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Abstract—Today, many data analytic workloads such as graph 

processing and neural network desire efficient memory read 

operation. The need for preprocessing various raw data also 

demands enhanced memory read bandwidth. Unfortunately, due 

to the necessity of dynamic refresh, modern DRAM system has 

to stall memory access during each refresh cycle. As DRAM 

device density continues to grow, the refresh time also needs to 

extend to cover more memory rows. Consequently, DRAM re-

fresh operation can be a crucial throughput bottleneck for 

memory read intensive (MRI) data processing tasks. 
To fully unleash the performance of these applications, we 

revisit conventional DRAM architecture and refresh mechanism. 

We propose DR DRAM, an application-specific memory design 

approach that makes a novel tradeoff between read and write 

performance. Simply put, DR has two layers of meaning: device 

refresh and data recovery. It aims at eliminating stall by ena-

bling read and refresh operations to be done simultaneously. 

Unlike traditional schemes, DR explores device refresh that only 

refreshes a specific device at a time. Meanwhile, DR increases 

read efficiency by recovering the inaccessible data that resides 

on a device under refreshing. Our design can be implemented 

on existing redundant data storage area on DRAM. In this pa-

per we detail DR’s architecture and protocol design. We evalu-

ate it on a cycle accurate simulator. Our results show that DR 

can nearly eliminate refresh overhead for memory read opera-

tion and brings up to 12% extra maximum read bandwidth and 

50~60% latency improvement on present DRR4 device.  

Keywords— DRAM refresh; read-intensive; data analysis; 

memory bandwidth; redundant data storage 

I. INTRODUCTION 
The memory read bandwidth has become an ever-

tightening computing resource today, especially for appli-

cations that generate limited write operations on very large 

input data. In the era of intelligent systems and edge com-

puting, it is not unusual that the ratio between output and 

input data can be very small. For example, data clustering 

applications may involve an input audio/image file with 

size in many KB, while output label is only several bytes. 

A neural network training algorithm may take thousands of 

training dataset, while the model data can be stored in on-

chip cache. Some of the in-memory database applications 

are also focused on analytic operations that require no writ-

ing to the database [1]. Many basic operations such as 

linked-list traversal (LLT) and adjacent table access (graph 

processing algorithms) exhibit low memory write-to-read 

ratio as well. They are typically hungry for random read 

bandwidth with few data update, exchange and write back. 

Efficient memory system design is crucial for accelerat-

ing emerging memory read intensive (MRI) applications. 

They need to read raw data from the memory sequentially 

without frequent write back. In the above scenarios, data 

movement from memory to processor dominates the per-

formance. Oftentimes, these applications are read-latency-

sensitive. As memory access latency increases, the compu-

tation tasks can be easily blocked, which will greatly de-

grade data processing throughput.  

There are mainly two ways to optimize memory band-

width in the literature. 1) Accelerator designers use on-chip 

memory to perform computation locally [2, 3]. While on-

chip memory has limited storage space and the content de-

livery speed still depends on off-chip memory bandwidth. 2) 

Some papers propose to move processing close to the stor-

age system, namely, processing-in-memory (PIM) and 

near-data processing (NDP) [4, 5]. These techniques often 

require special hardware (e.g., HMC, 3D-stack memory) as 

the platform, which are still under rapid development and 

not likely to be widely adopted quickly. Although emerging 

persistent memory (PM) devices provide DRAM-like read 

latency, they could introduce huge design complexity to the 

OS and software stack due to the unique property of persis-

tent data storage [6,7,8].  

In this work we explore an alternative design approach 

that could enhance DRAM read throughput. We attack an 

important underlying root cause of the problem: the 

memory refresh itself. Memory controller generates refresh 

operations periodically to recharge voltage. The refresh 

operation locks DRAM devices and stall access.  

The overhead caused by refresh cannot be ignored. In 

Fig. 1(a), the performance overhead due to refresh grows 

rapidly as DRAM density increases. For a 64Gb DDR4 

device, the time spends on refresh can be over 20%. If am-

bient temperature increases, the refresh frequency may 

double. In Fig. 1(b) we compare different modes of Fine 

Granularity Refresh (FGR) [10] with an ideal case that has 

no refresh overhead. In the worst case, we observe 23% 

degradation of the maximum bandwidth. Thus, refresh can 

greatly impact read bandwidth especially when the device 

becomes denser. 

  

(a) Time occupied by refresh (b) BW and latency of a 8Gb DDR4 
Figure 1: Performance impact of DRAM refresh 
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The driven insight of our work is that the refresh effi-

ciency of traditional DRAM system becomes incommensu-

rate with its performance goals for some of the emerging 

applications. It is important to re-think memory design and 

tap into application-specific DRAM architecture.  

We propose DR DRAM, an enhanced DRAM module. 

