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Abstract—Tapping into secondary memory resources, i.e., far
memory (FM), has shown huge potential to improve the cost-
efficiency of data centers. Recent advances in both storage-
based vertical FM and network-based horizontal FM have raised
new questions about leveraging hybrid FM tiers to achieve the
best performance per bit of memory. It is still unclear how to
efficiently place tasks when far memory access is enabled.

In this work, we propose HyFarM, a novel task management
strategy for hybrid FM clusters. We analyze FM sensitivity
and cooperatively co-locate tasks to enable high utilization and
scalability. Further, by tapping into dynamic memory adaption
within and across servers, our strategy allows one to consistently
deliver high performance on memory-intensive tasks. We evaluate
our design with a heavily instrumented testbench. Compared
with the state-of-the-art designs, HyFarM respectively improves
memory utilization and the overall performance per bit (PPB)
by up to 17.6% and 20.5%, with minor overhead.

Index Terms—memory disaggregation, hybrid, scheduling

I. INTRODUCTION

Recent years have witnessed an important trend in data cen-
ters to leverage various secondary memory (i.e., far memory
that are not placed in local DIMM slots) for data-intensive
tasks [12], [14], [15], [31], [40], [49]. With disaggregated
memory, servers can upgrade, expand, and scale memory in a
more convenient way. Smartly enabling memory sharing also
possesses huge potential to improve memory usage imbalance
and save costs for data centers [3], [32], [33].

We classify the existing FM systems into two groups. The
first is vertical far memory (VEM), as Figure 1-a shows. It
taps into lower-layer storage-like persistent memory [40] and
solid state drive (SSD) [31], [49] etc. The vFM generally offers
larger capacity with lower cost. The other group expands mem-
ory capacity by using horizontal far memory (hFM), as Figure
1-b shows. In this case, applications can subscribe memory
resources on a remote node through high-speed networks or
specific fabrics like RDMA [12], CXL [2], OpenCAPI [7],
smart-NICs [27], etc. So far, hFM is deemed faster than vFM
[12], [15], [26]. For example, RDMA-based hFM has up to
20GB/s bandwidth [5] while commercial SSD-based vFM has
up to SGB/s [9]. Combining horizontal and vertical FM would
provide a better design trade-off, leading to much more cost-
and resource- efficient facility.

In this work, we are very interested in this question: how fo
place and manage data-intensive tasks on hybrid far memory
so that the full performance potential can be attained. As
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Fig. 1: Task placement on vertical, horizontal, and hybrid FM.

Figure 1 shows. In case that hFM has limited capacity, a task
may access VFM and hFM simultaneously. FM-sensitive tasks
are more preferable to use hFM than FM-tolerant tasks. By
smartly distribute cold memory pages to both vertical and
hFM, more critical data can be retained in the local main
memory. With far memory, data centers now have the capacity
and capability to shift data loads across nodes. What they lack
is the visibility into far memory runtimes to understand the
impact of memory access patterns on tasks and adapt quickly
to the environment.

Developing a task management scheme for a hybrid FM
is still an open problem. It is important to effectively har-
vest fragmented FM memory resources in the server cluster.
Further, a more difficult challenge is that applications differ
in their sensitivity to far memory access (detailed in Section
II). Each task holds different proportions of hot pages to be
accessed. It is non-trivial for the scheduler to determine the
proper resource for tasks on hybrid far memory. We do not
want to over-commit resources to meet the performance goals.
Blindly throttling memory usage for sensitive tasks may lead
to unpredictable performance degradation.

To date, disaggregated memory systems are still application-
oblivious. While recent proposals allow one to seamlessly
access remote memory pool [12], [19], [26], [31], [33], [40],
they fail to capture the heterogeneity and dynamicity as
application’s memory behavior varies in a subtle way (detailed
in Section II). When the local memory is inadequate and data
must be off-loaded onto the far memory, current designs still
use very basic memory management strategy: 1) last-in-first-
cap, i.e., capping the memory footprint of the most recent
scheduled tasks [34], [50] and 2) first-in-first-cap, i.e, capping
the memory footprint of the earliest tasks [12], [31]. Both
approaches only blindly squeeze the memory usage of the
existing tasks to accommodate the workload.



