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Abstract—Disaggregated architecture brings new opportunities
to memory-consuming applications like graph processing. It
allows one to outspread memory access pressure from local to
far memory, providing an attractive alternative to disk-based
processing. Although existing works on general-purpose far mem-
ory platforms show great potentials for application expansion,
it is unclear how graph processing applications could benefit
from disaggregated architecture, and how different optimization
methods influence the overall performance.

In this paper, we take the first step to analyze the impact
of graph processing workload on disaggregated architecture by
extending the GridGraph framework on top of the RDMA-based
far memory system. We design Fargraph, a far memory coordi-
nation strategy for enhancing graph processing workload. Specif-
ically, Fargraph reduces the overall data movement through a
well-crafted, graph-aware data segment offloading mechanism. In
addition, we use optimal data segment splitting and asynchronous
data buffering to achieve graph iteration-friendly far memory
access. We show that Fargraph achieves near-oracle performance
for typical in-local-memory graph processing systems. Fargraph
shows up to 8.3× speedup compared to Fastswap, the state-of-
the-art, general-purpose far memory platform.

Index Terms—far memory, RDMA, graph processing

I. INTRODUCTION

Today’s various graph applications demand better memory
performance at different graph scales [18], [32], [36], [39],
[40]. In the past, most graph applications can be processed
by a single-node system given the relatively small size of
the graph in existing in-memory graph frameworks [29], [39],
[40]. Distributed graph frameworks are required only for very
large-scale data analytic problems due to the communication
overhead [24], [35], [41]. Nevertheless, as shown in Figure
1-(a), many graph frameworks mainly focus on medium-sized
graphs (from 1GB to several hundreds of GB) [17], [36], [42].
Although current out-of-core graph computing frameworks
could handle medium-sized graphs with external storage, they
suffer performance degradation due to the I/O bottleneck.

In addition, to process workload with various data input
in the cloud, an important trend is to build disaggregated
memory pools and enable far memory (i.e., remote main
memory) accesses [5], [8], [20], [27]. In this case, memory-
consuming programs like graph applications can easily scale
out by oversubscribing memory if the local server has limited
capacity. Meanwhile, with high-speed network protocols such
as Remote Direct Memory Access (RDMA) [9] and Compute
Express Link (CXL) [7], far memory access can achieve
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Fig. 1. (a) The case of memory usage expansion and the raw graph size
of existing graph processing frameworks. (b) The data transfer duration of
different memory access scenarios.

near-DRAM performance, as shown in Figure 1-(b). With
appropriate memory management, better system utilization
can be achieved. Such a far memory architecture has shown
great promise in accommodating medium-sized graph process-
ing applications. Consequently, it is expected to be a good
complement to traditional single-node systems and distributed
systems (detailed in Section II).

Nevertheless, simply performing memory offloading of
graph processing on far memory architecture may not provide
the best performance. A straightforward approach of far mem-
ory outspreading is to replace the original swap space with the
far memory space [1], [12], [14], [16], without changing the
strategy of page mapping and reordering in the original single-
node graph framework. These works often limit local memory
usage to trigger page faults and leverage high-speed network
interfaces like RDMA to access far memory space. In other
words, when the upper-layer application framework intends to
access the far memory, it passively leaves all the pressure of
deciding thrown-out parts to the OS kernel. Although this type
of design is transparent to the application, it brings significant
context switching overhead [1], [11], [12]. To reduce the above
system overhead, recent studies attempt to build a user-level
runtime to reduce kernel overhead [3], [25]. However, they are
not aware of the workload characteristics and they may miss
performance optimization opportunities when running graph
workload on far memory (detailed in Section III).

The key opportunity of optimizing graph workload on far
memory comes from two aspects: 1) the distinctive data
segments and 2) the iterative execution model. First, a graph
processing program features a group of data segments with
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distinctive characteristics [22], [29], [40]. On one hand, the
size of different data segments may vary. Some data segments
containing write-intensive vertices can be much smaller than
others that maintain read-only edges. On the other hand, data
segments in graph programs have different memory access
patterns. Some data segments are requested frequently while
some are accessed only once. Therefore, we need to determine
the appropriate data segments that should be moved out (to
far memory). Second, graph applications generally have many
iterations that update vertex values by continuously searching
graph data [18], [29], [42]. In each iteration, the program has
to wait for the graph data to be fetched. Typically, the system
fetches data by either propagating the current node value to
neighbors through outgoing edges (push-based scheme) or
gathering values from neighbors through incoming edges (pull-
based scheme). In the existing far memory environment, the
above data fetching operations may suffer frequent interrup-
tions due to far memory access. It is desirable to minimize far
memory overhead for iterative graph workloads.

In this work, we ask this question: how can graph process-
ing applications gain their best performance on the emerging
far memory architecture? To answer this question, we take
the first step to adapt a general graph processing framework
GridGraph [42] to far memory environment. In recent years,
far memory researches have been mainly focused on general-
purpose design that can provide a better trade-off between per-
formance and resource utilization. In contrast, we explore the
benefits of an application-specific far memory platform. Our
technique intends to unleash the full potential of far-memory-
based graph processing from two primary perspectives: 1)
smart data segment offloading and 2) efficient far memory
interaction. We introduce the way to identify data segments
that are most suitable to be placed on the far memory. We also
reconfigure the RDMA system to fit the graph workload better.
We demonstrate the necessity of jointly managing application
programs and far memory systems with a software/hardware
co-design approach to achieve the best performance.

Our contributions are listed as follows.

