
DR DRAM: Accelerating Memory-Read-Intensive Applications

Yuhai Cao1, Chao Li1, Quan Chen1, Jingwen Leng1, Minyi Guo1, Jing Wang2, and Weigong Zhang2

Department of Computer Science and Engineering, Shanghai Jiao Tong University

Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University

cyh-shanghai@sjtu.edu.cn, {lichao, chen-quan, leng-jw, guo-my}@cs.sjtu.edu.cn, {jwang, zwg771}@cnu.edu.cn

Abstract—Today, many data analytic workloads such as graph

processing and neural network desire efficient memory read

operation. The need for preprocessing various raw data also

demands enhanced memory read bandwidth. Unfortunately, due

to the necessity of dynamic refresh, modern DRAM system has

to stall memory access during each refresh cycle. As DRAM

device density continues to grow, the refresh time also needs to

extend to cover more memory rows. Consequently, DRAM re-

fresh operation can be a crucial throughput bottleneck for

memory read intensive (MRI) data processing tasks.
To fully unleash the performance of these applications, we

revisit conventional DRAM architecture and refresh mechanism.

We propose DR DRAM, an application-specific memory design

approach that makes a novel tradeoff between read and write

performance. Simply put, DR has two layers of meaning: device

refresh and data recovery. It aims at eliminating stall by ena-

bling read and refresh operations to be done simultaneously.

Unlike traditional schemes, DR explores device refresh that only

refreshes a specific device at a time. Meanwhile, DR increases

read efficiency by recovering the inaccessible data that resides

on a device under refreshing. Our design can be implemented

on existing redundant data storage area on DRAM. In this pa-

per we detail DR’s architecture and protocol design. We evalu-

ate it on a cycle accurate simulator. Our results show that DR

can nearly eliminate refresh overhead for memory read opera-

tion and brings up to 12% extra maximum read bandwidth and

50~60% latency improvement on present DRR4 device.

Keywords— DRAM refresh; read-intensive; data analysis;

memory bandwidth; redundant data storage

I. INTRODUCTION
The memory read bandwidth has become an ever-

tightening computing resource today, especially for appli-

cations that generate limited write operations on very large

input data. In the era of intelligent systems and edge com-

puting, it is not unusual that the ratio between output and

input data can be very small. For example, data clustering

applications may involve an input audio/image file with

size in many KB, while output label is only several bytes.

A neural network training algorithm may take thousands of

training dataset, while the model data can be stored in on-

chip cache. Some of the in-memory database applications

are also focused on analytic operations that require no writ-

ing to the database [1]. Many basic operations such as

linked-list traversal (LLT) and adjacent table access (graph

processing algorithms) exhibit low memory write-to-read

ratio as well. They are typically hungry for random read

bandwidth with few data update, exchange and write back.

Efficient memory system design is crucial for accelerat-

ing emerging memory read intensive (MRI) applications.

They need to read raw data from the memory sequentially

without frequent write back. In the above scenarios, data

movement from memory to processor dominates the per-

formance. Oftentimes, these applications are read-latency-

sensitive. As memory access latency increases, the compu-

tation tasks can be easily blocked, which will greatly de-

grade data processing throughput.

There are mainly two ways to optimize memory band-

width in the literature. 1) Accelerator designers use on-chip

memory to perform computation locally [2, 3]. While on-

chip memory has limited storage space and the content de-

livery speed still depends on off-chip memory bandwidth. 2)

Some papers propose to move processing close to the stor-

age system, namely, processing-in-memory (PIM) and

near-data processing (NDP) [4, 5]. These techniques often

require special hardware (e.g., HMC, 3D-stack memory) as

the platform, which are still under rapid development and

not likely to be widely adopted quickly. Although emerging

persistent memory (PM) devices provide DRAM-like read

latency, they could introduce huge design complexity to the

OS and software stack due to the unique property of persis-

tent data storage [6,7,8].

In this work we explore an alternative design approach

that could enhance DRAM read throughput. We attack an

important underlying root cause of the problem: the

memory refresh itself. Memory controller generates refresh

operations periodically to recharge voltage. The refresh

operation locks DRAM devices and stall access.

The overhead caused by refresh cannot be ignored. In

Fig. 1(a), the performance overhead due to refresh grows

rapidly as DRAM density increases. For a 64Gb DDR4

device, the time spends on refresh can be over 20%. If am-

bient temperature increases, the refresh frequency may

double. In Fig. 1(b) we compare different modes of Fine

Granularity Refresh (FGR) [10] with an ideal case that has

no refresh overhead. In the worst case, we observe 23%

degradation of the maximum bandwidth. Thus, refresh can

greatly impact read bandwidth especially when the device

becomes denser.

(a) Time occupied by refresh (b) BW and latency of a 8Gb DDR4
Figure 1: Performance impact of DRAM refresh

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1
G

b

2
G

b

4
G

b

8
G

b

1
6
G

b

3
2
G

b

6
4
G

b

T
im

e
O

cc
u

p
y
 b

y
 r

ef
re

sh

Device density

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1X 2X 4X 1X 2X 4X

0℃<T<85℃ 85℃<T<95℃

Fine Granularity Refresh mode

Bandwidth decrease

Latency increase

The driven insight of our work is that the refresh effi-

ciency of traditional DRAM system becomes incommensu-

rate with its performance goals for some of the emerging

applications. It is important to re-think memory design and

tap into application-specific DRAM architecture.

We propose DR DRAM, an enhanced DRAM module.

Unlike previous studies that emphasize both read and write

performance, we only focus on improving memory read

efficiency to make MRI applications process faster. Our

main idea is to minimize processor stalls by making read

operation available during each refresh cycle. In other

words, DR DRAM enables refresh and read operations to

be done simultaneously.