Unlike previous studies that emphasize both read and write 

performance, we only focus on improving memory read 

efficiency to make MRI applications process faster. Our 

main idea is to minimize processor stalls by making read 

operation available during each refresh cycle. In other 

words, DR DRAM enables refresh and read operations to 

be done simultaneously.  

The proposed DR mechanism highlights two features: 

device refresh and data recovery. DR DRAM is a device 

refresh based memory since it only refreshes a specific 

DRAM device at a time. This distinguishes our work with 

conventional designs that refresh the same bank/row for all 

devices. DR DRAM is also a data recovery based memory 

since it further combines memory refresh with the Parity-

Check-Code (PCC) mechanism. It can recover the inacces-

sible data that resides on the device that is under refreshing. 

By making column read process independent of refresh 

operation, our system can unleash the full potential of 

DRAM read bandwidth and latency. Modern DRAMs typi-

cally have under-utilized redundant data storage area for 

fault-tolerance. DR can take advantage of this opportunity 

to boost performance without adding overhead. It does not 

require additional PINs on the CPU side as well.  

Overall, DR DRAM makes a novel trade-off between 

read and write performance for emerging memory read 

intensive tasks. It represents a kind of application-

transparent, hardware-oriented optimization scheme. It is 

configurable and easy to implement on traditional Dual 

Inline Memory Module (DIMM). It requires moderate ex-

tension on existing architecture and memory control.  

We evaluate our DR based on DRAMSim2. The results 

show that our design yields notable performance improve-

ment on both bandwidth and latency in synthetic trace-

based simulation. We also demonstrate that DR can benefit 

many real-world MRI tasks. We discuss potential hard-

ware/software methods that can further improve DR. This 

paper makes the following contributions: 

1) We propose DR DRAM, a novel enhanced DRAM 

module design for emerging memory read intensive tasks. 

It combines device-level refresh and data recovery to 

make read operation available during refresh cycle. 

2) We devise the protocol of DR DRAM and describe it 

in detail (including bank state change and state transition). 

The new memory protocol enables existing memory con-

troller to effectively perform device-level refresh 

3) We architect a novel memory module so as to sup-

port DR technique at the memory hardware level. We il-

lustrate the operating process of memory module.  

II. BACKGROUND 

A. Refresh Mechanism 

As Fig. 2 shows, the hierarchy of DIMM is made up of 

channel, rank, bank, row, and column. A row is the small-

est refresh unit in the bank and it is composed of multiple 

columns. A column is the smallest addressable unit and the 

memory controller accesses DRAM at column granularity. 

The data size of a column is as same as the device width. 

In a commercial DDRx device, the memory controller 

needs to send auto-refresh command during every refresh 

interval (tREFI). Typically, the retention time of data in 

DRAM cell is 64ms if the ambient temperature is less than 

85 degree Celsius or 32ms if the ambient temperature is 

higher than it [10]. The memory controller needs to send 

8192 refresh commands within data retention time, to make 

sure that all rows will be refreshed. tREFI for DDRx device 

is around 7.8us under 85 degree Celsius. The time of re-

fresh cycle (tRFC) is related to the number of rows to be 

refreshed in each refresh cycle. Some devices also support 

Fine Granularity refresh mode (FGR) for better trade-off 

between tREFI and tRFC [10]. 

Fig. 3 shows the refresh protocol for a particular bank. 

Before refresh, if the bank is in RowActivated state，the 

memory controller must send precharge command to reset 

the row amplifier. After precharge, the memory controller 

can send a refresh command. During a refresh cycle, the 

DRAM first reads row data into row amplifier then restores 

electron charge back to the capacity cell. The above two 

steps may repeat several times during a refresh cycle. Once 

finished, the bank state will return to Idle and it must be 

activated before next column read/write.  

B. MRI Applications 

Memory-read-intensive (MRI) applications are applica-

tions that are sensitive to memory read reference. They 

normally have the following two attributes: 1) consuming 

large amount of memory bandwidth and sensitive to 

memory access latency; 2) showing limited memory write 

reference activities, which means low write back rate (e.g., 

less than 10%) in the last level cache.  
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Figure 2: DRAM organization 
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Figure 3: Refresh timing for DRAM 

 



Data analytic applications such as neural network train-

ing and inference are sensitive to memory access latency. 

For example, when running inference application on a high 

performance server, raw data such as image data or video 

data are read sequentially from the memory. The memory 

read latency is very important when computation resources 

are abundant, since the processer can easily stall without 

data input. When the DRAM is refreshing, the processor 

has to wait hundreds of nanosecond to receive the raw data 

which cause a great impact on MRI applications.  

