguments.

We use Docker containers as functions’ executing environ-
ments. Similar to the watchdog architecture of OpenFaaS [6],
we implement an HTTP server using Flask, which is built into
the container image as an initialization process. It provides a
common interface between the external environment and func-
tions’ functionality, enabling the analysis of HTTP requests
received on the API gateway and the execution of binary files
to invoke corresponding functions. When a container starts, it
will init the server and expose a port, which will be managed
by the scheduling system. Through this port, the system can
monitor and query the running status of the container and
process new function requests. Besides, we also integrate a
remote storage API inside the container image, since some
functions might need to upload data to the remote storage
or download data from the remote storage. We implement a
Minio [24] storage system locally in the container to avoid the
impact of network fluctuations on the results.

VI. EVALUATION

In this section, we evaluate our design. Specifically, we want
to answer three questions:

1) How does our design improve the power efficiency of
serverless computing systems?

2) How does our design affect the function performance?
3) How is the overhead and accuracy of our introduced

optimization modules?

A. Experimental Environment

Experimental Setup. The evaluation of our system was
conducted on an Intel Xeon Silver 4114 platform, comprising
2 sockets, each with 10 cores, and 64GB DDR4 memory,

TABLE II
EVALAUTED FUNCTIONS

Function Description Benchmark

chameleon Render HTML/XML file FB
linpack Run linpack benchmark FB
json dump Deserialize and serialize json file FB
upload Upload to the remote storage FB
download Download from the remote storage FB
dynamic HTML Render templates by jinja2 SeBS
compression Run file compression SeBS
bfs Run breadth-first search algorithm SeBS
image resize Resize a image into the thumbnail SeBS
DNA visualization Process DNA sequence data SeBS

TABLE III
EVALAUTED SYSTEMS

Systems Scheduling Method PM

PSS (Baseline) First In First Processing; server-level No
CS w/o PM Prediction-based HRRN; core-level No
CS (Ours) Prediction-based HRRN; core-level Yes

running on Ubuntu 16.04.5 LTS. The processor supports
per-core DVFS with operating frequencies from 0.8GHz to
2.2GHz at an interval of 0.1GHz. The frequency driver is ACPI
with the “userspace” governor.

System Configuration. We conduct our experiments by
running our monitor and scheduling system on socket 0. We
keep function containers on socket 1 to evaluate their energy
consumption accurately. We use pyRAPL [25] to measure the
entire energy consumption, including the energy consumption
of the CPU socket package and DRAM, to reveal all functions’
energy consumption. We disable Hyper-Threading to evaluate
our system accurately due to the per-physical-core frequency
adjustment instead of the per-logical-core basis.

Benchmark and Metrics. The evaluated serverless func-
tions are shown in Table II, which are selected from SeBS
[19], FunctionBench (FB) [20]. We develop an open-loop load
generator capable of emulating the fluctuations of the coming
requests, including both the high-traffic periods (peaks) and
the low-traffic intervals (valleys). We vary the load scales
by controlling the requests per second (RPS) from 4 to 10.
Furthermore, we monitor the 95th percentile latency (p95
latency) of functions and present them in the results.

Baselines. We evaluate the effectiveness of our Core-level
System (CS) compared with the baseline Processor Sharing
Scheduling (PSS). In practice, this policy can be implemented
by delegating CFS to perform intra-node scheduling, which
is adopted by most serverless systems [10]. Besides, we also
compare the system with our Core-level Scheduler without
Power Management (CS w/o PM). The detail of evaluated
systems is shown in Table III.

B. Result of System Performance

Evaluation of QoS Guarantee. We first present the mean
and tail latency of each application that is under the QoS
limitation. As shown in Fig. 7, CS with no power management
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Fig. 7. Mean and tail latency under different scheduling methods. The red dashed lines mean QoS constraint.

TABLE IV
THE OVERHEAD AND ACCURACY OF THE LATENCY PREDICTOR

Function Overhead Accuracy
Training Inference R2 RMSE

Upload 2.0 ms 0.19 ms 0.988 0.028
Download 2.0 ms 0.19 ms 0.988 0.023
Chameleon 3.8 ms 0.19 ms 0.894 0.111

BFS 2.2 ms 0.18 ms 0.998 0.007
Compression 2.9 ms 0.18 ms 0.999 0.001

Dynamic HTML 1.2 ms 0.18 ms 0.999 0.012
Linpack 2.1 ms 0.20 ms 0.996 0.045

Json dump 2.1 ms 0.18 ms 0.995 0.010
Image resize 4.2 ms 0.25 ms 0.960 0.021

DNA visualization 2.3 ms 0.19 ms 0.997 0.009

and PSS have the same performance on both the mean latency
and tail latency in most of the functions except Download,
which suffers from severe degradation in PSS. This result
reveals that CS introduces less or similar scheduling overhead
than PSS and to some extent mitigates resource contention
due to its core-binding mechanism. After adding power man-
agement back to CS, functions’ QoS is still met. Compared
with PSS, CS has higher mean latency since it can perform
dynamic performance tuning for each function, which causes
degradation within QoS constraints to save power.

Performance of Latency Predictor. The experiment shows
that linear regression achieves great predicting accuracy with
low training and inference overhead, which fulfills the re-
quirements of our system. We evaluate the 10 types of
serverless functions and present the detailed training inputs,
the predictor runtime, and execution accuracy. The result is
shown in Table IV. Our method performs high accuracy of
latency prediction, which helps to determine the priority of
requests in a sophisticated way. The extra overhead including
training duration and inference runtime is acceptable in our
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Fig. 8. The average power consumption comparison on evaluated systems
with different scales of deployed functions.

scheduling system. In addition, We also conduct comparative
experiments on the random forest model, which achieves a
similar predicting performance with 2.1x-3x inference latency
and 73x-91x training latency.