(Times) (@) FM-sensitive tasks (Times) (b) FM-tolerant tasks
oo 3 T o0 3
£ —s—Quicksort / £ FSdet-image
EZ.S +F§det-video ; 25 1 ~o—FFmpeg-mp4
® 2 Ligra-BFS o 2 [ —=TF-inception
_E 15 /Ll,gw/ g 1.5 [ —e=TF-resnet
£ 1 =7 g 1 ;—#!
Z &

0 01 02 03 04 05 06 0.7
Far memory usage ratio

0 01 02 03 04 05 06 0.7
Far memory usage ratio

Fig. 2: Performance trend under different far memory ratios.
. (a) Fsdet " (b) Ligra-BFS
‘?'A-O-fs-image-lG E —e—ligra-bfs-5G
X
| —fs video-26G Z ligra-bfs-19G
E El )
& & —
5 )
E) ———— e ————— | a:f /
1 09 08 07 06 05 04 03 1 09 08 07 06 05 04 03
Local memory ratio Local memory ratio
s (c) Quicksort o (d) Ligra-PR
2 —e—quicksort-2G g —e—ligra-pr-5G
£ quicksort-8G = ligra-pr-19G
& &
@ /_./.__./0—/‘ o /~._—/
8o oo
£ £

1 09 08 07 06 05 04 03 1
Local memory ratio

09 08 07 06 05 04 03
Local memory ratio

Fig. 3: Impact of different data size on the same application.

There are two important recent works on designing a far
memory management strategy. One is XMemPod [15], which
is a hierarchical memory expansion framework for virtual
machines. The other is TMO [49], a system mechanism that
directly offloads cold data to heterogeneous SSD backends.
Both schemes do not distinguish hFM from vFM. They lack
the ability to manage far memory in a high-performance,
application-specific way as well.

In this paper we answer two key questions: 1) how to place
tasks on hybrid FM enabled clusters and 2) how to adjust far
memory usage as task behavior varies. We present HyFarM,
the first task orchestration scheme for hybrid far memory. The
novelty of HyFarM is two-fold. First, it offers a resource-
centric task placement approach that can serve diversified task
demands with hybrid far memory. Second, it features an intra-
/inter-node joint memory adaptation approach for balancing
the memory usage at both the task and server level. Combing
the two techniques allows one to achieve high performance
per bit (PPB) in FM-enabled data centers.

This paper makes four important contributions:

o We take the first step to analyze the application perfor-
mance on hybrid far memory.

o We propose HyFarM, a novel application-aware hybrid
far memory management strategy that nicely fits into
commercial shared-state cloud schedulers.

o We enhance HyFarM performance by devising an inter-
/intra- node joint memory adaptation strategy.

o We validate our design with heavily instrumented eval-
uation environment. We show that HyFarM can greatly
improve resource efficiency and performance.

The remainder of this paper is organized as follows. Section
II further motivates our design. Section III proposes our task
placement strategy. Section IV describes our fine-tuning mech-
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Fig. 4: Different task behaviors in different execution phases.

anism. Section V details the evaluation methodology. Section
VI presents the experimental results. Section VII discusses
related works and Section VIII concludes this paper.

II. CHALLENGES OF HYBRID FM MANAGEMENT

In this section we present two challenges that makes hybrid
memory management non-trivial.

Different Sensitivity: Depending on the application type
and dataset size, some tasks are more sensitive to FM access.
As Figure 2 shows, we analyze a group of popular tasks
(detailed in Section V) on real system under growing far
memory ratio (defined as FM usage divided by the total mem-
ory footprint). If we look at FSdet-video, Ligra-BFS,
Quicksort, Ligra-PR and FSdet-video, their latency
grows significantly when limiting local memory size. Differ-
ently, workloads in 2-b are tolerant to FM access. Most of
their data can be offloaded to FM with small performance
change. We investigate the page faults of FM-sensitive tasks
(Figures 2-a,b,c.d) on different dataset sizes. As Figure 3
shows, Quicksort, FSdet, BFS and PR demonstrate very
different page fault behavior when changing data size.

Changeable Sensitivity: Many tasks show coarse-grained
phases on memory occupation during execution. This infers
that a task may have different sensitivity as its phase changes.
We profile six example tasks and present their memory usage
trends over time, as shown in Figure 4. Note that the actual
memory usage may be much larger or smaller than the dataset
size (marked as red flags). We separate each task into two
phases: the pre-processing phase and the execution phase.
Figures 4-a,b,c show applications with obvious spikes. We can
see that Ligra-bfs and Gridgraph-bfs workloads only
show sensitiveness in the pre-processing phase while FsDet
shows sensitiveness in the execution phase. Tasks in Figures
4-d,e,f show relatively smooth trends of memory occupation.
They do not fluctuate heavily throughout their lifetime.



Memim Membhfm I\ilfﬂfm 1 ' minimum local memory requ1red:
H ) 1
Memimr  SI i S ' ; v maximum data offloading size
H ! ' 1 i currentlocal memory usage
! //A i"' space index (SI)
N ‘ IS(= /C+) ~ ' R maxoffloading ratio
! S data offloading size

memory footprint of a task

Fig. 5: The memory usage of a far memory enabled task.