Another type of representative MRI application is link 

list traversal (LLT) like operations. This includes LLT, 

hash table look up, graph traversal, and etc. These opera-

tions are mainly bandwidth hungry due to fewer arithmetic 

operations. Their memory references are generally random 

with low spatial locality. In addition, since the required 

data is also smaller than the size of cache line, the unneces-

sary data transfer from the memory to the CPU unavoida-

bly wastes bus bandwidth [2]. Moreover, low spatial locali-

ty also causes frequent row amplifier switch between the 

RowActivated and Precharge state. That will further de-

grade performance and increase read latency.  

III. DESIGN FOR MRI TASKS 

In this work we intend to improve the read performance 

for MRI tasks by enhancing exiting DRAM modules. Fig. 4 

depicts our proposed designs.  

A. DR DRAM Design 

We propose DR DRAM, an application-specific DRAM 

that features device refresh and data recovery. Specifically, 

unlike tradition refresh mode (per-rank refresh or per-bank 

refresh), our design works at a fine-grained DRAM device 

level. Enlightened by the RAID3 technology, we devise a 

technique which enables data read during memory refresh. 

When a segment of data is unreachable due to refreshing, 

we can recover it through PCC and XOR operation.  

In general, we consider a memory system in which the 

data bus width is 64bits and device width is 16bits. To en-

sure that all the 64bits data can be accessed even during 

refresh cycle, we enlarge data width to 80bits by adding an 

additional DDR device (Device 0). To ensure that we can 

always access 64bits of data, at most one device can be in 

refresh cycle at any time. During the interval between two 

refresh cycles, we can access 80bits of data.   

As shown in Fig. 4, to support the device refresh and 

data recovery mechanism, we devised two modules on the 

memory controller: a XOR operation unit and a device se-

lection network (DSN). The XOR operation unit can gener-

ate parity check code during a column write process and 

recover inaccessible data in a column read process. The 

device selection network is mainly composed of several 

two-way multiplexers (MUX). It is used to select accessible 

devices and redirect data path. The MUXs can select A-

path by input 1 or select B-path by input 0.  

1) Column-Read Process 

Fig.4 also indicates the implement of refresh at device-

level and the process of data recovery when issuing a col-

umn-read command. The DSN only links accessible devic-

es. The input bits are “0100”, which indicates Device 1 is 

in refresh cycle. Then the MUXs will select route {A, B, B, 

B} and Device {0, 2, 3, 4} will read into Segments. The 

PCC (located in the Device 0) and the original data (located 

in Devices 1~4) are delivered to the XOR Operation Unit. 

As shown in Fig. 5, the inaccessible segment in Device 1 
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Figure 4: Overview of the DR DRAM system organization 
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(Data Segment 1) will be recovered and cached into an 

output buffer/register. Then, our position selection network 

(in Fig. 4) sends recovered data to its correct location. Fi-

nally, we get the whole column of data. 

2) Column-Write Process 

To ensure that all the data segments can be recovered 

in the read process during the refresh cycle, the column 

write process must write all the data including PCC into the 

memory. The column write command is only allowed dur-

ing the interval of DR refresh cycle. As DR DRAM re-

freshes more frequently, it may decrease write performance 

comparing with traditional refresh method. The original 

data is divided into 4 segments. The PCC is generated by 

the XOR Operation Unit. Our DSN only works under the 

column read operation, which means that all the 5 data 

segments are written into its individual device directly. 

Afterwards, The PCC is recorded in the Device 0 and the 

original data are stored in Devices 1~4. 

3) CPU Pin Issue 

In our design the DR DRAM has to control each de-

vice refresh individually. As our design packs devices into 

the memory module and the CPU interact with DIMM in-

terface, we can easily constrain the number of PINs within 

the memory module even if the CPU do not have additional 

PINs. Conventional DRAM module typically has multiple 

devices and they share address and command PINs. For DR 

DRAM, devices within a memory module no longer share 

control PINs and we do not introduce additional PINs on 

the CPU side. Our memory controller can encode refresh 

command and the designated device to a new command. 

The DIMM interface decodes the new command and sends 

refresh command to the designated device directly.  

B. DR Control Protocol 

In this part, we describe our initial implementation of 

the DR mechanism at the protocol level. Our refresh proto-

col determines when memory controller should send DR 

refresh command. We modify and extend the original bank 

states of the DRAM. We implement these bank states in the 

cycle-accurate DRAMSim2 simulator [11].  