The proposed DR mechanism highlights two features:

device refresh and data recovery. DR DRAM is a device

refresh based memory since it only refreshes a specific

DRAM device at a time. This distinguishes our work with

conventional designs that refresh the same bank/row for all

devices. DR DRAM is also a data recovery based memory

since it further combines memory refresh with the Parity-

Check-Code (PCC) mechanism. It can recover the inacces-

sible data that resides on the device that is under refreshing.

By making column read process independent of refresh

operation, our system can unleash the full potential of

DRAM read bandwidth and latency. Modern DRAMs typi-

cally have under-utilized redundant data storage area for

fault-tolerance. DR can take advantage of this opportunity

to boost performance without adding overhead. It does not

require additional PINs on the CPU side as well.

Overall, DR DRAM makes a novel trade-off between

read and write performance for emerging memory read

intensive tasks. It represents a kind of application-

transparent, hardware-oriented optimization scheme. It is

configurable and easy to implement on traditional Dual

Inline Memory Module (DIMM). It requires moderate ex-

tension on existing architecture and memory control.

We evaluate our DR based on DRAMSim2. The results

show that our design yields notable performance improve-

ment on both bandwidth and latency in synthetic trace-

based simulation. We also demonstrate that DR can benefit

many real-world MRI tasks. We discuss potential hard-

ware/software methods that can further improve DR. This

paper makes the following contributions:

1) We propose DR DRAM, a novel enhanced DRAM

module design for emerging memory read intensive tasks.

It combines device-level refresh and data recovery to

make read operation available during refresh cycle.

2) We devise the protocol of DR DRAM and describe it

in detail (including bank state change and state transition).

The new memory protocol enables existing memory con-

troller to effectively perform device-level refresh

3) We architect a novel memory module so as to sup-

port DR technique at the memory hardware level. We il-

lustrate the operating process of memory module.

II. BACKGROUND

A. Refresh Mechanism

As Fig. 2 shows, the hierarchy of DIMM is made up of

channel, rank, bank, row, and column. A row is the small-

est refresh unit in the bank and it is composed of multiple

columns. A column is the smallest addressable unit and the

memory controller accesses DRAM at column granularity.

The data size of a column is as same as the device width.

In a commercial DDRx device, the memory controller

needs to send auto-refresh command during every refresh

interval (tREFI). Typically, the retention time of data in

DRAM cell is 64ms if the ambient temperature is less than

85 degree Celsius or 32ms if the ambient temperature is

higher than it [10]. The memory controller needs to send

8192 refresh commands within data retention time, to make

sure that all rows will be refreshed. tREFI for DDRx device

is around 7.8us under 85 degree Celsius. The time of re-

fresh cycle (tRFC) is related to the number of rows to be

refreshed in each refresh cycle. Some devices also support

Fine Granularity refresh mode (FGR) for better trade-off

between tREFI and tRFC [10].

Fig. 3 shows the refresh protocol for a particular bank.

Before refresh, if the bank is in RowActivated state，the

memory controller must send precharge command to reset

the row amplifier. After precharge, the memory controller

can send a refresh command. During a refresh cycle, the

DRAM first reads row data into row amplifier then restores

electron charge back to the capacity cell. The above two

steps may repeat several times during a refresh cycle. Once

finished, the bank state will return to Idle and it must be

activated before next column read/write.

B. MRI Applications

Memory-read-intensive (MRI) applications are applica-

tions that are sensitive to memory read reference. They

normally have the following two attributes: 1) consuming

large amount of memory bandwidth and sensitive to

memory access latency; 2) showing limited memory write

reference activities, which means low write back rate (e.g.,

less than 10%) in the last level cache.

Device 2 Device 3 Device 4

Rank

L
L

C

C
P

U

M
em

o
ry

C
o

n
tro

ller

Data Bus

Cmd Bus

Addr Bus

Device 1 Device 2 Device 3 Device 4

CPU Socket

Rank

DRAM Module

Bank 1

Bank 2

Bank 3

Bank 4

Figure 2: DRAM organization

R/W Precharge RowActiveRefreshDevices R/W

Bank
State

RowActived Precharging Refreshing (tRFC) RowActiving RowActived

t

Figure 3: Refresh timing for DRAM

Data analytic applications such as neural network train-

ing and inference are sensitive to memory access latency.

For example, when running inference application on a high

performance server, raw data such as image data or video

data are read sequentially from the memory. The memory

read latency is very important when computation resources

are abundant, since the processer can easily stall without

data input. When the DRAM is refreshing, the processor

has to wait hundreds of nanosecond to receive the raw data

which cause a great impact on MRI applications.

Another type of representative MRI application is link

list traversal (LLT) like operations. This includes LLT,

hash table look up, graph traversal, and etc. These opera-

tions are mainly bandwidth hungry due to fewer arithmetic

operations. Their memory references are generally random

with low spatial locality. In addition, since the required

data is also smaller than the size of cache line, the unneces-

sary data transfer from the memory to the CPU unavoida-

bly wastes bus bandwidth [2]. Moreover, low spatial locali-

ty also causes frequent row amplifier switch between the

RowActivated and Precharge state. That will further de-

grade performance and increase read latency.

III. DESIGN FOR MRI TASKS

In this work we intend to improve the read performance

for MRI tasks by enhancing exiting DRAM modules. Fig. 4

depicts our proposed designs.

A. DR DRAM Design

We propose DR DRAM, an application-specific DRAM

that features device refresh and data recovery. Specifically,

unlike tradition refresh mode (per-rank refresh or per-bank

refresh), our design works at a fine-grained DRAM device

level. Enlightened by the RAID3 technology, we devise a

technique which enables data read during memory refresh.