In summary, it is important to take into account the
task’s sensitivity to FM offloading ratio. Meanwhile, it can
be problematic to make static FM scheduling decisions
considering the dynamicity of applications.

Our design keeps the above observations in mind, com-
bining light-weight offline profiling and adaptive online man-
agement. HyFarM performs FM-oriented task placement for
meeting application requirement at minimum cost (Section V).
It also features intra-/inter- node joint adaptation to boost the
performance per bit of memory on hybrid FM (Section VI).

III. FM-ORIENTED TASK PLACEMENT

The objective of task placement is to give a preliminary
decision on a group of balanced tasks mapped to proper
servers. We capture the task property and group tasks into
three groups based on profiling results. We collocate tasks
from different groups together and map them to proper servers.

A. FM-oriented Task Grouping

1) Task Profiling: For unfamiliar applications, we perform
one-time profiling for understanding their sensitivity to FM
data offloading. Our profiling generates far memory statistics
from task/cluster logs and it does not require special tools or
expensive learning procedure. We mainly consider two factors:
max offloading ratio (R) and data offloading size (S).

Max Offloading Ratio. Different applications have varying
degrees of latency tolerance. Aggressively offloading data
from the local main memory to far memory causes undesirable
latency. As shown in Figure 5, we define max offloading ratio
(R) as the largest allowable far memory ratio that does not
cause deadline violation. Recall that the far memory ratio is
calculated as the amount of far memory usage divided by
the total memory footprint requested by the task. The ratio
is largely a property of the application program.

Data Offloading Size. Figure 5 illustrates the memory
usage of a task. The data offloading size is the actual amount
of data that are offloaded to FM (S = Memy, ¢y + Memy fm).
It is not only affected by the program, but also the data size.
The range of actual data offloading size should be less than
the product of memory footprint and max offloading ratio.

2) Task Assorting: When managing tasks on a FM system,
we need to understand their space requirements and status of
memory consumption, as shown in Figure 5.

We use space index (SI) to refer to the capability of an entity
(e.g. a task or a server) to spare its memory. It is defined as
the memory space that the entity can be offloaded at most
without violating its performance objective. For each task, we
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can set a default SI quickly by examining the max offloading
ratio and the data offloading size, as shown in Eq.1:

SI = Rx Memiotar — S (D

where Memyqtq; 1S the total memory usage. The task SI value
decreases if we de-allocate local memory (Mem;,,) from
it. Figure 6 shows how tasks share the server memory. We
measure a server-level SI (server SI) as the aggregated SI
values of tasks co-located on it. A small server SI indicates
that the server has limited potential to spare memory.

Finally, we categorize tasks based on their behaviors on
the FM system. As shown in Figure 7, we first sort tasks in
ascending order of SI and classify a task ¢ according to an
offset value Sl,frser = SI; — Slsg. We then divide tasks
into three groups based on their R values.

FM-prohibitive tasks. They are selected from those who
have negative SI offset. We label candidate tasks with low R
value (e.g., < 0.2) as FM-prohibitive. In general, short-lived,
latency-sensitive tasks are often FM-prohibitive. It is not wise
to offload FM-prohibitive tasks to FM and they also have little
local memory to spare. Theses tasks need all their working sets
to be stored locally when scheduling in HyFarM.

FM-tolerant tasks. They are selected from those who have
positive SI offset. Tasks with large max offloading ratio and
data offloading size are idea candidates for offloading. We
label tasks with large R value (e.g., > 0.5) as FM-tolerant.
Offloading data to different secondary memory (e.g., hFM or
vFM) does not affect their performance significantly. It could
result in fairly large data offloading size.

FM-sensitive tasks. These tasks can be tricky. We can
treat all the remaining tasks as FM-sensitive tasks, but it may
increase the burden of scheduling. On the other hand, we can
classify tasks of medium R values (e.g., the yellow part in the
figure) as FM-sensitive. Tasks with extremely large (low) R
value will be treated as FM-tolerant (FM-prohibitive).

B. FM-oriented Task Mapping

Given the aforementioned analysis, our goal is to smartly
assign a group of tasks to a FM-enabled server cluster.

To improve server utilization, we schedule tasks based on
their core memory usage, i.e., the minimum required local
memory Mem;, . specified by the max offloading ratio. We
first guarantee the minimum required local memory of the
assigned tasks; we then provide extra local memory in a best-
effort way. We formulate the task placement problem as a bin
packing problem. We want to place tasks (objects) of different
core memory sizes in servers (bins) to ensure minimum hosts
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are employed. Note that the mapping strategy is affected by
resource pressure. If the resource is adequate, HyFarM will
assign each task with its requested full memory size. If no
server can fully meet the memory requirement of the task, we
will scale down memory allocation in a task-specific manner
(detailed in Section V). Under extreme memory pressure, we
only assign the minimum required local memory to each task.

