
CoCG: Fine-grained Cloud Game Co-location on
Heterogeneous Platform

Taolei Wang, Chao Li, Jing Wang, Cheng Xu, Xiaofeng Hou, Minyi Guo
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Email: {sjtuwtl, jing618, jerryxu}@sjtu.edu.cn, {lichao, hou-xf, guo-my}@cs.sjtu.edu.cn

Abstract—Cloud games have received widespread attention
and exponential growth recently as a key technology for building
metaverse. Unlike general tasks in the cloud, the scene-complex,
latency-critical, and interaction-intensive features make it chal-
lenging for cloud game co-deployment on heterogeneous plat-
forms. Game-grained resource allocation leads to low resource
effectiveness. Although previous work tries to explore individ-
ual game partitioning methods, they still face the problem of
inefficient game hosting decisions and ultimately QoS violations.
In this paper, we propose a fine-grained game characteristic and
scheduling strategy to co-locate games together for high resource
usage effectiveness. First, we fully explore the relationships
between game scenes and resource usage behaviors by breaking
the cloud game into stages with multiple frames and clustering
them. We adopt machine learning methods to predict game
resource consumption in real-time. To further improve multi-
game parallelism, we co-locate games in a complementary way
and steal time from the loading stage to avoid oversubscribing.
The evaluation shows that our work increased the throughput
of the cloud game deployments by 23.7% with low overhead
compared to previous work.

Index Terms—Cloud Game, Stages, Prediction, Co-location

I. INTRODUCTION

Cloud games, as the name implies, are games that clients
run on the cloud and with remote user operations. The concept
of cloud game was put forward in 2016 [3]. It has been highly
concerned by academia and industry as a key technology for
building metaverse [19]. In the past, cloud games require
expensive computing resources due to the strict requirements
of network speed (<3ms) of visual display and execution
latency of player interaction [40]. Additionally, in order to
ensure the user experience, only one game has to be run on the
same machine at the same time [29] [33]. Without parallelism
and reuse, the cost will be greatly increased.

Cloud games are noteworthy because this category of ap-
plications is completely different from other workloads that
have been studied before. First, cloud game is latency-critical,
however, unlike the usual latency-critical task, once a game is
deployed, it is difficult to migrate or stop to plan resource allo-
cation [26]. Second, cloud game has not only high throughput
but also high interactivity, so the batch processing method is
not suitable for it. Third, bursty workloads like web servers
or graph processing tend to focus more on parallelism design
when utilizing the GPU, while cloud game tasks mainly use
the GPU for rendering, using completely different channels.

Due to the particularity of cloud games, the existing
scheduling algorithm cannot co-locate games well. Parties

[5], a type of scheduling algorithm filling BE (Best Effort)
tasks into LC (latency-critical) tasks as much as possible
is not suitable for cloud games. The lack of game feature
extraction results in long-term GPU resource exclusivity with
low utilization in the most time, significantly wasting CPU
and GPU resources. Furthermore, due to the high user impact
of cloud games, the overall resource utilization will break
the limit once multiple games are co-locating. The previous
work [2] [15] used to solve the problem of peak overlap
through fusion and migration, which is completely impossible
to achieve in the game.

Dynamic design of cloud game resource scheduling is
essential to handle emergencies. On the one hand, the phasing
of cloud games needs to be dynamic in order to fully express
the characteristics of cloud games. The length and use of these
stages change dynamically, and the scheduling method needs
to be adaptive to the changing stages. On the other hand,
the scheduling process for cloud games makes it difficult to
deal with emergent issues through a pre-defined scheduling
sequence and needs to take full account of contingencies
and be tailored to actual resource performance. An important
question is how to avoid peak game encounters.

In this work, we present a novel methodology that enables
efficient and adaptive game co-location for improving through-
put in cloud games. We leverage fine-grained game charac-
teristic extraction and adaptive prediction-based scheduling
strategy to co-locate games together for high resource usage
effectiveness. We break the cloud game into stages with
multiple frames and clustering frames and stages according
to multi-dimensional resource behavior. To further improve
multi-game parallelism, we avoid oversubscription by stealing
time from the loading phase.