When a segment of data is unreachable due to refreshing,

we can recover it through PCC and XOR operation.

In general, we consider a memory system in which the

data bus width is 64bits and device width is 16bits. To en-

sure that all the 64bits data can be accessed even during

refresh cycle, we enlarge data width to 80bits by adding an

additional DDR device (Device 0). To ensure that we can

always access 64bits of data, at most one device can be in

refresh cycle at any time. During the interval between two

refresh cycles, we can access 80bits of data.

As shown in Fig. 4, to support the device refresh and

data recovery mechanism, we devised two modules on the

memory controller: a XOR operation unit and a device se-

lection network (DSN). The XOR operation unit can gener-

ate parity check code during a column write process and

recover inaccessible data in a column read process. The

device selection network is mainly composed of several

two-way multiplexers (MUX). It is used to select accessible

devices and redirect data path. The MUXs can select A-

path by input 1 or select B-path by input 0.

1) Column-Read Process

Fig.4 also indicates the implement of refresh at device-

level and the process of data recovery when issuing a col-

umn-read command. The DSN only links accessible devic-

es. The input bits are “0100”, which indicates Device 1 is

in refresh cycle. Then the MUXs will select route {A, B, B,

B} and Device {0, 2, 3, 4} will read into Segments. The

PCC (located in the Device 0) and the original data (located

in Devices 1~4) are delivered to the XOR Operation Unit.

As shown in Fig. 5, the inaccessible segment in Device 1

Rank
Device 1 Device 2 Device 3 Device 4

Rank

Bank 1

Bank 2

Bank 3

Bank 4

Device 0

Data Line

Addr & Cmd

Bus

Memory Controller

XOR Operation Unit

Device Selection Network

DIMM Interface
Addr & Cmd

Line

Data Bus

DIMM

Data Seg 2 Data Seg 3 Data Seg 4Check Seg

Result

Data Seg 1 Data Seg 2 Data Seg 3 Data Seg 4

XOR

Operation

Position

Selection

Recovered

Data

1

Seg 1 Seg 2 Seg 3 Seg 4

Device 0 Device 1 Device 2 Device 3 Device 4

Refresh Bit For

Device 0

Refresh Bit For

Device 1

Refresh Bit For

Device 2

Refresh Bit For

Device 3

MUXA(1) B(0)
S

MUXA(1) B(0)
S

MUXA(1) B(0)
S

MUXA(1) B(0)
S

Figure 4: Overview of the DR DRAM system organization

Refreshing Device2 Device3 Device4

R
a
n

k

Bank 1

Bank 2

Bank 3

Bank 4

Device0
Figure 5: DR DRAM read process

Write Precharge Refresh

Write Read Precharge

Time

Time

Read is available

REFcmd

All in same state
 when no refresh

allRowActive refRowActive refPrecharge

Read

Device-Ref

Other

Bank
State

Devices

(a) Refresh start

Refresh RowActive

Read Read Read Write

Device-Ref

 Others

Time

Time

Bank

State
refRowActive allRowActive

Write

All Devices in same stateDevices in different states

(b) Refresh end

Figure 6: DR DRAM timing

(Data Segment 1) will be recovered and cached into an

output buffer/register. Then, our position selection network

(in Fig. 4) sends recovered data to its correct location. Fi-

nally, we get the whole column of data.

2) Column-Write Process

To ensure that all the data segments can be recovered

in the read process during the refresh cycle, the column

write process must write all the data including PCC into the

memory. The column write command is only allowed dur-

ing the interval of DR refresh cycle. As DR DRAM re-

freshes more frequently, it may decrease write performance

comparing with traditional refresh method. The original

data is divided into 4 segments. The PCC is generated by

the XOR Operation Unit. Our DSN only works under the

column read operation, which means that all the 5 data

segments are written into its individual device directly.

Afterwards, The PCC is recorded in the Device 0 and the

original data are stored in Devices 1~4.

3) CPU Pin Issue

In our design the DR DRAM has to control each de-

vice refresh individually. As our design packs devices into

the memory module and the CPU interact with DIMM in-

terface, we can easily constrain the number of PINs within

the memory module even if the CPU do not have additional

PINs. Conventional DRAM module typically has multiple

devices and they share address and command PINs. For DR

DRAM, devices within a memory module no longer share

control PINs and we do not introduce additional PINs on

the CPU side. Our memory controller can encode refresh

command and the designated device to a new command.

The DIMM interface decodes the new command and sends

refresh command to the designated device directly.

B. DR Control Protocol

In this part, we describe our initial implementation of

the DR mechanism at the protocol level. Our refresh proto-

col determines when memory controller should send DR

refresh command. We modify and extend the original bank

states of the DRAM. We implement these bank states in the

cycle-accurate DRAMSim2 simulator [11].

The timing example of refresh protocol in DR mode is

shown in figures 6(a) and 6(b). Our memory controller is

designed to be fully aware of the detailed timing process

specified by the protocol. In Fig. 6(a) we show the start

timing of a particular device (i.e., Device-Ref). At the be-

ginning, all devices are in the same state. The states can be

one of the following: allRowActivate, allPrecharge or al-

lIdle, which means all devices in RowActive state, Pre-

charge state and Idle state individually. The all prefix indi-

cates all devices are in same state. The postfix indicates

which the state is. Once a refresh command arrives, the

Device-Ref stalls and starts to refresh. However, other de-

vices maintain their initial states and continue their opera-

tion. From a bank’s perspective, its new state can be one of

the following: refRowActivate, refPrecharge or refIdle. The

ref prefix indicates that a device is in refresh cycle. The

postfix indicates the state of the non-refresh devices. At the

end of each refresh cycle, the memory controller deter-

mines the next bank states. Fig. 6(b) illustrates how these

devices turn into allRowActive state when the refresh ends.