The timing example of refresh protocol in DR mode is 

shown in figures 6(a) and 6(b). Our memory controller is 

designed to be fully aware of the detailed timing process 

specified by the protocol. In Fig. 6(a) we show the start 

timing of a particular device (i.e., Device-Ref). At the be-

ginning, all devices are in the same state. The states can be 

one of the following: allRowActivate, allPrecharge or al-

lIdle, which means all devices in RowActive state, Pre-

charge state and Idle state individually. The all prefix indi-

cates all devices are in same state. The postfix indicates 

which the state is. Once a refresh command arrives, the 

Device-Ref stalls and starts to refresh. However, other de-

vices maintain their initial states and continue their opera-

tion. From a bank’s perspective, its new state can be one of 

the following: refRowActivate, refPrecharge or refIdle. The 

ref prefix indicates that a device is in refresh cycle. The 

postfix indicates the state of the non-refresh devices. At the 

end of each refresh cycle, the memory controller deter-

mines the next bank states. Fig. 6(b) illustrates how these 

devices turn into allRowActive state when the refresh ends. 

Device-Ref should turn into RowActivate state at the end of 

the refresh cycle. At last all devices merge into a same state. 

Note that DR should guarantee at most one device dur-

ing a refresh cycle. Therefore, refresh parameters (tRFC 

and tREFI) must satisfy the following constraint: 

𝑡𝑅𝐹𝐶 < 𝑡𝑅𝐸𝐹𝐼 𝐷𝑒𝑣𝑖𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟⁄  

Violation of the above constraint may cause undesirable 

things when using the DR technique. 1) The refresh cycle 

will occupy the rows all the time, which will totally disable 

column write command. 2) A row may refresh multiple 

banks (or multiple data segments) during a refresh cycle, 

and consequently, the refreshing data cannot be recovered 

by XOR operation. At last the memory will become inac-

cessible for both read and write.  

Fig. 7 shows the maximum value that tRFC can reach 

across devices of different width. The restriction is large 

enough for x16 and x8. For a x4 device it shows that tRFC 

should be less than 433ns, which is hard to achieve. Thus, 

our DR technique is more suitable for memory modules 

using x8 and x16 devices. 

C. DR Implementation 

The detail implementation of DR may vary. In this part, 

we discuss the possible operating modes of DR. 

1) Original DR (DR) 

Like per-rank refresh, our original DR scheme refreshes 

a device across all banks in a particular rank. Similar to the 

per-rank refresh, DR performs synchronous refresh for all 

banks. Thus, it may cause performance degradation if the 

refresh rate becomes higher. As Fig. 8 shows, for x16 de-

vices (refresh rate is tREFI/5), the bandwidth degradation 

caused by synchronous refresh can be around 2.5%.  

2) DR at Asynchronous Mode (DR-A) 

To overcome the synchronous problem in original DR, 

one can implement DR in an asynchronous way. The re-

fresh operation for DR-A is on a per-bank basis and it is 

asynchronous among different banks. Like per-bank refresh, 



  

Figure 7: Timing restrictions 

on memory devices 

Figure 8: BW degeneration 

due to memory refresh 
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Refresh Command Interval 

a   refresh command only selects the particular bank instead 

of the entire rank. DR-A will not stall bank operation to 

waiting for refresh. Compared with original DR, DR-A is 

more fine-gained. Therefore, the memory controller has to 

generate increased number of refresh command. 

3) DR at Burst Refresh Mode (DR-B) 

The original DR and DR-A are both distributed refresh, 

which means a refresh cycle only refresh one or several 

rows. To reduce the number of refresh command, one can 

also apply burst refresh mode that refreshes all rows and all 

data cell in a single refresh cycle. The refresh command 

interval time (tREFI) for a particular device is 64ms.Also a 

refresh cycle (tRFC) can take very long time. Though DR-

B can achieve the best performance in principle, it may 

greatly decrease write performance.  

IV. OPTIMIZING DR DRAM 
DR DRAM seeks a better design trade-off between read 

and write performance for MRI applications. In this section 

we introduce two optimization schemes that minimize the 

design overhead on memory write operation.  

A. Col-Read Interrupt 

Column write operation can only be achieved when no 

device is refreshing. Therefore, we can increase the interval 

time between two refresh cycles to give more time for write 

transaction. DR uses an optimization scheme called col-

read interrupt to improve memory write performance. Tra-

ditionally, if a refresh command comes after column read 

operation, the refresh command should wait until the finish 

of read. Our optimization can interrupt read process on the 

device that is prepared to refresh. Once the column read 

operation is interrupted, the targeted device will enter the 

refresh cycle immediately without waiting for read. As the 

refresh cycle is fixed, an early start of a refresh cycle will 

cause an early end. Then the interval time between two 

refresh cycles are increased. Besides, col-read Interrupt 

does not influence data integrity due to the following data 

recovery process. It only makes one segment of data inac-

cessible during the read process.  

B. Bank-Aware Write 

Sometimes the impact of the col-read interrupt mecha-

nism is still limited. To further improve column-write per-

formance, we propose to schedule write transactions and 

trigger column write operation when bank is not busy.  This 

DR optimization scheme is call write-only-cache (WOC). 