This paper makes four important contributions:
• We take the first step to study the intra-game scenes and

extract the resource usage features of cloud games.
• We propose an ML-based stage predictor for accurate

stage-level resource usage prediction.
• We enhance multi-game co-location throughput by com-

plementary deployment and peak overlap.
• We validate our work in a real cloud game environment

using real games. We show that our work can greatly
improve resource effectiveness.

The remainder of this paper is organized as follows. Section
II introduces the background. Section III further motivates our
design. Section IV proposes our system including the game

1

daemon

compiz

video

CPU GPU

Buffer …

①

③

⑤
②

④

FP 32

Ray
Tracing

Tensor
Core

FP 16 INT 32

Could server end

Terminal
process
module

Cloud
Game
SDK

Client end

Display Device

Operation Device

⑥

⑦

⑧

⑨

① Instruction Collection

② Instruction Upload

③ Instruction Parsing
④ Game Logic Operation
⑤ Rendering
⑥ Video/Audio Coding
⑦ Stream Transmission
⑧ Decoding
⑨ Display

g
a
m

e
 s

ch
e
d

u
le

r

CUDA
Core

Mouse

Keyboard

Joystick

Touchpad

Kernels
Mobile Phone

Console

PC

TV

Fig. 1: The workflow of cloud game applications.

profiler in Section IV-A, ML-based stage predictor in Section
IV-B, and complementary resource scheduler in Section IV-C.
Section V details the evaluation methodology and shows our
experimental result. Section VII concludes this paper.

II. BACKGROUND

A. Workflow of Cloud Games

As is shown in Fig. 1, the deployment framework [30]
of cloud games is roughly divided into three parts: cloud
server end, client end, and network connection. The cloud
server end is maintained locally by cloud service providers,
and the entire cloud platform often consists of one cloud
game scheduler and multiple cloud game backend servers. The
client end is a device that players run independently locally,
including a display device and an operate device, so there
are various terminal devices due to different gameplay and
environments. The network connection is generally managed
by the operator, providing services such as SDK(Software
Development Kit) and faster transmission through encoding
and decoding. Fig. 1 also illustrates the workflow of cloud
games. After the game is launched, every action taken by the
player is recorded in the operate device and transmitted to the
Terminal process module provided by the cloud game service
operator. After receiving the instructions, the CPU compiles
them and preloads them into the GPU buffer. Then execute the
command on the game interface and perform calculations on
the future development of the game, importing the results into
the GPU for rendering. Generate corresponding video images
from the generated game graphics, encode them, and send
them back to the cloud game SDK in the player’s hands. After
local decoding, videos are output on the display device.

B. Complexity of Cloud Games

As shown in Fig. 1, the whole process of running a cloud
game involves a variety of different hardware and software. As
a result, cloud game is much more complex than other cloud
applications. Through our observations, we have concluded 3
major difficulties:

• Multiple scenes. Due to the current computer’s inability
to support games loading all the models and maps in-
volved into memory at once, the game is clearly divided
into a number of scenes [22], all of which are clearly
divided by loading period. As the game continues to

① ② ③ ④ ⑤ ⑥ ⑦ ⑧

C
P

U
 U

ti
liz

a
ti

o
n

G
P

U
 U

ti
liz

a
ti

o
n

S
ce

n
e
s

Timeline(s)

Timeline(s)

I/
O

B
W

Timeline(s)

Fig. 2: The resource utilization of different game stages
(Honkai: Star Rail)

evolve, the scenarios are becoming more complex and
consume more resources such as CPU and GPU.

• No-delay experience. Most cloud game tasks are not
only latency-critical and resource-intensive, they are also
very pressure-sensitive [25]. Once the server cannot
provide the resources to meet the actual demands of
the game, it is easy to experience frame dropping and
lagging. Users cannot tolerate this because it affects the
player’s operation and brings negative feedback.

• User influence. We cannot accurately determine the du-
ration of each scene like other cloud applications, as this
is entirely determined by the user’s gaming experience
[14]. Players can choose to stay in a certain scene for a
long time for interaction, or quickly skip a certain scene
and enter the next game scene for play. These uncertain
factors have caused great trouble for us to pursue fine-
grained resource scheduling.