• We envision far memory as an attractive alternative to
existing graph processing models. We analyze the key

considerations of such a design.
• We propose Fargraph, a new system optimization strategy

that combines graph-aware data segment offloading and
iteration-friendly far memory interaction.

• We implement Fargraph based on the GridGraph frame-
work and conduct a detailed case study. We demonstrate
the potential of graph processing on far memory.

The rest of this paper is organized as follows. Section II
compares different far memory architectures. Section III gives
key observations to further motivate this work. Section IV
presents Fargraph’s graph-aware data offloading strategy and
iteration-friendly far memory interaction. Section V further
introduces the implementation of Fargraph. Section VI evalu-
ates the performance of Fargraph. Section VII discusses related
works, and finally, Section VIII concludes this paper.

II. BACKGROUND

In this section, we introduce far memory and compare it
with traditional systems in the context of graph processing.

A. Far Memory and Its Current Issues

Far memory architecture allows one to opportunistically
borrow memory resources from a remote node. As shown
in Figure 2-(a), this typically requires RDMA to accelerate
memory access over the high-performance network. With
proper far memory management, one can balance resource
allocation and save local memory for more critical tasks.

Nevertheless, existing general-purpose far memory man-
agement schemes such as Infiniswap [12] and Fastswap [1]
fail to fully unleash the potential of the far memory system.
They cannot achieve full throughput due to a heavy reliance
on the swapping mechanism of the OS when accessing far
memory. The Linux Swap mechanism involves two parts: the
front-end (i.e., Frontswap [21]) and the back-end module. By
inserting an RDMA-based swap module into Frontswap, the
back-end module is redirected from the disk to RDMA. Since
the swap space of the front-end is indispensable for RDMA-
based swap, the kernel-level context switch cannot be avoided,
which significantly increases the latency of each far memory
operation. In addition, for swap-based far memory, one still
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Fig. 3. The measured duration of computation-intensive program Quicksort
and graph programs (BFS, Pagerank, BC) on growing far memory proportions.

needs to create local swap space on a disk as the backup
for the RDMA back-end [1], [12]. The far memory access
procedure is often blocked due to the frequent disk access for
RDMA failure backup.

B. A Comparison of Different Execution Models

Both single-node and distributed computing have been used
for graph processing. As a complement to the two models,
far memory provides a new option for scaling out mem-
ory with high performance. First, from the perspective of
a single node, far memory provides a ready-to-use scheme
for memory-intensive applications to oversubscribe memory,
which outperforms disk-based I/O. Second, at the cluster level,
far memory shows promise in further improving resource
utilization especially for the SOTA shared-state schedulers
like Omega [26], Apollo [2], etc. To sum up, in the graph
processing domain, far memory allows one to achieve better
performance per bit in a complex execution environment.

1) Far Memory vs. Single-Node Systems: The traditional
single-node graph processing system, with all data loaded in
local memory, often shows the best performance [22], [29],
[39]. If the size of the graph is large, one can use disk storage
as a memory extension [17], [24], [42], as shown in Figure
2-(b). However, this may come with considerable performance
overhead even with a fast SSD. In contrast, far memory
offers an attractive alternative to disk-based memory extension,
especially in the cloud environment [1], [14]. Far memory
access shows lower performance degradation compared with
disk I/O. On the other hand, faced with fluctuating workload
demand, far memory represents a more convenient way to
oversubscribe memory on demand.

2) Far Memory vs. Distributed Systems: Distributed com-
puting is often used to process large graphs, with CPU and
memory on each node working together, as shown in Figure
2-(c). The key difference with far memory is that far memory
focuses on data partition instead of task partition (which is
common in the traditional distributed model). It is challenging
to program directly due to the cost of both task and data
partition. Traditional distributed model scales out the overall
computing resource, while far memory systems aim to enhance
the memory performance of each node. Far memory is well
complementary to distributed systems since it can further
enlarge the available memory capacity of each node.
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Fig. 4. The measured duration of transferring graph data with various
transferring chunk size on RDMA. Sometimes it shows a ”smile curve”.

III. DESIGN CONSIDERATIONS

This section presents our key observations of running graph
applications on far memory.

A. Duration Analysis

We analyze the impact of far memory usage on task duration
in different scenarios. Specifically, we define far memory ratio
α as the ratio of far memory usage to all the memory usage
of the application. The proportion of local part is (1−α). We
run a computation-intensive program Quicksort and memory-
intensive graph programs include BFS, BC, and Pagerank on
swap-based far memory platform Fastswap [1] as a motivating
analysis. Figure 3 shows our measurements of task duration
with different values of far memory ratio. We change the far
memory ratio by linearly increasing local memory limitations.

Figure 3 shows that the duration of Fastswap [1] increases
remarkably as far memory ratio grows. One reason is the
kernel overhead. The duration increase of graph applications
mainly comes from growing page faults when adding the far
memory ratio. Since Fastswap is implemented at the kernel
level, each page fault and page fetching from far memory
involve kernel operations so that the system time increases
quickly. If we design far memory access operations of graph
applications at the user level, we will skip most of the kernel
overhead and improve performance.

Graph workloads show different duration trends in the con-
text of far memory, as shown in Figure 3. For general tasks like
Quicksort (Figure 3-(1)), we observe a continuous duration
increase. Differently, we observe that graph programs have an
obvious performance turning point in Figure 3-(2),(3),(4). The
relationship between far memory ratio and workload duration
is quite similar in the three graph programs. Graph programs
exhibit a duration curve that stays relatively flat when the far
memory ratio is less than 0.6. The duration increases rapidly
if the far memory usage is larger than the turning point. For
example, the turning point is 0.6 for BFS, 0.6 for BC, and
0.7 for Pagerank in our experiment. The main reason for the
turning point is that graph workload has a distinguished set
of hot pages with frequent memory access. When far memory
allocation touches the hot pages, the performance becomes
sensitive to the far memory ratio.