Device-Ref should turn into RowActivate state at the end of

the refresh cycle. At last all devices merge into a same state.

Note that DR should guarantee at most one device dur-

ing a refresh cycle. Therefore, refresh parameters (tRFC

and tREFI) must satisfy the following constraint:

𝑡𝑅𝐹𝐶 < 𝑡𝑅𝐸𝐹𝐼 𝐷𝑒𝑣𝑖𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟⁄

Violation of the above constraint may cause undesirable

things when using the DR technique. 1) The refresh cycle

will occupy the rows all the time, which will totally disable

column write command. 2) A row may refresh multiple

banks (or multiple data segments) during a refresh cycle,

and consequently, the refreshing data cannot be recovered

by XOR operation. At last the memory will become inac-

cessible for both read and write.

Fig. 7 shows the maximum value that tRFC can reach

across devices of different width. The restriction is large

enough for x16 and x8. For a x4 device it shows that tRFC

should be less than 433ns, which is hard to achieve. Thus,

our DR technique is more suitable for memory modules

using x8 and x16 devices.

C. DR Implementation

The detail implementation of DR may vary. In this part,

we discuss the possible operating modes of DR.

1) Original DR (DR)

Like per-rank refresh, our original DR scheme refreshes

a device across all banks in a particular rank. Similar to the

per-rank refresh, DR performs synchronous refresh for all

banks. Thus, it may cause performance degradation if the

refresh rate becomes higher. As Fig. 8 shows, for x16 de-

vices (refresh rate is tREFI/5), the bandwidth degradation

caused by synchronous refresh can be around 2.5%.

2) DR at Asynchronous Mode (DR-A)

To overcome the synchronous problem in original DR,

one can implement DR in an asynchronous way. The re-

fresh operation for DR-A is on a per-bank basis and it is

asynchronous among different banks. Like per-bank refresh,

Figure 7: Timing restrictions

on memory devices

Figure 8: BW degeneration

due to memory refresh

0

400

800

1200

1600

x16 x8 x4

tR
F

C
 T

im
e

R
es

tr
ic

ti
o
n

 (
n

s)

Device Width

96%

97%

98%

99%

100%

tREFI tREFI/2 tREFI/4 tREFI/8

N
o
rm

a
li

ze

B
a
n

d
w

id
th

Refresh Command Interval

a refresh command only selects the particular bank instead

of the entire rank. DR-A will not stall bank operation to

waiting for refresh. Compared with original DR, DR-A is

more fine-gained. Therefore, the memory controller has to

generate increased number of refresh command.

3) DR at Burst Refresh Mode (DR-B)

The original DR and DR-A are both distributed refresh,

which means a refresh cycle only refresh one or several

rows. To reduce the number of refresh command, one can

also apply burst refresh mode that refreshes all rows and all

data cell in a single refresh cycle. The refresh command

interval time (tREFI) for a particular device is 64ms.Also a

refresh cycle (tRFC) can take very long time. Though DR-

B can achieve the best performance in principle, it may

greatly decrease write performance.

IV. OPTIMIZING DR DRAM
DR DRAM seeks a better design trade-off between read

and write performance for MRI applications. In this section

we introduce two optimization schemes that minimize the

design overhead on memory write operation.

A. Col-Read Interrupt

Column write operation can only be achieved when no

device is refreshing. Therefore, we can increase the interval

time between two refresh cycles to give more time for write

transaction. DR uses an optimization scheme called col-

read interrupt to improve memory write performance. Tra-

ditionally, if a refresh command comes after column read

operation, the refresh command should wait until the finish

of read. Our optimization can interrupt read process on the

device that is prepared to refresh. Once the column read

operation is interrupted, the targeted device will enter the

refresh cycle immediately without waiting for read. As the

refresh cycle is fixed, an early start of a refresh cycle will

cause an early end. Then the interval time between two

refresh cycles are increased. Besides, col-read Interrupt

does not influence data integrity due to the following data

recovery process. It only makes one segment of data inac-

cessible during the read process.

B. Bank-Aware Write

Sometimes the impact of the col-read interrupt mecha-

nism is still limited. To further improve column-write per-

formance, we propose to schedule write transactions and

trigger column write operation when bank is not busy. This

DR optimization scheme is call write-only-cache (WOC).

Unlike operation interrupt, WOC locates in memory con-

troller and only manages write transaction. It stores column

data and schedules write access operation. If the target bank

is busy, the write transaction will be temporarily stored in

WOC until the bank state becomes idle.

Fig. 9 illustrates the control flow of the memory con-

troller with WOC. At the beginning of a cycle, the memory

controller searches dirty blocks with Idle bank state. If such

block is found, the memory controller will set clean bit for

the block and push a WRITE command into the command

queue. If no such block is found, memory controller will

pop a transaction from transaction queue. The next step

depends on the type of transaction. If it is WRITE transac-

tion, controller will add it into cache based on LFU policy.

If it is READ operation with cache miss, the column data

will be read from memory without cached into WOC. This

mechanism can balance the col-write workload and im-

prove performance if there are write back operations.

V. EVALUATION METHODOLOGY
This section describes our experimental methodology.

We evaluate DR from three different aspects: 1) synthetic

trace-based simulation, 2) realistic workload measurement,

and 3) hardware design overhead analysis.