Existing works only address one of the above issues; Pi-
lotFish [39] and Quasar [8] focus exclusively on the resource
consumption of the game itself, hoping to reduce the overall
resource utilization of the game through optimized rendering,
while Ghobaei-Arani [12] and Amiri Maryam [1] focus on
game delays, trying to find a balance between resource pres-
sure and execution latency.

2

CoCG system

Utilization behavior

Game profiler Stage predictor Game scheduler

Stage analysis

Frame clustering

Stage resource
prediction

Allocation guidance

Game distributer

Regulator

Heterogeneous platform
(CPU, GPU, etc.)

Game
feature

Resource usageI/O behavior

Allocation
instruction

User operations

Game

User operations

Game

User operations

Game

User operations

Game

Fig. 3: CoCG system overview.

III. PRELIMINARY AND MOTIVATION

We conducted a preliminary survey of popular games on
the market and recorded the consumption of various resources
during the operation of cloud games. We have the following
observations.

Observation 1: Different scenes in games have distin-
guished resource behaviors. In the game shown in Fig.
2, there are 3 different main scenes that the game character
experiences: walking in the main world (3⃝), fighting in the
instance Zones (5⃝) and interacting with NPCs (7⃝). The
difference in resources consumed by these three scenarios is
significant. This means we cannot simply treat a game as an
application that consumes resources at the maximum demand
all the time but need to perform a fine-grained analysis of the
game itself.

Observation 2: Game stage can be separated by detect-
ing resource loading. For user-relevance, based on Fig. 2,
although it is not known how long the player will stay in a
certain scene, once one leaves the current scene, the game
will inevitably enter a very obvious transition stage, namely
the loading stage shown in the third and fifth stages in the
figure. It is inevitable to take some time to clear the previous
scene data and preload the model for the next scene when
entering a new scene. This gives us a basis for dividing the
stage in real-time.

Observation 3: We can improve resource usage effective-
ness by fine-grained resource co-location. As shown in Fig
2, the third, fifth, and seventh stages are three different game
scenarios, with different CPU and GPU resource consumption
characteristics. The second, fourth, sixth, and eighth stages are
the loading stages, which are the loading interfaces when the
game switches scenes. At this time, the CPU consumption is
the highest because all content in the next scene needs to be
pre-calculated. At the same time, GPU resource consumption
is relatively low, as the screen appears black and rendering
is not necessary. Co-locating these different resource usage
stages can utilize more computing resources that improve
system effectiveness.

Observation 4: We can steal time from loading stages
to avoid peak usage encounters. In most cases, there
are loading stages that prepare for the entire game to load
resources from disks. While any bit of lag is not tolerated

Game Utl.

Frames:

Clustering

Frame
clusters:

Stage
types:

Stages:

Load stagesExecution stages

Fig. 4: The clustering of frames. Stages have different types
that is the combinations of different frame clusters.

when the game is running at its peak and players are actively
interacting, reducing the resource supply at the loading stage
and extending the time appropriately is not overly offensive
to players [32]. So when there is a shortage of resources, we
prefer to extend multiple loading stages rather than cut the
resource allocation of a game that is at its peak [35].

For a level-based game, these observations are easy to
understand. The clusters with low resource consumption corre-
spond to the loading in the game, while the high consumption
of different resources corresponds to these different levels. For
open-world games, stages don’t seem to exist. However, with
further research, we can still discover the game’s internal logic.
According to Google Cloud Game Services [18], the GPU
is mainly responsible for real-time rendering while the game
is running. When the GPU renders an open-world game, it
tends to focus on the environment around the characters, while
the background mainly relies on blurring. Engaging in a boss
fight or entering a new map can cause a significant change in
resource consumption, which can be detected by our system.
In our work, open-world games are treated as phased games
with particular longer running stages.

Based on the above observations, we have designed a new
cloud game characterizing and scheduling strategy to co-locate
games together for higher resource usage effectiveness.

IV. SYSTEM DESIGN

Our system maintains three components, including the
frame-gained game profiler, ML-based stage predictor, and
complementary resource scheduler, as shown in Fig. 3.

A. Frame-gained Game Profiler

In this section, we introduced cloud game stages, including
what stages are in cloud games, the types of stages, and the
specific situations corresponding to different stages.

1) Game stage analysis: In section III, we observed that
game resources can be clearly divided, and therefore proposed
the concept of frames and stages. as shown in Fig. 4.