To improve scalability, we also carefully co-locate tasks
from two complementary groups (FM-sensitive and FM-
tolerant) at the stage of task mapping. Our key observation is
that smart collocation of FM-sensitive tasks and FM-tolerant
tasks is critical. Figure 8 gives an example of unbalanced
placement. Suppose that tasks Al and A2 are FM-sensitive
tasks while tasks B1 and B2 are FM-tolerant tasks. All the
FM-sensitive tasks are put on the node 1. When FM access
is enabled, tasks on the node 1 will be allowed to access the
memory of node 2, causing significant data communication
overhead. In today’s data centers, network bandwidth is a
scarce resource that needs to be saved for serving user-facing
latency-critical services. If we initially place different types
of tasks on the same machine, we may save the bandwidth.
In other words, FM-tolerant tasks can conveniently spare
memory space for local high-priority tasks, without generating
excessive network I/Os. One can better accommodate new
tasks or handle increased memory demand.

Figure 9 shows the overall task placement process. We label
tasks based on the profiling information and group tasks. We
then map tasks of diversified performance sensitivity on a
set of proper servers. Rather than allocating jobs one by one
from the front of the job queue, we adopt the window-based
scheduling [25] which allocates multiple jobs from a window
at the front of the waiting queue.

IV. ENHANCING HYBRID FM PERFORMANCE

Given a group of balanced tasks mapped to a server, the next
is to manage their appropriate usage of main memory (on local
server), VFM (on local server), and hFM (on a remote server).

As mentioned earlier, applications may switch between FM-
sensitive and FM-tolerant types. It is important to fine-tune
the memory usage effectiveness.

As shown in Figure 10, we leverage local intra-/inter- node
adaption to tune hybrid FM usage. The process is driven by
task-level events such as the detected phase shift of existing
tasks or the start of a new task. These events can be collected
by each node periodically with minor overhead.

A. Inter-node Adaptation: Memory Extension

Inter-node adaptation deals with memory extension, which
allows high-priority tasks to extend their memory usage to
hFM of another node. It aims at balancing memory usage
pressure among nodes.

From the viewpoint of the controller, we need to decide
which server should be shrunk (i.e., far memory providers)
and which server should expand (i.e., far memory borrowers)
its memory size. Afterwards, the far memory providers need
to identify some to-be-shrunk tasks while the far memory
borrower need to choose some to-be-extended tasks.

We use server SI to maintain a balance between servers.
First, we calculate the overall SI of the cluster. We treat
servers whose SI values are above the average SI as potential
far memory providers. Correspondingly, the servers below the
average SI are labeled as far memory borrowers. The provided
(or borrowed) memory size is |Servers; — Avgservers; |-

In general, inter-node adaptation happens right after the
tasks have been assigned to servers. For far memory providers,
they just shrink their local memory usage to spare memory
space. For far memory borrowers, only FM-sensitive tasks are
selected to use hFM to accelerate their tasks.

B. Intra-node Adaptation: Memory Expansion

As shown in Figure 10, each server also allows for memory
expansion. It can assign more main memory to FM-sensitive
tasks and allowing the FM-tolerant one to dump part of its
data to the associated vVFM. HyFarM determines which tasks



{ Task Input:

: {TaskID, cpuNum, Memsize,
| submitTime, waitTime, slo,
: sensLevel, offloadRatios,

| estLatency, phases, ...}

{ System Parameter:

| {cpuSlot, sysTime, cpuTime,

| realTime, pageFaults, —

1 swapPages,memBw, rdmaln, !
rdmaOut, diskIO, ...} )

|
1
N e e m e —————— \

E Performance Resource
< estimation adaption

(Cemu (e (e )(Cor ) ()

1

1

1

1

1

1

1

A}

[ Observation ] Hardware '

tracing monitoring 1

. H
H

1

1

1

1

S
=
=]
=
o
o
o0
g
E
=

’

Information updating

{Hardware Parameter:

1

( - 1
! {serverNum, cpus, memSize, i '8 [ Observation ] [ Resource ] H
I pageSize, rdmaEnabled —i3 tracing allocation J
! . e T i & [
:farMemSlze,globalSlo, diskSize,; 19 g,[ Resource ] Resource !
irdmaQueues, ...} H 1% S| simulation reclaimer |
[ e ,

Fig. 11: An overview of our simulation framework.

need to balloon local memory usage for improving the overall
performance on a particular server. The process can also be
triggered if we observe drastic workload behavior change.