A. Basic Configuration

We evaluate our design with a modified trace-based cy-

cle-accurate simulator base on DRAMSim2 [11]. We ex-

periment with different system configurations to verify the

performance of DR. Table 1 summarizes some key parame-

ters we used. The timing parameter we used are referenced

from recent work [9] and industry manual [12]. The DRAM

device we evaluated is configured as a commercial DDR4

system [12]. The parameters of memory controller are de-

rived from the default setting in DRAMSim2. We use the

default setting of L1 cache in gem5. The parameters related

to power estimation such as current values and voltage val-

ues come from micron [12].

B. Synthetic Traces

We first use synthetic traces to verify the effectiveness

of our memory module design, as shown in Fig. 10. A trace

generator pushes READ/WRITE transactions into a trans-

action queue at fixed intervals. The transaction queue is

If Cache have

Clean Block

If Queue has

Enough Room

Operation

Selection

If Cache Hit

Return Data

to LLC

READ

Yes

No

If Cache have Dirty

Block & Idle Bank

Pop an

Transaction

Yes

Push Cmd

into Queue

Yes

Select &

Replace a

Cache Block

No

WRITE

Replace

Clean Block

Yes

No

Undo & Wait

for next Cycle

No

Cycle Begin

Cycle End

Figure 9: Control flow diagram of DR optimization

out-of-order with a read first policy. A bandwidth monitor

locates at the frontend of the transaction queue. If the data

flow is not blocked, the transaction queue will pop one

transaction at each cycle. Then the transaction will translate

into memory command with the help of a trace parser, a

command scheduler and a protocol controller. The com-

mand scheduler accesses bank in a round-robin manner and

sends commands to the memory module. For column read

command, the memory module should send response data

to a read return queue (RRQ). In the RRQ, a latency moni-

tor can calculate the latency of READ transaction.

For synthetic trace based evaluation, we experiment

with four configurations: intensive read, moderate read,

synthetic combination, and FGR mode. By sending traces to

DRAMSim2 at different intervals, we can obtain the band-

width and latency performance of our DRAM module.

We evaluate intensive read and moderate read by ad-

justing the trace generation cycle. In order to verify the

results of intensive read, we set the trace generation cycle

to 1ns. Such a short generation cycle will make transaction

queue filling with read task. For moderate read, we make

command queue and transaction queue unblocked by set-

ting trace generation cycle larger (8ns, 16ns, 32 ns and

64ns). Although memory bandwidth will not be fully uti-

lized, we can get more reasonable latency result due to

shorter queue waiting time. We evaluate intensive read and

moderate read under both random read and sequential read.

Our synthetic combination traces include both read

and write operations. We use it to verify the impact of

WRITE (col-write) operation. Our simulator is configured

through mixing write transactions with read transaction

based on intensive read. The ratio of write and read is be-

tween 10% and 0.001%. The configuration of our trace

reference is derived from our target application. We store

the input data sequentially in the DRAM. We assume the

memory write trace is randomly distributed in the memory.

We consider data analytic accelerators that have on-chip

storage. The on-chip storage allows accelerators to calcu-

late locally and avoid aggressive memory reference. The

size of the output data is far less than the input data. Most

of the input data can be abandoned after finishing pro-

cessing.

We also evaluate MRI tasks under FGR (Fine Granular-

ity Refresh) mode, as it is the state-of-art technique in the

DRAM industry. FGR is a technique in DDR4 SDRAM

which can make a trade-off between refresh latency and

frequency. According to the JEDEC standard [10], DDR4

has 1X, 2X and 4X refresh modes. From 1X to 4X, the fre-

quency of sending refresh command becomes higher and

the refresh cycle becomes longer.

C. Realistic Workload

We further evaluate our design using real workload on

gem5 [13]. Our CP U model is single core timing CPU

works at 1GHz with 1MB cache size. The memory model

is modified from simple memory module. The setting of

simple memory model can equal to DDR3-1600 with only

one bank. We use three different workloads: CNN infer-

ence, linked-list traversal and PageRank. As previous sec-

tion describes, these workloads are read intensive with low

cache write back rate. We use Ligra [14] as framework to

run PageRank benchmark. The input graph data is synthetic

rMatGraph with more than 1M edges and generated by

Ligra itself. We use LLU benchmark [15] to justify linked-

list traversals applications. The linked-list we generated in

LLU benchmark has 16M nodes with 32Byte node size.

CNN inference workload is hand-configured with MNIST

input file. To ensure accuracy, our simulation excludes data

loading process to make sure simulated instructions are

located in algorithm area.

D. Area and Energy

We also evaluate the runtime cost and hardware cost of

DR DRAM. We mainly look at the energy and chip area

overhead. We also discuss methods for improving the

DRAM chip area efficiency of DR DRAM technique.

DRAMSim2 can estimate power consumption at the

memory operation level. By setting DDR4 current drawn

information and MRI sequence trace file, we can generate

energy utilization data under different modes of DR.

VI. RESULTS

A. Impact on Intensive Read

We first evaluated intensive read operation (MRI tasks)

on DR DRAM from the perspective of both bandwidth and

latency. Fig. 11 and Fig. 12 present our results for both

sequential access and random access. We consider different

DDR4 capacities and different DR modes (detailed in Sec-

tion 3.5). We use micron DDR4 with per-bank refresh as

TABLE I: EVALUATED MEMORY SYSTEMS

 Parameter Configuration

DRAM

Refresh Timing
tREFI=7800ns;

tRFC=890ns[9], 550ns, 350ns[12];

Architecture

DDR4: 2400E; Device Width:16bits; Col-

umns per Row:1024; Num of Bank:16;

Num of Rank:1;

Memory

Controller

Policy Open Row Policy;

Queue Size
Command Queue Size: 256;

Transaction Queue Size: 64;

Address Mapping channel:row:col:bank:rank;

Scheduler FR-BRR;

Write Only

Cache

Latency(cycle)
Tag Latency: 2; Response Latency: 2;

Data Latency: 2;

Size
Cache Size: 64KB; Cache Line Size: 64B;

Cache Associativity: 1;

a
Memory

Command Queue

Trace Parser

Protocol

Controller

Command

Scheduler
Memory

Module

Read Return

Queue

Latency

Monitor

Bandwidth

Monitor

Trace

Queue

Trace

Generator

Figure 10: Implementation of trace-based simulation

our baseline and adopt the refresh timing parameters of per-

bank refresh for DR DRAM. Each group of result is nor-

malized to the baseline.