Firstly, there are obvious two types of stages in cloud games.
The first type is the loading stage, which generally includes
initialization, runtime loading, and shutdown. The second type
is the execution stage, which is the time during which the

3

0

0.2

0.4

0.6

0.8
5

5
0

9
5

14
0

18
5

23
0

27
5

32
0

36
5

41
0

45
5

50
0

54
5

59
0

63
5

68
0

72
5

77
0

81
5

86
0

90
5

95
0

99
5

10
4
0

R
es

o
u
rc

e
U

ti
liz

at
io

n
 R

at
e

Time(s)

CSGO

CPU Utl. GPU Utl.

0

0.2

0.4

0.6

0.8

3
0

18
0

33
0

48
0

63
0

78
0

93
0

10
8
0

12
3
0

13
8
0

15
3
0

16
8
0

18
3
0

19
8
0

21
3
0

22
8
0

24
3
0

25
8
0

27
3
0

28
8
0

30
3
0

31
8
0

33
3
0

34
8
0

R
es

o
u
rc

e
U

ti
liz

at
io

n
 R

at
e

Time(s)

Devil May Cry

CPU Utl. GPU Utl.

(a) CPU and GPU resource utilization.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8

G
P

U
 u

ti
liz

at
io

n

CPU utilization

Clustering of CSGO

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8

G
P

U
 u

ti
liz

at
io

n
CPU utilization

Clustering of Devil May Cry

(b) Clusters

Fig. 5: Stage types of CSGO game by clustering.

game interacts with the player normally. Both of these stages
are crucial for predictive scheduling, as the first type of stage
fixedly divides the second type of stage, meaning that once
a game is detected as a loading stage, we should reassign
appropriate resources to accommodate its next execution stage.

For the execution stage, in most cases, only one scene and
one cluster are included, meaning that the resource consump-
tion within the same game scene remains unchanged. Most
games conform to this characteristic, but there are also special
circumstances.

The first situation is that a stage includes multiple clusters
and one scene, as shown in Fig. 4. In this stage, the game
is very complex and requires multiple resource clusters to
represent. It is worth noting that, generally speaking, the
cluster logic inside this stage is very clear, but the order is
not necessarily fixed. For example, this stage indicates that
the player has entered a big secret realm where they need
to defeat three fixed bosses in order to leave. Due to the
different mechanisms of each boss and the different monsters
summoned, the resource consumption corresponding to the
three bosses varies. At this point, players will inevitably defeat
three bosses and eventually leave the stage, but the order
may be different for each player, completely influenced by
temporary judgments.

The second situation is that a stage includes one cluster and
multiple scenes, also shown in Fig. 4. This situation indicates
that the game may have some seemingly different but similar
resource consumption scenes during the game process, which
are included in the same stage. For this stage, the general
situation is that the player is indifferent to small parts of a large
map. Although there is a significant difference in gameplay,
the resource consumption is similar due to the consistency of
the map model and background, so it can be included in the
same stage for consideration. If the situation is that multiple
clusters and scenes in a single stage, we can decompose them
into separate stages.

After completing the division of all stages for a certain
game, we can smoothly make real-time predictions for the
entire gameplay.

2) Game frame clustering: We directly clustered the re-
sources using the K-means algorithm in Fig. 5b and Fig. 6b
from the date in Fig. 5a and Fig. 6a. However, there is no
logical relationship between the clustering results. Therefore,
we introduced game stages in the hope of guiding resource
allocation through the game’s internal engine. We found that

0

0.2

0.4

0.6

0.8

5
5
0

9
5

14
0

18
5

23
0

27
5

32
0

36
5

41
0

45
5

50
0

54
5

59
0

63
5

68
0

72
5

77
0

81
5

86
0

90
5

95
0

99
5

10
4
0

R
es

o
u
rc

e
U

ti
liz

at
io

n
 R

at
e

Time(s)

CSGO

CPU Utl. GPU Utl.