Under a stringent memory budget, it is important to make
memory scaling plan for a group of co-located tasks. For
example, if a server’s local memory can not accommodate
all the mapped tasks, an uniform scaling strategy will assign
a uniform far memory ratio to these tasks.

Our intra-node adaptation gives priority to FM-sensitive
tasks. Based on the core memory usage, we calculate how
much additional local memory can each task earn. Considering
that tasks with larger SI are less FM-sensitive, we tend to
assign less local memory to them. It is reasonable to compress
the memory footprint of the least sensitive tasks. In this case,
one sacrifices a FM-tolerant task to its max offloading ratio
and allows a FM-sensitive one to use local memory as much
as possible. This minimizes the overall performance penalty.
For a given task ¢, the actual local memory(lm) usage is the
sum of its minimum required /m and an offset A, in Eq.2:

Blm

ST,
where Bj,, is the remaining local memory budget calculated
based on a given performance scaling target, such as 10%. The

motivation behind Eq.2 is that more sensitive tasks will gain
more extra local memory space for better overall performance.

2)

Alm X

V. EVALUATION METHODOLOGY

Currently there is not such a framework that supports
evaluation of task scheduling on FM-enabled data center. At
this stage, we mainly focus on exploring the opportunities and
benefits of task scheduling issue on such a hybrid FM system,
while leaving detailed hardware/architecture support for future
work. Therefore, in this paper we simulate a hybrid FM-
enabled cluster and build a heavily instrumented testbench.
Figure 11 shows the overall simulation methodology.

We implement the core part of HyFarM in 1300LOC in
Python. we adopt hierarchical resource scheduling architecture
like commercial off-the-shelf schedulers including Google’s
Omega [37] and Alibaba’s Sigma [18]. We design our sim-
ulation procedure by referring to today’s open-source HPC

Algorithm 1 Pseudocode of HyFarM.

1: HyFarM_manager (tasks, cluster) {

2: tasks.group(tasks, cluster)

3 For tasks in cluster.task_pending_list do

4: task.server_id = map(task, cluster)

5: task.server_id.inter_adapt(cluster)

6: while (is_task_finished or is_task_phase_changed) do
7 task.local_server.update_SI()

8 if (changed_SI > Threshold) then:

9: inter_adapt(cluster)

10: else: intra_adapt(task.local_server)

11: server_list = sort_server_by_SI(cluster)

12: for (each server_i in server_list) do

13: if (server_i.SI >= task.least_local_memory) then:
14: server_i.add_task(task,task.local_mem) }
15: intra_adapt(server){ / adjust memory inside servers

16: victim_tasks = estimate_best_ratio(tasks)

17: task.local_server.reset_task(victim_tasks)

18: inter_adapt(cluster) { / adjust memory across servers
19: provider = find_largest_SI_server(cluster.server_list)
20: borrower = find_least_SI_server(cluster.server_list)
21: provider .add_task(borrower_task)
22: intra_adapt(provider) }

schedulers Slurm [8] and Gridscheduler [6], and and Torque
[11]. We impose strict timing control and the minimum simu-
lated time unit is 0.1 second, enough for a server cluster. We
use realistic workload traces as input. Our input data traces not
only contain job-level cluster usage data like prior work [35],
but also take into account detailed FM system parameters. Our
simulator can identify task phases by analyzing system events
such as page faults and application checkpoints in the trace.

A. Simulation Workflow

We show our key scheduling workflow in Algorithm 1. We
implement four stages in detail. i) Function group collects
and calculates the attribute values (labels) of each task, such
as least local memory size, SI value, sensitiveness, and so
on. ii) Function map adopts bin-packing-based algorithms
for solving the task placement problem. It takes task and
cluster information as input and returns a proper server_id
of each task. iii) Function intra_adapt mainly adjusts the to-
be-allocated memory size of each task inside the server. iv)
Function inter_adapt mark servers as either FM borrower or
provider. It also determines the memory adjustment of each
server. We use intra_adapt and inter_adapt to re-
balance memory allocation if necessary.