In summary, running graph program on far memory is non-
trivial and memory offloading ratio can greatly affect workload
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performance. It is desirable to increase the awareness of
graph workload. Fortunately, graph data are often preprocessed
from raw edge list to CSR, CSC,or grid structure in today’s
computing framework [29], [42]. The preprocessing procedure
makes it easier to capture graph properties and to offload graph
data in a more efficient and fine-grained manner.

B. Efficiency Issue

Although RDMA has MLNX OFED (OpenFabrics Enter-
prise Distribution) environment and provides RDMA atomic
operations, it is not easy for developers to configure RDMA
settings without specific skills [1], [11], [12]. For example,
we often transfer data with chunks of aligned size through
network frames on RDMA. It is important to choose a proper
chunk size due to the total performance impact. As Figure 4
shows, we test the total duration when transferring different
size of graphs (with 40 thousand to 40 million vertices and
edges of 10 times of vertex number on RMAT format [4]). The
results show that neither small (about 10K) or large (500M)
chunk size are proper chunk size to achieve the best behavior.

Importantly, graph applications spend most of the time in
data fetching and value updating. In each iteration, the graph
algorithm fetches data from both local and far memory and
processes them in the local region. Since the data transfer can
be completely asynchronous between each RDMA channel, it
often causes troubles that the newly arrived data may overwrite
valid data during one-sided RDMA operation. Therefore,
data fetching and buffering are critical during each iteration.
Carefully configuring data transfer can help us cache the right
data while avoiding communication delay.

In summary, it is also tricky to setup RDMA in the right
way when running graph workload. There are several tuning
knobs of far memory access when configuring the network. It
is important to choose the right communication configuration
that is friendly to the iterative graph execution model.

IV. FARGRAPH DESIGN

The above analysis shows that smartly offloading graph
workload to the remote memory space is critical. In addition,
efficiently fetching data using RDMA with proper configura-
tions is necessary to achieve better performance.

We propose Fargraph, an optimization strategy that allows
graph programs to run on far memory architecture efficiently.
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Fig. 6. We test the access frequency of each page in BFS. We show some
distinguished data segments in the graph processing program.

Specifically, we base our design on GridGraph, a repre-
sentative graph processing framework. Figure 5 provides an
overview of Fargraph. It mainly consists of two parts: the
front-end graph-aware data segment offloading strategy and
the back-end iteration-friendly far memory interaction opti-
mization. The front-end design of Fargraph mainly analyzes
the memory access patterns of graph programs and makes
decisions of data offloading to far memory. The back-end
works cooperatively to build up efficient far memory access
coordination on RDMA for the entire program.

There are two distinct procedures: 1) the master process
that resides on the active side (initiator client) and 2) the
daemon process on the passive side (responder server). Our
key strategies are mainly implemented on the active side, with
the assistance from the passive side. In Section V we introduce
our implementation.

A. Graph-Aware Data Segment Offloading

At the front-end, we first analyze the data segments of the
graph program and classify them into several data segment
groups (DS-Group). We then determine data segments that are
preferable to be transferred to the remote side in advance for
each particular DS-Group.

1) Graph Data Segment Grouping: We investigate the data
segments of stacks, queues, as well as graph-specific data
items (e.g., array of vertices) in the graph program. Data
segment consists of a set of pages. In Figure 6, we show
the page access statistics when running BFS on a graph
with rMat format. We perform page address tracing and we
show the allocated memory area corresponding to Parents
of Vertices, Frontiers of Vertices, Edge lists, etc. As we
can see, edge-related data segments are often accessed in
limited times compared to vertex-related data segments, such
as vertex values, parents, frontiers, etc. Meanwhile, the number
of traversed edges (memory read) can be several orders of
magnitude greater than the number of vertices. Frequent value
updating (memory write) always happens on a small group
of vertices. It is undesirable if those frequently-accessed data
segments are offloaded to the remote side (what the existing
works often do). The above analysis shows that one can
achieve better far memory offloading effectiveness at the data
segment level by analyzing the graph workload.
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In this work, we classify data segments into a few well-
crafted groups i.e., DS-Groups, based on graph properties. Em-
pirically, we divide data segments into four groups according
to memory access behaviors. Figure 7 shows our classification
methodology. 1© The DS-Group 1 consists of memory offload-
ing (short as MO) sensitive data segments in which data is
often read and written in a highly frequent manner, such as
Vertex ids, attributes, frontiers, parents(a subset of vertices). 2©
The DS-Group 2 consists of MO less sensitive data segments
such as intermediate data variables. They are often written
or generated temporarily during computing but do not need
to be read from memory. 3© The DS-Group 3 contains MO
less insensitive data segments with pages read many times and
few rewritten, like edge blocks. The read-only feature, if used
properly, is well suited for the RDMA environment. 4© The
DS-Group 4 (cold segments) is MO insensitive data segments,
staying untouched for the majority of the time.

There are two ways to classify DS-groups. The first is
offline analysis. One can calculate the average page access
frequency of each data segment and treat the above-average
data segments as the MO-sensitive data segments and the
below-average ones as MO-insensitive data segments. The
other way is to track the pages in each data segment online
periodically, which is more accurate but time-consuming. One
can set a time threshold H . If the page is accessed at time
H , it will be labeled Read/Write-much; otherwise, it will be
labeled Read/Write-few. Then we classify data segments into
DS-groups according to the labels of these pages. In this
work, We use offline profiling to identify the characteristics
of data segments (DSs) and classified DSs to guide directive
placement for simplicity and practicality.