0

0.2

0.4

0.6

0.8

3
0

18
0

33
0

48
0

63
0

78
0

93
0

10
8
0

12
3
0

13
8
0

15
3
0

16
8
0

18
3
0

19
8
0

21
3
0

22
8
0

24
3
0

25
8
0

27
3
0

28
8
0

30
3
0

31
8
0

33
3
0

34
8
0

R
es

o
u
rc

e
U

ti
liz

at
io

n
 R

at
e

Time(s)

Devil May Cry

CPU Utl. GPU Utl.

(a) CPU and GPU resource utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8

G
P

U
 u

ti
liz

at
io

n

CPU utilization

Clustering of CSGO

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8

G
P

U
 u

ti
liz

at
io

n

CPU utilization

Clustering of Devil May Cry

(b) Clusters

Fig. 6: Stage types of Devil May Cry game by clustering.

there is no one-to-one correspondence between the cluster and
the scene, so our cloud game stage integrates resources and
content to provide a new perspective on the game.

Each frame cluster represents the amount of resources
consumed in a certain 5-second slice. This information is the
result of being clustered, as shown in Fig. 4. As with the above
classification of execution stages, there may be multiple frame
clusters that together form a single stage, and this combination
of frame clusters will continue to occur in subsequent stages.
If the game has N clusters, then it has at most 2N stage types;
however, the experiments in Fig. 5 and 6 show that in most
cases the number of stage types does not exceed 2N, which
is a great help in predicting the stage.

B. ML-based Stage Predictor

Our stage predictor is a real-time system that detects at 5-
second intervals. The determination of the 5-second interval
time is because, in our experiment, all loading stage times were
higher than this, so a 5-second detection can definitely identify
the loading stage. As shown in Fig. 8, the operation of the en-
tire predictor is mainly divided into four steps, Real-time data
collection, stage judgment, next-stage prediction, and resource
adjustment. The first step, real-time data collection mainly
involves collecting the CPU, GPU, and memory consumption
of the game running, and transmitting the data to the predictor.
Then, The predictor compares the data to determine whether
the game is still in the same execution stage or has entered the
loading stage. If it is still in the original stage, it will directly
return to the first step and wait for detection again. If it is found
that it has already entered the loading stage, it will proceed
to the next step. Combine all previous stages of the game and
input them into the offline trained machine learning prediction
model to obtain the prediction results for the next execution
stage. Finally, based on this prediction result, reallocate the
resources consumed by the game.

1) Prediction algorithm: As mentioned earlier, the biggest
difference between games and other applications is that users’
decisions have a very significant impact on them. Although
we have reduced the user’s impact on game duration by
identifying and loading stages, the user’s choice can even
affect the order of stages. How to minimize this user impact in
prediction requires us to classify the game and select different
data as samples for training based on different game types, in
order to achieve high accuracy.

4

(a) Linear Narration

Phase 1: Phase 2: Phase 3:

(b) Core Scene

Phase One
Phase
Two

Phase One
Phase
Three

Cluster complexity

U
se

r
In

fl
u

e
n

ce

Web Games

Mobile Games

Console Games

MMORPG & MOBA

Fig. 7: Game Category

Fig.7 shows our four divisions of game types. The horizontal
axis represents the complexity of the game stage type, which
becomes more complex as it moves to the right. The vertical
axis represents the player’s level of influence on the game,
with a greater impact as it moves upwards. This classification
is strategically designed to filter the input dataset, thereby
enhancing the accuracy of cluster predictions.

Prediction for web games. In the lower-left corner of Fig.7,
it represents games with relatively simple stages and less user
influence. This type of game is usually a flash or web game,
characterized by a short total playing time, a single game
process, less player interaction, and low resource consumption.
Representative works include Contra and Raiden. This type of
game is very easy to predict because the game runs with a
relatively single stage (usually no more than 3) and player
behavior does not affect the game process. Therefore, we can
train all player’s game records as a training set, and the results
obtained will be relatively fixed.

Prediction for mobile games. In the upper-left corner of
Fig.7, it represents a game with a relatively single stage but
significant user influence. These games are usually mobile
games, characterized by players logging in to complete tasks
every day, but the order in which tasks are completed may vary
greatly among different players. Representative works include
Genshin Impact, and Arknights. For this type of application,
we need to finely establish a training set for each individual
player and make predictions based on this. Since players of
this type of game may log in every day for several years, this
prediction is also very important and can be done once and
for all.