As shown in the figures, the proposed DR technique has

better performance on both bandwidth and latency. For

random read on the 32Gb device, the bandwidth of both

DR and DR-A can outperform the baseline by around 12%.

For sequential read, we observed some interesting re-

sults. The performance of original DR even worse than our

baseline. The main reason is that DR uses synchronous

refresh among banks, which means that all banks should

reach to the idle state before refresh. As a result, it will

degrade the performance on both random read and sequen-

tial read access patterns.

However, sequential read suffers much more impact

than random read. This is because memory cell refresh on

sequence read will block operations on all banks before the

refresh cycle, while random read only block a few banks.

Besides, banks activate different rows frequently due to the

low spatial locality of random access. In this case, these

banks are more likely to enter into the idle state which can

alleviate state transition cost.

By comparing different DR modes, we can see that the

way we perform device-level refresh matters. As expected,

DR-A outperforms DR greatly due to the asynchronous

refresh operation. Overall, DR-B shows the best latency

result. This is because that DR-B always sends the fewest

refresh commands during operation. DR-B can nearly elim-

inate the refresh overhead. It almost gets the highest per-

formance on both bandwidth and latency for MRI tasks.

B. Impact on Moderate Read

The memory channel faces less contention under mod-

erate read operations. The bandwidth utilization of different

DR implementation methods mainly depends on the query

arrival rate. We control the simulation time to be more than

30ms to improve the accuracy. In the following discussion

we mainly focus on read latency (the time needed to return

the data) result.

Fig. 13 and Fig. 14 show the read latency of a 32Gb DR

DRAM under different trace generation cycles (8ns to 64

ns) and different FGR modes. As we can see, in most cases,

the latency of moderate read in DR can get an improvement

from 50% to more than 60%, which is a significant im-

provement compared to the result of intensive read. Nor-

mally, the read latency is between 70ns to 200ns in our

baseline. While in DR, the latency is between 35ns to 80ns.

Latency in random read is a little bit larger than sequential

read latency due to the row activate operation.

Note that sometimes the system latency can be higher

than 1000ns (e.g., when the trace generation cycle is 8ns in

Fig. 14) in our design. The reason is that our evaluated sys-

tem keeps stressing the memory subsystem by continuously

generating memory access queries. In this case, both trans-

action queue and command queue are fully filled. There-

fore, read transactions start to spend much more time on

waiting in the queue. However, such a long latency may not

happen in the real world since the processor may already

stall at certain point.

C. Impact of Memory Write

For MRI tasks, the write back rate is much smaller

compares to traditional applications on high performance

CPU. The write back rate is 0.001% ~ 10%. It can be sys-

tems that have large memory read references with most of

the temporary data updated in on-chip memory.

Fig. 15 shows the maximum bandwidth when we mix

read with write transactions. The horizontal axis indicates

the ratio between write number and read number in our

trace file. The ratio also equals to the rate of write back of

the last level cache. The device we evaluated is a 32Gb x16

DDR4 DRAM. When the ratio of write back is 10%, DR-

(a) Random read (b) Sequential read (a) Random read (b) Sequential read

Figure 11: Bandwidth results of MRI tasks Figure 12: Latency results of MRI tasks

Figure 13: Latency of moderate random read Figure 14: Latency of moderate sequential read

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

8Gb 16Gb 32Gb

N
o
rm

a
li

ze
d

 B
a
n

d
w

d
it

h

Device Capcity

Baseline DR DR-A DR-B

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

8Gb 16Gb 32Gb

N
o
rm

a
li

ze
d

 B
a
n

d
w

d
it

h

Device Capcity

Baseline DR DR-A DR-B

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

8Gb 16Gb 32Gb

N
o
rm

a
li

ze
d

 L
a
te

n
cy

Device Capcity

Baseline DR DR-A DR-B

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

8Gb 16Gb 32Gb

N
o
rm

a
li

ze
d

 L
a
te

n
cy

Device Capcity

Baseline DR DR-A DR-B

1

10

100

1000

8ns 16ns 32ns 64ns 8ns 16ns 32ns 64ns 8ns 16ns 32ns 64ns

1X mode 2X mode 4X mode

L
a

te
n

cy
 (

n
s)

FGR Mode and Trace Generate Interval

Baseline DR DR-A DR-B

1

10

100

1000

8ns 16ns 32ns 64ns 8ns 16ns 32ns 64ns 8ns 16ns 32ns 64ns

1X mode 2X mode 4X mode

L
a

te
n

cy
 (

n
s)

FGR Mode and Trace Generate Interval

Baseline DR DR-A DR-B

A and DR-B are much worse than our baseline. Only DR-

WOC (DR-A plus write only cache) slightly outperforms

our baseline. For a write back ratio of 1%, DR-A and DR-

WOC achieve their maximum bandwidth, while DR-B is

still write-sensitive due to the long refresh cycle. DR-B will

match or even outperform our baseline as the proportion of

write back getting smaller. It also indicates DR-B is not

suitable for high write back rate. The reason is the com-

mand queue under DR-B can be easily filled.