C. Result of Power Efficiency

Result of Power Saving. To evaluate our system’s scal-
ability, we set the average RPS of the load generator from
4 to 10 to simulate different scales of workload. As shown
in Fig. 8, The power behavior between PSS and CS without
PM is the same as the performance behavior in section VI-B.
This result is expected since core-level scheduling itself has no
ability to save power. With power management implemented,
CS achieves an average of 8% power saving under the most
workload. we notice that CS only saves 4% power when RPS
is set to 10. This is because when the load on the server starts
to approach its tolerance limit, CS will also increase the ratio
of time the CPU works at the highest frequency to cope with
excessive requests. If the load level reaches or exceeds the
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threshold, The power of CS and PSS will converge. In fact,
this situation should be avoided by the inter-node scheduler
that takes charge of load balancing. Thus, our system achieves
significant power saving in general cases.

Efficiency of Power Adaption. In Fig. 9, we monitor the
real-time power consumption of evaluated systems under the
same workload. When the request peak occurs, the power of
all systems rises dramatically. This situation reveals that our
system remains sensitive to load fluctuations. When the load
level decreases, it’s observed that CS runs at lower power
than CS without PM and PSS, which indicates that the power
management mechanism turns our system to a power-saving
mode that functions are slower while with QoS guaranteed.

VII. RELATED WORK

Task Co-location. Generally, typical scheduling methods
tend to improve resource utilization and accelerate application
execution to improve efficiency. First, co-locating best-effort
(BE) workloads with latency-sensitive (LS) workloads can im-
prove energy efficiency by increasing resource utilization [26],
[27]. Second, dealing with resource interference can improve
resource utilization by accelerating function execution [28],
[29]. When co-locating applications, the contention of re-
sources including CPU, memory, cache, and bandwidth can
affect the performance of LS loads.

Some previous works propose various non-partitioning
methods to co-locate workloads [30]–[32]. They generally
share the same idea of co-locating workloads that don’t con-
tend for the same hardware resources. However, the primary
concern lies in the substantial decrease in the variety and quan-
tity of workloads that can be co-located due to active inter-job
interference. Thus, the QoS cannot be fully guaranteed for co-
located LS workloads.

In addition, many works propose their resource isolation
schemes [26], [33]–[35]. For example, PerfIso [26] serves as
a performance isolation framework, utilizing idle resources for
the execution of batch jobs while ensuring no impact on the
primary tenant’s operations. This framework employs CPU
blind isolation, catering to the needs of commercial services
that are sensitive to latency variations. Demeter [33] can

automatically classify black-box workloads in virtual machines
as either LS or BE based on the correlation analysis between
network throughput and CPU resource utilization without prior
knowledge about them or offline profiling. It then applies
different CPU management strategies including core allocation
and frequency scaling to LS and BE workloads to achieve
power saving.

Resource Management. Researchers tend to optimize re-
source management to make computing systems more ef-
ficient [36]–[39]. For example, dynamically adjusting the
CPU frequency gives the chance to achieve optimal resource
management. One can use DVFS to dynamically adapt to the
load variation. ReTail [14] proposes an automated solution
of request-level power management for LC workload, which
uses a systematic process to select workloads’ features and
predicts the latency of requests with a simple machine learn-
ing model. To achieve high energy efficiency with no QoS
violations, it proposes a dynamic frequency tuning mechanism
that can give an appropriate frequency with queueing delay
considered. AlphaR [40] proposes a learning-powered resource
management system tailored to the microservice environment.
It devises a bipartite feature inference approach named Bi-
GNN to extract the temporal characteristics of microservices
and select an appropriate resource-managing policy to improve
microservices’ response time.

Frequency adjustment is not the only way to manage
resources. For example, NEMO [41] provides a novel platform
designed to facilitate the efficient deployment of serverless
edge functions within the network function virtualization en-
vironment. NEMO intelligently leverages the unused compu-
tational cycles of network functions to pre-warm serverless
functions and speed up the function invocation in an agile
manner.

Energy-efficient Serverless Scheduling. To achieve
energy-efficient function scheduling, one possible approach is
to place inactive containers or execution environments in a
state of low energy consumption. However, this may result
in delays during the invocation of the corresponding function,
potentially violating QoS requirements.

To address this issue, Ensure [42] proposed to actively
reserve additional containers in a warm state to prevent cold
starts and smoothly handle workload variations. Fifer [43]
undertakes a similar approach, actively creating containers to
avoid cold starts. Leveraging these optimizations in sched-
ulers can save resource costs as well as reduce energy for
container-based serverless. In addition, MicroFaaS [44] builds
a serverless computing platform on new hardware architecture,
replacing a few x86-based rack servers with hundreds of
ARM-based single-board computers. FIRST [45] finds that the
optimal operating point (OOP) for energy efficiency cannot be
attained without synthesizing the multi-dimensional attributes
of functions and introduces a lightweight internal representa-
tion and meta-scheduling layer for collecting the maximum
potential revenue from the servers. It analyzes functions from
different angles to avoid OOP divergence.



VIII. CONCLUSION

In this paper, we design an efficient function-level power
management system. We build a latency predictor to estimate
functions’ execution latency and build a QoS-aware request
queue. We propose a novel core-level scheduling scheme that
can directly allocate functions to given CPU cores and apply
function-level power management to achieve power savings
within QoS constraints. The experiment shows that our system
obtains a maximum power saving of up to 8.5%, with an
average power savings of around 8% across the majority of
loads, while maintaining the functions’ tail latency within QoS
constraints. Furthermore, our power-aware function scheduling
system has great scalability, which acts as complementary to
existing serverless computing systems.
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