2) Flexible Data Segments Offloading: The DS Group
provides a way for memory offloading. For example, one can
keep MO-sensitive data segments (DS-Groups 1 and 2) locally
and move all the MO-insensitive data segments (DS-Groups
3 and 4) to remote memory. However, as mentioned earlier,
it is likely that the MO-insensitive data segments such as
edge blocks are the majority among all the data segments. In
this case, restricting local memory usage and moving a huge
amount of data segments of DS-Groups 3 and 4 to a remote
node may cause nontrivial performance degradation.

To cope with the above issue, we further define resistant
data segment set and transferable data segment set (TDSS),
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which refers to a refined set of selected data segments in
related DS-Groups that are preferable to be transferred to far
memory. The data segments in TDSS are transferable data
segments with transferable labels. The idea is enlightened by
the concept of Writable Working Set [6] which defines a set of
pages that are critical to program live migration. We keep data
segments in DS-Group 1 and 2 as local resistant data segments
that always stay in the local memory. We further select data
segments from MO-insensitive groups (DS-Groups 3 and 4)to
the remote side, as indicated in Figure 7.

We adopt a more flexible data partition approach based on
TDSS. Our design allows one to keep part of the TDSS in local
memory. We set priorities for the transferable data segments
to decide the preferable offloading order of them according
to the ratio of local and remote data. In this way, we can
achieve a flexible trade-off between local memory saving and
far memory performance in practice. Specifically, we give high
priority to the read-only data segments in the transferable data
segments. The insight behind this is that most data segments
in TDSS of a graph processing workload are read-only (e.g.,
edge blocks). Fetching read-only data with a one-sided read
allows us to minimize data transmission overhead. We can
evict the data fetched from far memory as soon as the data is
released to save local memory space.

B. Iteration-Friendly Far Memory Access

In the following, we further discuss how to improve far
memory access efficiency given the above data segment of-
floading strategy based on RDMA during each graph iteration.
The current RDMA one-sided read mechanism allows one to
directly fetch data from remote memory without waiting for
system handshaking. However, an appropriate configuration is
essential for maximizing the benefits of graph processing on
far memory. In our back-end, we break the transferred data
into chunks with one-sided access within each iteration, and
we overlap the computation and communication in different
iterations to reduce the total duration.

1) Data Segment Splitting: Appropriate data transfer is
critical. RDMA-based far memory supports memory fetching
and updating with different sizes of data chunks. Each chunk
is viewed as the basic unit of one-sided read/write. Since the
size of each data segment is somehow different, we transfer
data based on a finer-grained unit: data chunk. As the left part
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Fig. 9. The iteration-friendly far memory access with overlapping.

of Figure 8 shows, we transparently split each data segment
into multiple chunks when writing to the far memory, and
we merge these chunks into the data segments when fetching
back. If the data segment size is smaller than the size of a
chunk, it will not be divided.

We set indexes for remote data segments, as the right part
of Figure 8 shows. It reduces the traversal cost of finding the
corresponding data segments in far memory. For example, we
use the vertex IDs of each grid block as the indexes of edges
that are stored in the far memory. We can also use bitmap
offsets to guide fast neighbor access accordingly. To ensure
secure and isolated memory access, we send the local memory
protection key (called lkey) with the indexes together and then
fetch the remote key (rkey) and the corresponding data back.

2) Data Segment Buffering: Our second optimization over-
laps data computation and communication. We configure the
system in such a way that it starts to request the data for
the next iteration when the current iteration is still underway
as Figure 9 shows. We design buffers that support iteration
pipeline overlap by hiding communication when fetching data
segments, shown in Figure 10. For grid or shard-like graph
processing, it is easy to get the offsets of the next blocks
earlier than the next loading. It is feasible since the start and
end of the data transmission are two separate control events
with RDMA. Note that sometimes an one-sided read can be
very fast, to the extent that it may overwrite the last data block.
If there is no buffer, the data block supplied for the current
iteration will be overwritten by the new operation before being
processed. Thus, we also design send/receive buffer pairs for
the local master process and the remote daemon process.

If we want to hide the communication overhead completely,
the data transfer time needs to be shorter than the execution
time for each iteration. In fact, for most graph iterations, data
transmission is often much time-consuming (e.g., 2x) than the
processing of the obtained data blocks from far memory (as
shown in our experiment). As a result, the communication
latency cannot be fully hided and the time for each iteration
is extended. Therefore, workloads with shorter transfer time
and longer execution time often have better speedup than
the others. In our experiment, the graph workloads have
smaller frontier size (i.e., shorter transfer time) in their early-
stage iterations and therefore we observer notable performance
improvement at the beginning of their execution.

Algorithm 1 Program Adjustment with Fargraph Interfaces
1: Add transferable flag(DS list, far ratio, ...);
2: Build connection(IP,port,memory region size, ...);
3: //send all TDSS to far memory when preparation
4: for each DS i in transferable DS list do
5: Far write start(transfer flag, DS i, index, lkey, ...);
6: end for
7: Far write complete(DS indexes, rkey, ...);
8: ...continue... //waiting for data segments calls
9: //start read far DS Current in another process;

10: Far read start(DS Current, index, rkey, ...);
11: while (in each processing loop) do
12: ...continue... //original data process
13: while calling DS Current do
14: if DS Current is prepared then
15: Far read complete(DS Current,index, rkey, ...);
16: end if
17: end while
18: // start receive the next DS;
19: Far read start(DS Next, index, rkey, ...)
20: ...continue...//original data process
21: if DS Current finishes occupying then
22: Free DS Current in local RAM;
23: end if
24: end while

V. DIRECTIVE-LIKE IMPLEMENTATION

We implement Fargraph with directive-like instructions,
which slightly modifies the original graph framework. All
the far memory operations through RDMA are encapsulated
into concise function calls with necessary parameters. We
insert our far memory access interfaces into the original graph
frameworks to manage the selected data segments.