B. Evaluation Setup

1) Hybrid FM Testbed: To obtain workload traces, we build
both vFM and hFM systems and run various memory-intensive
applications. Table I shows the key configurations of our far
memory testbed. For vFM we use swap space on local disk.
For hFM we use the Fastswap kernel [12]. Each node is
provisioned with two 10-core Xeon CPUs, 128 GB of memory,
22TB of AVAGO MR9361-8i RAID with SATA I/O, and a
Dual-Port Mellanox ConnectX-5 RDMA NIC supporting 40 to
100 Gb/s Ethernet. The RDMA driver we used is version 4.3.0



TABLE I: Testbed Configurations

TABLE III: Workload Traces and Cluster Configurations

Memory Type Hardware | Bandwidth Size Environment Workload Traces S-Trace [ M-Trace [ L-Trace
Local main memory DRAM 200 Gpbs 128G Linux OS Task number 200 | 500 ] 2000
Horizontal far memory | RDMA 40 Gbps <32G Fastswap Task characteristics latency: 10~6000s; dataset: 1G~30G
Vertical far memory Disk 2.5 Gbps 1T Linux swap FM-sensntive task ratio 10%, 30%, 50%, 70%, 90%

TABLE II: Evaluated Applications

Abbr Algorithm Description Framework Mem. Footprint
qs quicksort C++ std [1] 2G~10G
bfs breadth first search Ligra [39] 5G~20G
pr pagerank Ligra [39] 5G~20G

mp4 mp4 format transcode FFmpeg [4] 6G~30G

mKkv mKkv format transcode FFmpeg [4] 8G~30G
tf-i tensorflow inception Tensorflow [10] 4G~20G
tf-r tensorflow resnet inference Tensorflow [10] 4G~20G
fs-i few-shot detection on images FsDet [48] 1G~10G
fs-v few-shot detection on videos FsDet [48] 10G~30G

of the OFED kernel, and it uses the RoCE protocol. We collect
the overall runtime using Linux Time, real-time memory usage
using Intel VTune, memory access latency using PMU and
record the page fault number using Linux perf.

2) Workload Traces: As shown in Table II. We profile a
group of representative memory-intensive applications from
open-source frameworks. We run each application with two
raw source data (small and large). In total, we collect 18
traces from real machines. These traces show different memory
footprints, page fault behaviors, and FM sensitivities. Based
on the collected software/hardware events, we finally create
three workload traces (task set) by randomly invoking them.
We consider small (S-Trace), medium (M-Trace) and large (L-
Trace) traces. Table III gives the configuration of the evaluated
workload traces, each has a different number of tasks.

3) Baseline Schemes: We compare our design with sev-
eral representative baselines including state-of-the-art works.
We realize the key memory allocation strategies of these
works in our simulator. In Table IV, non-FM implements a
common HPC memory allocation method of CQsim [35]. In
this scheme, far memory is not available or disabled. LIFC
represents the Zswap mechanism [31], which is a VFM-based
memory offloading method using the last-in-first-cap method
when allocating memory resource. FIFC represents CFM [12],
an HFM-based far memory scheduler which uses composed
disaggregated memory nodes to offload data. It adopts the first-
in-first-cap method when allocating local memory.

VI. EXPERIMENT RESULT
A. Overall Benefits of HyFarM

We start by assessing the overall performance of our task
orchestration strategy. In general, our method shows significant
improvement in the overall memory utilization, execution
duration, and usage effectiveness.

Memory Utilization. Figure 12-a presents the memory uti-
lization results of different schemes. Compared with non-FM,
FM-oriented task placement can yield much higher memory
utilization as a result of resource sharing. Our design shows
high memory utilization than both LIFC and FIFC due to

FM-prohibitive task ratio 10%, 20%, 30%, 40%, 50%

Window size 10 ] 20 [ 50

Server memory DRAM memory with 256G
hFM size 32G at maximum

TABLE IV: Baseline Methods

Evaluation | Reference Memory Allocation Method
non-FM CQsim [35], without FM Kill tasks upon resource shortage
LIFC Zswap [31], VEM only Last-in-first-cap in proportional
FIFC CFM [12], HFM only First-in-first-cap in proportional
HyFarM ours, HFM+VFM SI-based HyFarM strategy

its resource-centric, sensitivity-aware task placement, which
provides a flexible way to fit in more tasks.

Execution Duration. In Figure 12-b, we normalize the
average task latency of baseline scheme non-FM to 1 and
present the average execution duration of different schemes.
We set a hard limit of 1.5x execution duration. Compared
to the very conservative baseline non—-FM, we observe a
moderate increase in average task execution duration of about
19%-30%. Our scheme reduces the average latency by up to
16.5% compared to LIFC and 20.7% compared to FIFC. In
fact, existing far memory scheduling schemes LIFC and FIFC
can almost reach the 1.5x worst-case latency.

Performance per Bit. We study our design’s memory us-
age effectiveness, namely, the system throughput divided by
memory resource employed (i.e., performance per bit, PPB).
In Figure 12-c, we normalized the result of non-FM to 1
and compare the PPB of different task management schemes.
The result shows that our design improves the overall PPB
by up to 52% compared with the non—-FM baseline, up to
17.6% compared with LIFC and up to 20.5% compared
with FIFC. This means that our intra-/inter- node adaptation
provide better performance for FM-sensitive tasks. Our method
delivers much higher throughput on the given resources. Note
that HyFarM performs better under larger task set. It can
efficiently harvest fragmented memory resources with various
types of tasks as the system scales out.