D. FGR Read Bandwidth

We find that the FGR technique also has a great impact

on read performance. Fig. 16 shows the intensive read

bandwidth improvement for FGR in a 32Gb DDR4 based

on DR-A mode. As we can see, the performance improve-

ment grows from the 1X mode to the 4X mode. The reason

is that the overall time occupied by refresh cycle becomes

larger on high refresh rate mode. While the philosophy of

DR DRAM is to eliminate refresh occupation time through

parallelize read operation and refresh operation. Therefore,

4X mode and 2X mode get more improvement.

E. Real Workload Result

In addition to synthetic trace-based simulation, we also

evaluate our design with realistic workload. The write back

rate depends on both application feature and hardware plat-

form. In our experiment, LLT has the smallest write back

rate with nearly no cache write back. The write back rate

for CNN is the biggest one, with 2.23% rate. The write

back rate for PageRank is 2.03%.

There is little difference between DR-A and original

DR since our memory can be treated as DRAM with only

one bank. Further, we do not distinguish different DR

modes. Fig. 17 illustrates the instruction per second (IPS)

among different memory configurations (different density).

The data labels above the bar chart indicate the perfor-

mance improvement of DR. As we can see, all applications

can benefit from the proposed memory optimization

scheme and the degree of improvement becomes better for

denser device. The instruction per second can further in-

crease under lower write back rate.

F. Power and Area Cost

The DR DRAM design requires moderate hardware ad-

dition, which can increase energy consumption as well. We

measure system efficiency using throughput per watt

(TPW). Fig. 18 shows our results.

 Although all DR refresh mechanisms can decrease en-

ergy utilization, the degradation level can be acceptable.

For DR-A and DR-B, the energy utilization is only a bit

lower than our baseline, which has around 2% degradation.

However, for original DR, the energy utilization can de-

crease by 9%. That is mainly because the bandwidth of

original DR is far less than DR-A and DR-B.

We investigate area cost on different types of DIMM.

For memory modules such as registered-DIMM, they al-

ready have additional devices to store error check code

(ECC) [16]. They typically occupy 8 parity bits for 64 data

bits. We can share and reuse these devices for DR. In this

case, we can avoid introducing area overhead on x8 or x4

devices. The only thing is that the ECC function and the

DR function cannot be enabled simultaneously.

For other solutions, the area overhead can be illustrated

in Fig. 19. DIMM without ECC function (Unbuffered–

DIMM and Small-Outline-DIMM) needs 25% additional

area cost on a x16 device and 12.5% additional area cost on

a x8 device. For those DIMMs that already have ECC stor-

age, if we don’t want share additional device, it will intro-

duce 20% additional area cost on a x16 device and 11%

additional area cost on a x8 device.

VII. RELATED WORK
In this section we discuss prior works that are most rel-

evant to our work and highlight our novelties. The novelties

of our work are as follows: 1) We propose to use device

refresh and data recovery to parallelize DRAM refresh and

read operation. 2) We explored hardware design at the

memory module level and we devise a new memory access

protocol to control DR DRAM.

A. Refresh Optimization

These works can be classified into three categories:

1) Software-based Design

Refresh scheduling can be controlled at the software

level. Isen and Hohn show that many rows in the DRAM

do not store valid data. Therefore, these rows are unneces-

sary to be refreshed. They propose ESKIMO [17], which

use malloc/free operation and DRAM hardware design to

control refresh schedule. Similar ideas have been seen in

different real-world designs [18]. Flikker et al. [19] divided

DRAM into several areas that have different refresh rates.

If a page is important, it will be allocated into high-refresh-

rate area. Kotra et al. [9] used hardware/software co-design

Figure 15: Impact of write Figure 16: Impact of FGR Figure 17: Realistic workload results

6

8

10

12

14

16

M
em

o
ry

 B
a

n
d

w
id

th
 G

B
/s

Write Back Proportion

Baseline DR-A

DR-B DR-WOC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1X 2X 4X

B
a
n

d
w

id
th

 I
m

p
ro

v
em

en
t

Fine Granularity Refresh Mode

Random Sequential

3.80%

11.2%

6.72%

2.16%

7.19%

5.18%

1.16%

4.19%

3.51%

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

CNN LLT PageRank CNN LLT PageRank CNN LLT PageRank

32Gb 16Gb 8Gb

In
st

ru
ct

io
n

s/
se

co
n

d

Baseline DR

approach to allocate DRAM storage. Unlike the above

works, we focus on system hardware. Our design modifies

the memory controller and DRAM module.

2) Command Scheduling

If a row has been precharged or activated recently, there

is no need to be refreshed. DTail [20] uses low storage cost

to track storage information and maximizes refresh reduc-

tion. Flexible-Auto-Refresh [21] combines access record

and data retention time. RAIDR [22] records data retention

time and classifies rows into different refresh rate. Adap-

tive Refresh and EFGE uses fine-grained refresh (FGR) [10]

which can improve refresh efficiency on DDR4. Our tech-

nique is not refresh command scheduling based. We extend

DRAM module and memory controller to implement DR.

3) Microarchitecture Solution

Optimizing refresh overhead at the microarchitecture

level is also a widely used solution. Researchers from CMU

and Intel try to parallelize refresh activities with data access

through microarchitecture design on DRAM device [23].

Choi et al. [24] reduce enable Fast-Refresh through Multi-

ple Clone Row DRAM technique. Recently, non-blocking

memory refresh [25] also combines data recovery and addi-

tional chip to alleviate refresh overhead. Differently, this

work focuses on detailed implementation at the protocol

and hardware level. Besides, we proposed a new solution to

overcome memory write problem.