A. Interfaces Design

Our far memory access interfaces are described as fol-
lows. We mainly provide six interfaces for Fargraph.
Add transferable flag makes data segment offloading deci-
sions for the whole program. It adds transferable flag to
each data segment in a data segments list (DS list) based
on the given far memory ratio (detailed in Section III-A).
Build connection() starts the connection by checking the IP
address and the transmission port. It registers the memory
regions on the local node with the given memory region size.
Far write start() triggers the memory registration on the
passive side and then starts writing data to far memory.
Far write complete() returns once this round of sending data
is accomplished. It obtains the indexes of data segments on the
far memory. The lkey and rkey represent the protection key
for the local and remote memory region, respectively. They
are transferred along with the data. Far read start() starts
one-sided read of each DS and implies the beginning time of
DS fetching. Far read complete() returns the rkey and index
of the fetched data when the data transmission finishes. Our
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memory coordination on Fargraph.

chunk splitting and merging operations are embedded in the
far memory read and write functions.

Interfaces Insertion: The key point of the modification is
the location of the inserting interface. The pseudocode in Algo-
rithm 1 demonstrates all the interface locations in the original
program. The Far write start() and Far write complete() of
each data segment are in the preprocessing stage. The first
Far read start() is placed right before the beginning of all
the iterations. The later Far read start() are placed as soon
as getting the next neighbors in each iteration, as shown in
Figure 9. For example, we choose to start transferring the
next data segment (DS Next) once the current data segment
(DS Current) is freed. This allows one to overlap the process-
ing of the current data segment while the next data segment
transferring. Far read complete() of each data segment is in
the place where the original data segments are called. This
ensures the correction of the transferred data segments. After
insertion, the program can use far memory automatically with
all the optimization of Fargraph.

The above modification can further apply to both out-of-core
and in-memory graph frameworks. Out-of-core frameworks
process part of the data from storage like disks, while in-
memory frameworks process all the raw data in memory. For
out-of-core frameworks, one can load and stream batches of
edge blocks from far memory when processing large graphs
by replacing disk access (disk I/O) or local memory access
(Buffer I/O) with our APIs. For in-memory frameworks, we
load the entire data into the main memory before preprocess-
ing, and we replace buffer copy with our APIs.

Note that one can extend our design to support new run-
times and protocols of specific devices like NVLink [10] and
CXL fabrics [7]. We leave the extension of supporting more
applications and more far memory backend to future work.

B. Fargraph Workflow

The general workflow of Fargraph is shown in Figure 10.
(1) Pre-processing. It starts from far memory access initial-

ization. We create event channels to receive key notifications
such as address-resolved, route-resolved, and port-binding, etc.
Afterward, the system needs to register memory regions and

TABLE I
EVALUATED SYSTEM MANAGEMENT STRATEGIES

Schemes Application Framework Exe. Environment

Original GridGraph with mem. limitations Disk
Fastswap GridGraph without mem. limitations Fastswap (far memory)
Fargraph GridGraph without mem. limitations Fargraph (far memory)
Oracle GridGraph without mem. limitations Local main memory

put them into RDMA’s Protect Domains (PD) for memory
authorization. We also build RDMA queues (including send,
receive, and complete queues) on both the active and passive
sides. We decide the transferable data segments and add labels
and indexes to them. We then pre-transfer the decided data
segments to far memory on the passive server with RDMA
write ( 1©, 2© in Figure 10) and obtain their far memory keys.

(2) Far memory coordination. Figure 10 shows the general
procedure of Fargraph in each iteration. There are two parts
of far memory coordination. i) DS-based data fetching. We
start to fetch the next DS once the frontier data of the current
iteration is ready. We transfer the indexes of the required DSs
to far memory as a parameter of function Far read start().
We then fetch corresponding edge blocks (i.e. DSs) in or-
der. ii) Chunk-based RDMA transfer. When the local region
requests data, we use RDMA one-sided read to fetch them.
We divide the original data segments into multiple chunks
using RDMA SGE LIST. We devise an buffer to pre-fetch
the transferred data asynchronously ( 3© in Figure 10). We
also use post receive to continuously receive data read from
far memory and write the data into buffers. Meanwhile, we
directly copy the received data from the buffer to the local
region if the program requests the data ( 4© in Figure 10).

VI. CASE STUDY

This section presents detailed experiment results that further
support our design choices and demonstrate the efficiency of
Fargraph. We give a case study of running GridGraph [42]
with and without Fargraph optimization. We also compare
our design with the state-of-the-art RDMA-based far memory
engine Fastswap [1].

A. Experimental Setup

1) Hardware Environment: We build our far memory plat-
form based on two servers: a client node and a memory node.
On the client node, we use Cgroup2 to limit the local memory
usage of each process if we need to trigger far memory access.
Each node is provisioned with two 20-core Xeon CPUs, 128
GB of memory, and a Dual-Port Mellanox ConnectX-5 RDMA
NIC supporting up to 70∼90Gb/s Ethernet. The RDMA driver
is version 4.3.0 of the OFED kernel, and it uses RoCE (RDMA
over Converged Ethernet) protocol.