B. Impact of Workload Composition

The optimization effectiveness of our design can be affected
by the proportion (p) of FM-sensitive tasks in the cluster (in
this case the share of FM-tolerant tasks is 1 — p). We change
p in each trace and show the efficiency results in Figure 13.
Overall, our method performs better than other baselines over
a wide range of FM-sensitive task shares. Again, our system
has better results when the task set becomes large.

We also observe that the proportion of FM-sensitive tasks
influences the effectiveness of the evaluated schemes in differ-
ent ways. As Figure 13 shows, LIFC and FIFC have the best
performance when p is 0.7, while our method performs best
when p is 0.3. This indicates that our method is more friendly
to task sets with a relatively smaller number of FM-sensitive
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Fig. 13: Results under different FM-sensitive task ratios.

tasks for small-scale systems. In Figures 13-b and 13-c, our
method offers the best results when FM-sensitive tasks account
for half of the overall tasks. At this point, it can best balance
tasks based on their FM-sensitivity. When p reaches 0.9, all
the evaluated schemes show poor performance. This is because
we do not have enough FM-tolerant tasks to spare memorys;
there are too many tasks competing for memory resources.

C. A Deeper Look at HyFarM

1) Impact of Sensitivity-aware Mapping: Figure 14 plots
the distribution of different tasks. We evaluate various mapping
schemes at scale. The x-axis is server IDs sorted according
to the proportion of FM-sensitive tasks. i) Naive. It is a
straightforward task mapping in which tasks with the same
sensitivity are assigned together (Figure 14-a). Some servers
are full of FM-sensitive tasks while others are full of FM-
tolerant tasks. ii) Random. It is a method that directly mapping
task to servers (LIFC and FIFC), as shown in Figure 14-b.
The distribution of FM-sensitive tasks increases proportionally.
iii) SI-based. We use a heterogeneous Sl-based mapping to
balance tasks (Figure 14-c). It is clear that our SI-based
mapping can batter balance FM-sensitive tasks for servers.

2) Impact of Latency-tolerance Tasks: We examine the
performance of our design by varying task’s overall tolerance
of latency increase, i.e. different Service Level Objectives
(SLOs). Figure 15 shows the normalized memory usage ef-
fectiveness of the baselines and our works under various SLO
limitations (maximum allowable execution duration, our de-
fault value is 1.5x). In general, our scheduler has much better
performance. All the evaluated schemes show an increasing
trend of effectiveness when the SLO value increases. The
reason is that larger SLO value gives more space for far
memory tasks to shrink its local memory usage. In general,
FM-sensitive tasks favors a larger SLO value.

3) Impact of Joint Node Adaptation: HyFarM balances the
memory allocation inside and across servers to further improve

FM-sensitive M FM-tolerant

o Taskratio
o Taskratio —

Server ID Server ID

Server ID

11 21 31 41 50 1 11 21 31 41 50 1 11 21 31 41 50
(a) Worst Map (b) Direct Map (c) SI-based Map

-

Fig. 14: The memory allocation behavior of task mapping.
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performance. We monitor the memory size adjustment after the
task mapping step and present its distributions under different
schemes. Figure 16-a plots intra-node adaptation while Figure
16-b plots inter-node adaption. The results show that HyFarM
triggers more memory space adjustments due to intra-node
adaptation. It gives more local memory space to FM-sensitive
tasks. In contrast, the inter-node adaption of HyFarM adjusts
much less local memory space than that of LIFC and FIFC.
The results show that our HyFarM has lower communication
cost brought by far memory usage.

D. Influence of FM-prohibitive Tasks

We analyze the effects of different proportion of FM-
prohibitive tasks in the job queue. As shown in Figure 17, we
compare two cases: 1) none of the tasks are FM-prohibitive
and 2) half of the tasks are FM-prohibitive. The RDMA
switches in our Infiniband network adopt static routes and they
can maintain full bandwidth between every two server nodes.
We can see increased bandwidth consumption if the FM-
prohibitive tasks are few. We test the average task throughput
of each server on different proportion of FM-prohibitive tasks
and present the normalized results, as shown in Figure 18.
Overall, HyFarM shows better task throughput than all the
baselines. It is not surprising that the benefit of HyFarM
falls as we add more FM-prohibitive tasks. However, even
if over 50% tasks are FM-prohibitive, we can still yield 10%
throughput improvement than the best baseline method.