Unlike operation interrupt, WOC locates in memory con-

troller and only manages write transaction. It stores column 

data and schedules write access operation. If the target bank 

is busy, the write transaction will be temporarily stored in 

WOC until the bank state becomes idle.  

Fig. 9 illustrates the control flow of the memory con-

troller with WOC. At the beginning of a cycle, the memory 

controller searches dirty blocks with Idle bank state. If such 

block is found, the memory controller will set clean bit for 

the block and push a WRITE command into the command 

queue. If no such block is found, memory controller will 

pop a transaction from transaction queue. The next step 

depends on the type of transaction. If it is WRITE transac-

tion, controller will add it into cache based on LFU policy. 

If it is READ operation with cache miss, the column data 

will be read from memory without cached into WOC. This 

mechanism can balance the col-write workload and im-

prove performance if there are write back operations.  

V. EVALUATION METHODOLOGY 
This section describes our experimental methodology. 

We evaluate DR from three different aspects: 1) synthetic 

trace-based simulation, 2) realistic workload measurement, 

and 3) hardware design overhead analysis.  

A. Basic Configuration 

We evaluate our design with a modified trace-based cy-

cle-accurate simulator base on DRAMSim2 [11]. We ex-

periment with different system configurations to verify the 

performance of DR. Table 1 summarizes some key parame-

ters we used. The timing parameter we used are referenced 

from recent work [9] and industry manual [12]. The DRAM 

device we evaluated is configured as a commercial DDR4 

system [12]. The parameters of memory controller are de-

rived from the default setting in DRAMSim2. We use the 

default setting of L1 cache in gem5. The parameters related 

to power estimation such as current values and voltage val-

ues come from micron [12].  

B. Synthetic Traces 

We first use synthetic traces to verify the effectiveness 

of our memory module design, as shown in Fig. 10. A trace 

generator pushes READ/WRITE transactions into a trans-

action queue at fixed intervals. The transaction queue is 
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Figure 9: Control flow diagram of DR optimization 

 



out-of-order with a read first policy. A bandwidth monitor 

locates at the frontend of the transaction queue. If the data 

flow is not blocked, the transaction queue will pop one 

transaction at each cycle. Then the transaction will translate 

into memory command with the help of a trace parser, a 

command scheduler and a protocol controller. The com-

mand scheduler accesses bank in a round-robin manner and 

sends commands to the memory module. For column read 

command, the memory module should send response data 

to a read return queue (RRQ). In the RRQ, a latency moni-

tor can calculate the latency of READ transaction. 

For synthetic trace based evaluation, we experiment 

with four configurations: intensive read, moderate read, 

synthetic combination, and FGR mode. By sending traces to 

DRAMSim2 at different intervals, we can obtain the band-

width and latency performance of our DRAM module.  

We evaluate intensive read and moderate read by ad-

justing the trace generation cycle. In order to verify the 

results of intensive read, we set the trace generation cycle 

to 1ns. Such a short generation cycle will make transaction 

queue filling with read task. For moderate read, we make 

command queue and transaction queue unblocked by set-

ting trace generation cycle larger (8ns, 16ns, 32 ns and 

64ns). Although memory bandwidth will not be fully uti-

lized, we can get more reasonable latency result due to 

shorter queue waiting time. We evaluate intensive read and 

moderate read under both random read and sequential read.  

Our synthetic combination traces include both read 

and write operations. We use it to verify the impact of 

WRITE (col-write) operation. Our simulator is configured 

through mixing write transactions with read transaction 

based on intensive read. The ratio of write and read is be-

tween 10% and 0.001%. The configuration of our trace 

reference is derived from our target application. We store 

the input data sequentially in the DRAM. We assume the 

memory write trace is randomly distributed in the memory.  

We consider data analytic accelerators that have on-chip 

storage. The on-chip storage allows accelerators to calcu-

late locally and avoid aggressive memory reference. The 

size of the output data is far less than the input data. Most 

of the input data can be abandoned after finishing pro-

cessing. 

We also evaluate MRI tasks under FGR (Fine Granular-

ity Refresh) mode, as it is the state-of-art technique in the 

DRAM industry. FGR is a technique in DDR4 SDRAM 

which can make a trade-off between refresh latency and 

frequency. According to the JEDEC standard [10], DDR4 

has 1X, 2X and 4X refresh modes. From 1X to 4X, the fre-

quency of sending refresh command becomes higher and 

the refresh cycle becomes longer.  