2) Evaluated System Strategies: We consider the following
strategies as Table I shows. 1) Original. This scheme adopts
the conventional out-of-core processing model of GridGraph
on a single server. It leverages the disk to process medium-
sized graphs. 2) Fastswap. It is a state-of-the-art, open-source



TABLE II
EVALUATED GRAPH DATASETS

Dataset |V | |E| Edge Size Mem. Footprint

Live Journal (LJ) 4,848 K 69 M 1.1 GB 2.4 GB
Orkut (OR) 3,072 K 117 M 1.8 GB 3.9 GB
Twitter7 (TW) 17 M 477 M 26.3 GB 47.7 GB
Friendster (FR) 65 M 1806 M 32.7 GB 60.4 GB

TABLE III
EVALUATED GRAPH PROCESSING ALGORITHMS

Algorithms Description Memory Access Feature

BFS breadth-first search random I/O
WCC weak connected components random I/O
PageRank web page ranking random I/O and sequential I/O
Radii graph radii estimation random I/O and sequential I/O

far memory platform which outperforms many previous works
[12], [16]. It is an RDMA-based far memory platform with
swap kernel and local disk involved [1]. We consider it as a
key baseline strategy in this work. 3) Fargraph. This scheme
uses all the optimizations that we propose. 4) Oracle. This is
the ideal design case of far memory, which keeps all the data
in the local main memory (best performance).

3) Evaluated Graph Workloads: We evaluate 4 graph
datasets together with 4 representative graph algorithms in
our experiment. The datasets contain 4 real-world graphs:
LiveJournal (LJ), Orkut (OR), Twitter7 (TW), and Friendster
(FR). More details are given in Table II. The evaluated graph
algorithms are shown in Table III. Specifically, BFS and
WCC are traversal-centric algorithms, while PageRank and
Radii are computation-centric with heavy value computation
in each iteration. We run 20 iterations for PageRank and find
connected components in unweighted graphs in WCC.

We perform graph processing on the GridGraph [42] frame-
work. GridGraph represents one of the state-of-the-art graph
frameworks and it is popular for its powerful grid-based data
structure. Another reason for choosing GridGraph is that it
provides both buffer I/O version (in the memory) and direct
I/O version (in the storage); this feature allows us to evaluate
both kernel-level far memory (required by Fastswap) and user-
level far memory (required by Fargraph).

B. Efficiency of the Front-end Design

We start by evaluating the performance of Fargraph’s front-
end optimization, namely the graph-aware data segment of-
floading. We show that increased workload awareness allows
Fargraph to achieve better performance. In Figure 11 and
Figure 12 we compare Fastswap and Fargraph on BFS under
different far memory ratios (the ratio between far memory
usage and total memory demand).

As shown in Figures 11 and 12, Fargraph shows lower
task duration compared to Fastswap, especially when the
far memory ratio is large. We observe that the duration of
Fastswap rapidly increases if the far memory ratio is larger
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Fig. 11. The duration of BFS on dataset LJ on far memory platform Fargraph
and Fastswap under rising far memory ratios.
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Fig. 12. The duration of BFS on dataset FR on far memory platform Fargraph
and Fastswap under rising far memory ratios.

than 0.8. This is because the system starts to move MO-
sensitive data segments to far memory. When the far memory
ratio reaches 0.95, Fastswap cloud be too slow to meet user
expectations and it cannot finish even after 10 minutes of
execution on BFS-LJ. In contrast, Fargraph still maintains
acceptable performance. The reason is that Fargraph uses a
tailored data segment partition strategy and it can make the
best use of far memory to process a larger amount of graph
data.

C. Efficiency of the Back-end Design

1) Performance Impact of Data Segment Splitting: Since
Fargraph relies on data segment splitting (detailed in Section
IV-B) to improve far memory efficiency, determining the ap-
propriate chunk size is critical. In Figure 13, we plot the smile-
like duration curves of 4 workloads (BFS and PageRank on
LJ and OR). The results are normalized to the duration under
4K chunk size. In particular, the duration under 4K chunk
size is higher than the duration under 32K and 256K chunk
size. This indicates that the 4K-page-based far memory access
design (e.g., Fastswap) is not efficient enough. The reason for
the smile-like curve is that the best far memory chunk size
is determined by the smaller one between RDMA bandwidth
and PCIe bandwidth. If RDMA transmission bandwidth (i.e.,
the frame size) cannot fill the PCIe channel, a larger chunk
size means better performance. In contrast, if the RDMA
bandwidth is too large, the total bandwidth can be limited
by the PCIe channel.