B. Processing-In-DRAM

Many applications today rely on memory-intensive op-

erations such as LLT and graph processing [26]. There

have been prior works improve job performance through

optimizing DRAM architecture or using Processing-in-

Memory (PIM) technique. Gather Scatter-DRAM [27] can

access stride address pattern within a single read/write

command. Ambit [28] combines row amplifier with accel-

erator to perform bulk bitwise operation. Some other works

[5] use Hybrid Memory Cube technology and add many

logic modules. Our works does not offload any arithmetic

operation to memory. We optimize memory access through

eliminating refresh overhead on memory read transactions.

VIII. CONCLUSIONS
The memory IO bandwidth will become a crucial bot-

tleneck for future memory-read-intensive applications. In

this paper we propose DR DRAM, a novel memory design

which can parallelize refresh operations and read opera-

tions. Besides, our approach avoids the huge modification

on the software stack. We implement our design both at the

memory module level and the memory protocol level. Us-

ing cycle-accurate simulators and various workloads, we

show that DR improves memory read bandwidth by 12%

and reduces latency overhead by 50~60%. We expect that

MRI applications such as CNN, PageRank and LLT can

greatly benefit from our design with affordable energy and

area overhead.

IX. ACKNOWLEDGEMENTS
This work is supported in part by the National Basic

Research Program of China (973 Program, NO.

2015CB352403), the National Natural Science Foundation

of China (No. 61502302, 61602301, 61632017, 61702328,

61741211, 61472260). Corresponding authors are Chao Li

at Shanghai Jiao Tong University and Weigong Zhang at

Capital Normal University.

REFERENCES
[1] Oracle, “When to Use Oracle Database In- Memory”, Oracle Write Paper,

2015

[2] T. Ham et al., “Graphicionado: A High-Performance and Energy-Efficient

Accelerator for Graph Analytics”, MICRO 2014

[3] Y. Wang et al., “Re-architecting the On-chip memory Sub-system of Ma-

chine-Learning Accelerator for Embedded Devices”, ICCAD 2016

[4] H. Asghari-Moghaddam et al., “Chameleon: Versatile and Practical Near-

DRAM Acceleration Architecture for Large Memory Systems”, MICRO

2016

[5] B. Hong et al., “Accelerating Links-list Traversal Through Near-Data Pro-

cessing”, PACT 2016

[6] T. Wang et al., “Hardware Supported Persistent Object Address Translation”,

MICRO 2017

[7] G. Chen et al. “Efficient Support of Position Independence on Non-Volatile

Memory”, MICRO 2017

[8] D. Xue et al., “Adaptive Memory Fusion: Towards Transparent, Agile Inte-

gration of Persistent Memory”, HPCA 2018

[9] J. Kotra et al., “Hardware-Software Co-design to Mitigate DRAM Refresh

Overheads: A Case for Refresh-Aware Process Scheduling”, ASPLOS 2017

[10] JEDEC STANDARD, DDR4 SDRAM, November 2013

[11] P. Rosenfled et al., “DRAMSim2: A Cycle Accurate Memory System Simu-

lator”, IEEE Computer Architecture Letters, 2011

[12] Micron. 8Gb: x8, x16 Automotive DDR4 SDRAM, 2016

[13] N. Binkert et al., “The gem5 simulator”, ACM SIGARCH Computer Architec-

ture News, vol.30 no. 2,pp. 1-7, 2011

[14] J. Shun et al., “Ligra: A Lightweight Graph Processing Framework for

Shared Memory”, PPoPP 2013

[15] C. Zilles, “Benchmark Health Consider Harmful”, ACM SIGARCH Computer

Architecture News, vol. 29, no 3, pp. 4-5, 2001

[16] Micron. 4GB(x72, ECC,SR) 288-Pin DDR4 RDIMM, 2013

[17] C. Isen et al., “ESKIMO - Energy Savings using Semantic Knowledge of

Inconsequential Memory Occupancy for DRAM subsystem”, MICRO 2010

[18] S. Song, “Method and System for Selective DRAM Refresh to Reduce Power

Consumption,” United States Patent 006094705

[19] S. Liu et al., “Flikker: Saving DRAM Refresh-power through Critical Data

Partitioning”, ASPLOS 2011

[20] Z. Cui et al., “DTail: A Flexible Approach to DRAM Refresh Management”,

ICS 2014

[21] I. Bhati et al., “Flexible Auto-Refresh: Enabling Scalable and Energy-

Efficient DRAM Refresh Reductions”, ISCA 2015

[22] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh”, ISCA

2012

[23] K. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes

with Accesses”, HPCA 2014

[24] J. Choi et al., “Multiple Clone Row DRAM: A Low Latency and Area Opti-

mized DRAM”, ISCA 2015

[25] K. Nguyen et al., “Nonblocking Memory Refresh”, ISCA 2018

[26] P. Pan et al., “Congra: Towards Efficient Processing of Concurrent Graph

Queries on Shared-Memory Machines”, ICCD 2017

[27] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Translation to

Improve the Spatial Locality of Non-unit Strided Accesses”, MICRO 2015

[28] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Opera-

tions Using Commodity DRAM Technology”, MICRO 2017

Figure 18: Energy utilization Figure 19: Normalized area

6.2 6.4 6.6 6.8 7 7.2 7.4

Baseline

DR

DR-A

DR-B

Gb/s per watt

0

0.25

0.5

0.75

1

1.25

1.5

non-ECC-DIMM ECC-DIMM

A
re

a

Device Type

Baseline DRx16 DRx8