C. Realistic Workload 

We further evaluate our design using real workload on 

gem5 [13]. Our CP U model is single core timing CPU 

works at 1GHz with 1MB cache size. The memory model 

is modified from simple memory module. The setting of 

simple memory model can equal to DDR3-1600 with only 

one bank. We use three different workloads: CNN infer-

ence, linked-list traversal and PageRank. As previous sec-

tion describes, these workloads are read intensive with low 

cache write back rate. We use Ligra [14] as framework to 

run PageRank benchmark. The input graph data is synthetic 

rMatGraph with more than 1M edges and generated by 

Ligra itself. We use LLU benchmark [15] to justify linked-

list traversals applications. The linked-list we generated in 

LLU benchmark has 16M nodes with 32Byte node size. 

CNN inference workload is hand-configured with MNIST 

input file. To ensure accuracy, our simulation excludes data 

loading process to make sure simulated instructions are 

located in algorithm area. 

D. Area and Energy  

We also evaluate the runtime cost and hardware cost of 

DR DRAM. We mainly look at the energy and chip area 

overhead. We also discuss methods for improving the 

DRAM chip area efficiency of DR DRAM technique. 

DRAMSim2 can estimate power consumption at the 

memory operation level. By setting DDR4 current drawn 

information and MRI sequence trace file, we can generate 

energy utilization data under different modes of DR.  

VI. RESULTS 

A. Impact on Intensive Read 

We first evaluated intensive read operation (MRI tasks) 

on DR DRAM from the perspective of both bandwidth and 

latency. Fig. 11 and Fig. 12 present our results for both 

sequential access and random access. We consider different 

DDR4 capacities and different DR modes (detailed in Sec-

tion 3.5). We use micron DDR4 with per-bank refresh as 

TABLE I: EVALUATED MEMORY SYSTEMS 

 Parameter Configuration 

DRAM 

Refresh Timing 
tREFI=7800ns; 

tRFC=890ns[9], 550ns, 350ns[12]; 

Architecture 

DDR4: 2400E; Device Width:16bits; Col-

umns per Row:1024; Num of Bank:16; 

Num of Rank:1; 

Memory 

Controller 

Policy Open Row Policy; 

Queue Size 
Command Queue Size: 256; 

Transaction Queue Size: 64; 

Address Mapping channel:row:col:bank:rank; 

Scheduler FR-BRR; 

Write Only 

Cache 

Latency(cycle) 
Tag Latency: 2; Response Latency: 2; 

Data Latency: 2; 

Size 
Cache Size: 64KB; Cache Line Size: 64B; 

Cache Associativity: 1; 
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Figure 10: Implementation of trace-based simulation 

 



our baseline and adopt the refresh timing parameters of per-

bank refresh for DR DRAM. Each group of result is nor-

malized to the baseline.  

As shown in the figures, the proposed DR technique has 

better performance on both bandwidth and latency. For 

random read on the 32Gb device, the bandwidth of both 

DR and DR-A can outperform the baseline by around 12%.  

For sequential read, we observed some interesting re-

sults. The performance of original DR even worse than our 

baseline. The main reason is that DR uses synchronous 

refresh among banks, which means that all banks should 

reach to the idle state before refresh. As a result, it will 

degrade the performance on both random read and sequen-

tial read access patterns.  

However, sequential read suffers much more impact 

than random read. This is because memory cell refresh on 

sequence read will block operations on all banks before the 

refresh cycle, while random read only block a few banks. 

Besides, banks activate different rows frequently due to the 

low spatial locality of random access. In this case, these 

banks are more likely to enter into the idle state which can 

alleviate state transition cost.  

By comparing different DR modes, we can see that the 

way we perform device-level refresh matters. As expected, 

DR-A outperforms DR greatly due to the asynchronous 

refresh operation. Overall, DR-B shows the best latency 

result. This is because that DR-B always sends the fewest 

refresh commands during operation. DR-B can nearly elim-

inate the refresh overhead. It almost gets the highest per-

formance on both bandwidth and latency for MRI tasks.  

B. Impact on Moderate Read 

The memory channel faces less contention under mod-

erate read operations. The bandwidth utilization of different 

DR implementation methods mainly depends on the query 

arrival rate. We control the simulation time to be more than 

30ms to improve the accuracy. In the following discussion 

we mainly focus on read latency (the time needed to return 

the data) result.   

Fig. 13 and Fig. 14 show the read latency of a 32Gb DR 

DRAM under different trace generation cycles (8ns to 64 

ns) and different FGR modes. As we can see, in most cases, 

the latency of moderate read in DR can get an improvement 

from 50% to more than 60%, which is a significant im-

provement compared to the result of intensive read. Nor-

mally, the read latency is between 70ns to 200ns in our 

baseline. While in DR, the latency is between 35ns to 80ns. 

Latency in random read is a little bit larger than sequential 

read latency due to the row activate operation. 