TABLE IV
THE TOTAL PEFORMANCE COMPARISON OF 16 GRAPH WORKLOADS WITH 80% FAR MEMORY

Results BFS WCC PageRank Radii
(seconds) LJ OR TW FR LJ OR TW FR LJ OR TW FR LJ OR TW FR
Oracle 2.63 2.61 27.88 54.33 0.16 1.59 38.5 69.6 5.33 7.73 115.24 137.76 2.74 9.44 150.36 320.45
Original 9.84 6.08 235.91 637.17 2.36 4.55 144.17 318.8 39.20 74.80 848.00 1153.6 20.75 110.3 1139.0 2578.0
Fastswap 10.46 7.03 262.24 639.0 2.56 6.52 256.4 523.1 25.53 40.80 966.03 1662.0 20.45 135.24 1524.6 3054.8
Fargraph 2.97 3.93 63.23 94.02 1.32 2.98 70.2 98.2 6.92 23.52 123.70 200.85 5.48 20.49 350.26 652.24
Sp(Original) 3.3x 1.5x 3.7x 6.7x 1.8x 1.5x 2.1x 3.2x 5.7x 3.2x 6.9x 5.7x 3.8x 5.4x 3.3x 4.0x
Sp(Fastswap) 3.5x 1.8x 4.1x 6.8x 1.9x 2.2x 3.7x 5.3x 3.7x 1.7x 7.8x 8.3x 3.7x 6.6x 4.4x 4.7x

0

0.5

1

1.5

4K 32K 256K 2M 16M 128M 1024M

Normalized Runtime

BFS-LJ BFS-OR BFS-TW
BFS-FR PR-LJ PR-ORChunk size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4K 32K 256K 2M 16M 128M 1024M

Normalized Runtime

BFS-LJ BFS-OR
PR-LJ PR-ORChunk size

times

Fig. 13. The normalized performance of four workloads (BFS and Pagerank
on dataset LJ and OR) with different chunk sizes.

With PCI Express 3.0 (16 GB/s) and 9.6KB RDMA frame
with dual-port on our two-CPU mainboard, the full-bandwidth
chunk size is around (16× 9.6× 2)KB =307.2KB. Note that
the optimal data chunk size varies due to different hardware
resource configurations and different program behaviors. Our
experiment results show that we can obtain the best perfor-
mance at around 256KB for most of the workloads (Only BFS-
LJ favors 32K chunk size) evaluated in this study. Therefore,
we use 256KB in all of our experiments.

2) Performance Impact of Data Segment Buffering: We
further evaluate the performance impact of data segment
buffering which enables efficient iteration overlap. We show
the results of two representative algorithms, namely, BFS and
Pagerank. We measure the duration of the non-overlapped
version (Fargraph w/o buffering) and the overlapped version
(e.g., Fargraph). In Table V, we show the results of BFS and
PageRank on 4 datasets. As we can see, data segment buffering
brings task duration down by up to 19%.

In general, there is a striking difference between PageRank
and BFS if we look at the duration reduction effect of data
segment buffering. In the table we show the absolute and
relative duration reduction. The relative duration reduction
refers to the ratio between duration reduction and the original
duration. It is evident that the reduced duration of Pagerank
is larger than BFS. We also observe that the relative duration
reduction of BFS is relatively stable while that of PageRank
may increase significantly under larger graph datasets.

D. Overall Performance

We finally present the overall optimization effectiveness of
Fargraph across 16 workloads. Table IV compares Fargraph
with all the other evaluated schemes.

TABLE V
THE DURATION COMPARISON OF FARGRAPH DATA BUFFERING

Duration (s) BFS
LJ OR TW FR

Schemes Fargraph w/o buffering 3.45 4.53 75.61 107.40
Fargraph buffering 2.97 3.93 63.23 94.02

Duration Absolute value ↓ 0.48 ↓ 0.6 ↓ 12.38 ↓ 23.38
reduction Relative value 14% 13% 12% 13%

PageRank
Schemes Fargraph w/o buffering 7.44 26.80 153.19 233.63

Fargraph buffering 6.92 23.52 123.70 200.85
Duration Absolute value ↓ 0.52 ↓ 3.28 ↓ 29.49 ↓ 32.78
reduction Relative value 7% 12% 19% 14%

For many datasets, computation-centric algorithms like
Pagerank and Radii show relatively higher performance im-
provement compared to the traversal-centric algorithms, such
as BFS and WCC. It is mainly because the data access patterns
of BFS and WCC are more irregular than PageRank and Radii.
Another reason is that the I/O overhead cannot be fully hidden
by computation in graph iterations.

The results also demonstrate the attractive scalability of
Fargraph. In most cases, Fargraph shows better performance
improvement as the graph size grows. For example, BFS,
WCC, and PageRank all yield an increasing speedup on
datasets OR, TW, and FR. Radii has a different behavior
mainly because the estimation of graph radius requires much
more traversal time as the graph size grows.

Overall, The results show that Fargraph is more efficient and
is closer to an oracle design compared with Fastswap. We can
achieve 6.9× better performance compared to Original, and
up to 8.3× performance compared to Fastswap. Note that our
evaluation is conservative due to the use of a medium-sized
dataset (instead of hundreds of GB). It is more challenging
for Fargraph to make memory offloading decisions and hide
communication latency with smaller datasets. Our design
approach can be applied to many other graph frameworks and
we expect it to show better performance on larger graphs.

E. Cost-Effectiveness of Memory Capacity

Finally, we estimate the cost-effectiveness of RDMA-based
far memory and NVLink-based far memory, as shown in Figure
14. The NVLink-based far memory (i.e., direct-connected ap-
proach) represents an alternative to RDMA-based far memory
(i.e., NIC-based approach). There is a growing interest in
direct-connected far memory technologies [3], [20] on the
next-generation I/O fabrics like NVLink and CXL. Recent
works show that NVLink-based far memory can achieves
almost doubled bandwidth than RDMA-based far memory
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Fig. 14. Cost analysis for RDMA and NVLink based far memory systems.

[5]. However, it is often 10-100x more expensive due to the
high cost of NVLink-compatible devices including boards,
switches, and IBM POWER9 processors [8], [23]. We estimate
the total cost based on the data-sheet of CPU, memory,
mainboard, Heatsink, Mellanox Connect-X card, SSD, adapter,
RAID switches, and NVLink supported devices.