E. Overheads Analysis

We analyze both scheduling overhead and configuration
overhead to show the scalability and practicality of our system.
The scheduling overhead refers to the time to make scheduling
decisions. It depends on the cluster size since the searching
space becomes larger. We test the scheduling time given
different sever scales, as Figure 19 shows. Although HyFarM
requires more time than the baseline methods, it can still
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satisfy the general latency requirement of HPC scheduling (15-
30 seconds) [25]. The average scheduling time of HyFarM is
less than 5 seconds on 192 servers.

The Configuration overhead refers to the time to take
actions. As shown in Figure 20, half of the tasks spend 1.9 sec-
onds in memory capping and 90% of the tasks spend less than
6.4 seconds. Phase monitoring and network communication
can also cause delay. In Figure 21, we present the total latency
of task allocation as the sum of the scheduling overhead and
the configuration overhead, We estimate the network overhead
by considering the switch latency of the tree-based network
architecture. Overall, configuration overheads are positively
correlated with system scale. The total control time is less
than 14 seconds which is acceptable for HPC scheduling.

For very large clusters, we can use distributed scheduler
architecture (each handles a medium set of nodes) [37] to
maintain low overhead and high scalability.

VII. RELATED WORK

Far Memory System. A high-performance FM system
requires efficient software runtimes. The hFM uses RDMA to
access the memory on another node. Some use OS swap kernel
to handle data transmission such as Infiniswap [26], FastSwap
[33], and Fastswap [12]. AIFM [36] and Kona [14] offload
data in cache-line size for higher efficiency. Some works
provide user-defined frameworks to gain high performance,
such as Freeflow [30], FaRM [24], LITE [41], Fargraph [44],
etc. The vFM takes local non-volatile memory and storage
as far memory. Most of them are page-based, such as zswap
[31] and Hybridswap [52]. Others adopt memory objects with
variable size, such as pDPM [40], XMemPod [15], and TMO
[49], etc. None of the above works addresses the problem
of managing hybrid FMs. They also do not consider the
performance sensitivity of co-located tasks.

Far Memory Scheduling. A few recent scheduling methods
have taken FM into account. For example, CFM [12] calculates
how much data can be retained in local memory. A Zswap-
based software-defined far memory [31] presents a cold data
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Fig. 21: The estimated overall overhead of HyFarM.

compression strategy and swaps cold pages from local mem-
ory to FM (swap space in DRAM). XMemPod [15] adopts
hierarchical far memory system and extends VMs’ memory
on virtual host memory, then on FM, and last on disk. The
above works neither consider task sensitivity nor smart co-
hosting. Allot [17] proposes a memory resource abstraction
and data placement strategy for an RDMA-enabled distributed
hybrid memory pool (DHMP) which manages hybrid NVM
and DRAM memory efficiently. These works do not consider
workload balance based on sensitivity and they do not support
adaptive memory allocation.

Classic Cluster Scheduler. There are many works on effi-
cient task management, such as open-source HPC schedulers
[6], [8], [11], Google’s Omega [37] and Alibaba’s Sigma
[18], etc. Schedulers like Borg [43], Quasar [22] and Paragon
[21] run in a monolithic machine and process all jobs with
the same logic. Two-level schedulers like Mesos [28] and
Yarn [42] allow for application-specific scheduling. Omega
[37] and Apollo [13] are shared-state schedulers that each
scheduler maintains a copy of cluster states. There are also
hybrid scheduler architectures [18], [20], [23], [29]. HyFarM
is well complementary to these schedulers.

Memory-constrained Systems. There are plenty of works
on running large-scale applications on memory-constrained
systems. Some works [38], [45], [51], [53] analyze perfor-
mance implications of classic memory-consuming workloads
such as graph processing, Al model training, etc. Some
works design specific memory access approaches based on
read and write behavior and utilize data transfer channels to
improve memory bandwidth utilization [16], [44], [47]. Some
works design memory-saving techniques and data offloading
strategies on limited local memory and far memory space [44],
[46], [47]. HyFarM can fit well with existing systems and
support excavating the performance and efficiency potential
of memory-constrained applications.

VIII. CONCLUSION

The problem of improving the efficiency of far memory
(FM) enabled parallel machines has recently attracted a lot of
attention. We take the first step to explore sensitivity-aware
task orchestration in a hybrid FM environment. We propose
HyFarM, a high-performance task orchestration scheme for
hybrid FM. It prudently collocates FM-sensitive and FM-
tolerant tasks together for better efficiency. Importantly, we
develop an performance optimization approach that combines
both memory expansion and extension. Our design greatly
improves memory utilization and performance per bit.
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