Note that sometimes the system latency can be higher 

than 1000ns (e.g., when the trace generation cycle is 8ns in 

Fig. 14) in our design. The reason is that our evaluated sys-

tem keeps stressing the memory subsystem by continuously 

generating memory access queries. In this case, both trans-

action queue and command queue are fully filled. There-

fore, read transactions start to spend much more time on 

waiting in the queue. However, such a long latency may not 

happen in the real world since the processor may already 

stall at certain point.  

C. Impact of Memory Write 

For MRI tasks, the write back rate is much smaller 

compares to traditional applications on high performance 

CPU. The write back rate is 0.001% ~ 10%. It can be sys-

tems that have large memory read references with most of 

the temporary data updated in on-chip memory.   

Fig. 15 shows the maximum bandwidth when we mix 

read with write transactions. The horizontal axis indicates 

the ratio between write number and read number in our 

trace file. The ratio also equals to the rate of write back of 

the last level cache. The device we evaluated is a 32Gb x16 

DDR4 DRAM.  When the ratio of write back is 10%, DR-

    

(a) Random read (b) Sequential read (a) Random read (b) Sequential read 

Figure 11: Bandwidth results of MRI tasks Figure 12: Latency results of MRI tasks 

  

Figure 13: Latency of moderate random read Figure 14: Latency of moderate sequential read 

 

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

8Gb 16Gb 32Gb

N
o
rm

a
li

ze
d

 B
a
n

d
w

d
it

h
 

Device Capcity 

Baseline DR DR-A DR-B

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

8Gb 16Gb 32Gb

N
o
rm

a
li

ze
d

 B
a
n

d
w

d
it

h
 

Device Capcity 

Baseline DR DR-A DR-B

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

8Gb 16Gb 32Gb

N
o
rm

a
li

ze
d

 L
a
te

n
cy

 

Device Capcity 

Baseline DR DR-A DR-B

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

8Gb 16Gb 32Gb

N
o
rm

a
li

ze
d

 L
a
te

n
cy

 

Device Capcity 

Baseline DR DR-A DR-B

1

10

100

1000

8ns 16ns 32ns 64ns 8ns 16ns 32ns 64ns 8ns 16ns 32ns 64ns

1X mode 2X mode 4X mode

L
a

te
n

cy
 (

n
s)

 

FGR Mode and Trace Generate Interval 

Baseline DR DR-A DR-B

1

10

100

1000

8ns 16ns 32ns 64ns 8ns 16ns 32ns 64ns 8ns 16ns 32ns 64ns

1X mode 2X mode 4X mode

L
a

te
n

cy
 (

n
s)

 

FGR Mode and Trace Generate Interval 

Baseline DR DR-A DR-B



A and DR-B are much worse than our baseline. Only DR-

WOC (DR-A plus write only cache) slightly outperforms 

our baseline. For a write back ratio of 1%, DR-A and DR-

WOC achieve their maximum bandwidth, while DR-B is 

still write-sensitive due to the long refresh cycle. DR-B will 

match or even outperform our baseline as the proportion of 

write back getting smaller. It also indicates DR-B is not 

suitable for high write back rate. The reason is the com-

mand queue under DR-B can be easily filled.  

D. FGR Read Bandwidth 

We find that the FGR technique also has a great impact 

on read performance. Fig. 16 shows the intensive read 

bandwidth improvement for FGR in a 32Gb DDR4 based 

on DR-A mode. As we can see, the performance improve-

ment grows from the 1X mode to the 4X mode. The reason 

is that the overall time occupied by refresh cycle becomes 

larger on high refresh rate mode. While the philosophy of 

DR DRAM is to eliminate refresh occupation time through 

parallelize read operation and refresh operation. Therefore, 

4X mode and 2X mode get more improvement.   

E. Real Workload Result 

In addition to synthetic trace-based simulation, we also 

evaluate our design with realistic workload. The write back 

rate depends on both application feature and hardware plat-

form. In our experiment, LLT has the smallest write back 

rate with nearly no cache write back. The write back rate 

for CNN is the biggest one, with 2.23% rate. The write 

back rate for PageRank is 2.03%.  

There is little difference between DR-A and original 

DR since our memory can be treated as DRAM with only 

one bank. Further, we do not distinguish different DR 

modes. Fig. 17 illustrates the instruction per second (IPS) 

among different memory configurations (different density). 

The data labels above the bar chart indicate the perfor-

mance improvement of DR. As we can see, all applications 

can benefit from the proposed memory optimization 

scheme and the degree of improvement becomes better for 

denser device. The instruction per second can further in-

crease under lower write back rate.   

F. Power and Area Cost  

The DR DRAM design requires moderate hardware ad-

dition, which can increase energy consumption as well. We 

measure system efficiency using throughput per watt 

(TPW). Fig. 18 shows our results. 

 Although all DR refresh mechanisms can decrease en-

ergy utilization, the degradation level can be acceptable. 