In total, the cost of each NVLink-based machine is al-
most 10x more expensive than a RDMA-based machine. The
trend in Figure 14-(a) shows that the cost of the direct-
connected, NVLink-based far memory increases rapidly when
the memory demand exceeds the memory capacity of a single
node. This is because the CPU, memory and mainboard are
much more expensive than the RDMA NIC and fabric. In
addition, we also show the normalized performance-cost ratio
in Figure 14-(b). We assume that the performance of NVLink-
based machines are 2x of RDMA-based machines, which is
reasonable according to prior work [27]. We find that the
cost-effectiveness of RDMA-based design can be better when
the requested extra memory capacity is in the range of 128-
512G. This means RDMA-based far memory is suitable for the
typical scale of far memory capacity. It can be more extensive
for extremely large memory demand at this moment. In this
case, we expect to use distributed computing other than far
memory architecture.

VII. RELATED WORK

Disaggregated Memory Architectures. Composable Dis-
aggregated Infrastructure(CDI) [15], [19] gains considerable
attention in recent years. It is proposed to break the fixed
hardware components of monolithic servers into disaggre-
gated, network-attached components. For example, LegoOS
[27] introduces modular system implementation for hardware
disaggregation. String-finger [20] builds a large memory pool
with thousands of memory nodes and tens of CPUs. There
are several works [1], [16], [30] focusing on extending their
own memory to a special memory node with large DRAMs
or NVMs in the rack. Differently, Fargraph provides an
application-aware far memory optimization scheme, which is
more efficient than general-purpose platforms.

System Support for Graph Processing. In general, there
are three types of graph processing frameworks. 1) In-memory

graph frameworks, such as Ligra [29], Cagra [40], GraphIt
[39], and etc. In memory frameworks process graphs after
all the source data are loaded into the main memory [33].
2) Out-of-core frameworks, such as GridGraph [42], Mosaic
[17], HUSGraph [36] process large graphs with limited main
memory and a large-capacity disk. Works with out-of-core
execution patterns [28], [32] load each graph block into
the memory and process them streamingly. 3) Distributed
frameworks, such as GraM [35], Gemini [41], and Chaos [24],
divide huge graphs into several parts and process them with
Map-Reduce-style schemes. All of these works concentrate on
the execution instead of data partition, especially in the context
of remote memory access. Fargraph fills a critical void by en-
abling efficient graph processing on RDMA-based far memory.
It can be extended to further support emerging applications like
graph-structured cloud-native applications [13], [34], [37], [38]
as well as graph-based ML/AI applications [31].

RDMA-based Far Memory Acceleration. With kernel-
bypass and fast-messaging features, RDMA card has been
widely used for speeding up remote memory access. For
example, general-purpose far memory is drawing increasing
attention in recent years. Infiniswap [12] proposes transparent
remote memory paging based on RDMA. It is also feasible
for a virtual machine to access not only its own isolated
memory area, but also DRAM-based external memory and
RDMA-based far memory [16]. Since graph computing has
irregular memory access patterns, general-purpose far memory
acceleration schemes cannot achieve the best performance.
Consequently, designing application-specific far memory is
also gaining popularity. For example, GraM [35] processes
graphs with distributed computing, using RDMA to pass
messages. Different from existing works, Fargraph manages
transferable data segments for graph workloads and optimizes
graph processing with tailored RDMA control.

VIII. CONCLUSION AND DISCUSSION

In this paper, we explore graph processing on emerging
far memory architecture. We show that there are several
challenges and opportunities of deploying graph workloads on
far memory. We propose Fargraph, an optimization strategy
that allows one to run graph applications on far memory
efficiently. We implement Fargraph based on the GridGraph
framework and conduct a case study to demonstrate its ef-
fectiveness. We show that Fargraph can achieve up to 6.9×
and 8.3× speedup compared to conventional out-of-core graph
processing framework and the state-of-the-art general-purpose
far memory platform, respectively. We expect that our design
will open a door for more efficient graph processing in the
next-generation cloud with disaggregated architecture.

ACKNOWLEDGMENT

This work is supported in part by the National Natural Sci-
ence Foundation of China (No.61832006 and No.61972247),
and by Alibaba Innovative Research Program. We thank all
the anonymous reviewers for their valuable feedback. Corre-
sponding author is Chao Li.



REFERENCES

[1] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” in European Conference on Computer Systems (EuroSys),
2020, pp. 1–16.

[2] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014, pp. 285–300.

[3] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. Al Maruf, O. Mutlu,
and A. Kolli, “Rethinking software runtimes for disaggregated memory,”
in Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2021, pp. 79–92.

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining,” in SDM, 2004.

[5] E. Choukse, M. B. Sullivan, M. O’Connor, M. Erez, J. Pool, D. Nellans,
and S. W. Keckler, “Buddy compression: Enabling larger memory for
deep learning and hpc workloads on gpus,” in ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA), 2020, pp.
926–939.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen et al., “Live migration of
virtual machines,” in USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2005, pp. 273–286.

[7] C. E. L. Corporation, “Compute express link,” https://www.
computeexpresslink.org/about-cxl, accessed on June 1, 2021.

[8] I. Corporation, “Ibm power9 cpu,” https://www.ibm.com/it-
infrastructure/power/power9, accessed on June 1, 2021.

[9] M. Corporation, “Mellanox interconnect community,” https:
//community.mellanox.com/s/, accessed on June 1, 2021.

[10] N. Corporation, “Nvlink interconnect,” http://www.nvidia.com/object/
nvlink.html, accessed on June 1, 2021.
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