For DR-A and DR-B, the energy utilization is only a bit 

lower than our baseline, which has around 2% degradation. 

However, for original DR, the energy utilization can de-

crease by 9%. That is mainly because the bandwidth of 

original DR is far less than DR-A and DR-B.  

We investigate area cost on different types of DIMM. 

For memory modules such as registered-DIMM, they al-

ready have additional devices to store error check code 

(ECC) [16]. They typically occupy 8 parity bits for 64 data 

bits. We can share and reuse these devices for DR. In this 

case, we can avoid introducing area overhead on x8 or x4 

devices. The only thing is that the ECC function and the 

DR function cannot be enabled simultaneously.  

For other solutions, the area overhead can be illustrated 

in Fig. 19. DIMM without ECC function (Unbuffered–

DIMM and Small-Outline-DIMM) needs 25% additional 

area cost on a x16 device and 12.5% additional area cost on 

a x8 device. For those DIMMs that already have ECC stor-

age, if we don’t want share additional device, it will intro-

duce 20% additional area cost on a x16 device and 11% 

additional area cost on a x8 device.  

VII. RELATED WORK 
In this section we discuss prior works that are most rel-

evant to our work and highlight our novelties. The novelties 

of our work are as follows: 1) We propose to use device 

refresh and data recovery to parallelize DRAM refresh and 

read operation. 2) We explored hardware design at the 

memory module level and we devise a new memory access 

protocol to control DR DRAM. 

A. Refresh Optimization 

These works can be classified into three categories: 

1) Software-based Design 

Refresh scheduling can be controlled at the software 

level. Isen and Hohn show that many rows in the DRAM 

do not store valid data. Therefore, these rows are unneces-

sary to be refreshed. They propose ESKIMO [17], which 

use malloc/free operation and DRAM hardware design to 

control refresh schedule. Similar ideas have been seen in 

different real-world designs [18]. Flikker et al. [19] divided 

DRAM into several areas that have different refresh rates. 

If a page is important, it will be allocated into high-refresh-

rate area. Kotra et al. [9] used hardware/software co-design 

   

Figure 15: Impact of write Figure 16: Impact of FGR Figure 17: Realistic workload results 
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approach to allocate DRAM storage. Unlike the above 

works, we focus on system hardware. Our design modifies 

the memory controller and DRAM module. 

2) Command Scheduling 

If a row has been precharged or activated recently, there 

is no need to be refreshed. DTail [20] uses low storage cost 

to track storage information and maximizes refresh reduc-

tion. Flexible-Auto-Refresh [21] combines access record 

and data retention time. RAIDR [22] records data retention 

time and classifies rows into different refresh rate. Adap-

tive Refresh and EFGE uses fine-grained refresh (FGR) [10] 

which can improve refresh efficiency on DDR4. Our tech-

nique is not refresh command scheduling based. We extend 

DRAM module and memory controller to implement DR. 

3) Microarchitecture Solution 

Optimizing refresh overhead at the microarchitecture 

level is also a widely used solution. Researchers from CMU 

and Intel try to parallelize refresh activities with data access 

through microarchitecture design on DRAM device [23]. 

Choi et al. [24] reduce enable Fast-Refresh through Multi-

ple Clone Row DRAM technique. Recently, non-blocking 

memory refresh [25] also combines data recovery and addi-

tional chip to alleviate refresh overhead. Differently, this 

work focuses on detailed implementation at the protocol 

and hardware level. Besides, we proposed a new solution to 

overcome memory write problem. 

B. Processing-In-DRAM 

Many applications today rely on memory-intensive op-

erations such as LLT and graph processing [26]. There 

have been prior works improve job performance through 

optimizing DRAM architecture or using Processing-in-

Memory (PIM) technique. Gather Scatter-DRAM [27] can 

access stride address pattern within a single read/write 

command. Ambit [28] combines row amplifier with accel-

erator to perform bulk bitwise operation. Some other works 

[5] use Hybrid Memory Cube technology and add many 

logic modules. Our works does not offload any arithmetic 

operation to memory. We optimize memory access through 

eliminating refresh overhead on memory read transactions. 

VIII. CONCLUSIONS  
The memory IO bandwidth will become a crucial bot-

tleneck for future memory-read-intensive applications. In 

this paper we propose DR DRAM, a novel memory design 

which can parallelize refresh operations and read opera-

tions. Besides, our approach avoids the huge modification 

on the software stack. We implement our design both at the 

memory module level and the memory protocol level. Us-

ing cycle-accurate simulators and various workloads, we 

show that DR improves memory read bandwidth by 12% 

and reduces latency overhead by 50~60%. We expect that 

MRI applications such as CNN, PageRank and LLT can 

greatly benefit from our design with affordable energy and 

area overhead. 
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Figure 18: Energy utilization Figure 19: Normalized area 
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