Prediction for console games. In the lower-right corner of
Fig.7, it represents games with complex stages but less user
influence. These games are usually big console games. Repre-
sentative works include ”Devil May Cry 5” and ”Resident Evil
2”. They are characterized by a total game duration of several
days and a large number of game levels. However, players are
only stuck in a few big scenes for long periods. Their choices
in the game are unlikely to affect the switching of game stages.
For this type of game, we can no longer use the data of a
single player playing a single game as a sample. Instead, we
need to connect all the processes of the player playing the
game, integrate the data of the player’s entire process, and
incorporate it into the training set as an element.

Prediction for MMORPG & MOBA games. In the
upper-right corner of Fig.7, it represents games with complex
stages and significant user influence. These games are usually
MMORPG or other multiplayer online games. Its characteristic

is that multiple players interact in the same game area at the
same time, and the interaction between players will affect the
next stage. Representative works include World of Warcraft
and DOTA2. For this type of game, considering only the
playing process of a single player will definitely not yield a
definite result. Therefore, we will package the data of several
players who log in to the game at the same time, integrate
them into one, and then put them into the training set.

We use 3 popular machine learning algorithms to train the
models, including Decision Tree Classifier (DTC), Random
Forest (RF), and Gradient Boosted Decision Trees(GBDT).
The performance of these 3 algorithms is evaluated in Section
V. We measure a number of real game co-locations to train the
models. One thing worth mentioning is that contention feature
profiling and model training only need to be performed once.
After the models are trained, we can use them for prediction
with negligible overhead.

2) Dynamic adjustment: No matter how accurate the pre-
diction algorithm is, it will eventually encounter errors in
prediction. For this reason, we have designed three emergency
plans to revise the prediction results.

Rehearsal callback. When the prediction error occurs, a
third situation different from the normal result will be found in
the next stage adjustment, that is, the real-time operation data
collected at this time is quite different from the current stage,
and it is not in the loading stage. At this time, the callback is
divided into two possibilities. The first is the stage error caused
by the prediction error. At this time, the real-time running
data will be re-matched to the correct stage, and jump to a
new stage immediately after the next detection is completed.
The second error is that the real-time running data result is
similar to the loading stage, which leads to the misjudgment
of entering the next stage. At this time, the resource allocation
is returned to the previous stage immediately.

Redundancy allocation. When a prediction error occurs,
the utilization of callback resources cannot simply be set to
a regular value, but rather a redundant S should be added
to this foundation. This redundancy is determined by the
predicted accuracy P (%) of the game and the peak resource
consumption M of the game shown as Eq. 1:

S = (1− P)×M (1)

which means when the accuracy is higher, the redundancy is
smaller, and the specific value of redundancy depends on the
consumption of the game itself.

Replacing model. If there are still many errors after using
the above two methods, the other prediction algorithm among
DTC, RF, and GBRT should be used to make a new judgment.
For tasks with a large amount of computation and a long
running time, the algorithm of DTC is more suitable. For
simple, small tasks, it is more suitable for RF algorithms.
GBRT is relatively stable, so it is more suitable for games
with a large impact on users.

5

Games

K-means
Model

Clustering
Algorithm

Frame
Cluster

Game
Category

Model
Training

DTC RF GBDT

Offline Phase Online Phase

Real time collect

Stage Judge

Stage Predict

Resource Adjust

System
States

Cluster
Partition

Callback

Fig. 8: Design of ML-based stage predictor

C. Complementary Resource Scheduler

Typically, each game is deployed on a single GPU device
rather than across multiple GPUs to satisfy Quality of Service
(QoS) requirements. [18]. With a single game timeline, there
is more space for optimization for multiple game co-locations
than the crude approach of only consuming the maximum
amount of resources [16]. Our timeline-aware multi-game co-
location consists of two main components, a distributor and a
regulator. The distributor determines whether a pending game
can be assigned to a server that is already running games,
while the regulator is used to resolve spikes as soon as they
occur.

1) Game distributor: When a game needs to be allocated
to a running server, it makes sense only when they will
consume fewer resources than the server can provide for all
the time when running together. Previous practices have either
sacrificed the QoS of some games in exchange for the overall
resource usage to meet the condition [12] or pulled up the
resource requirements of individual games to ensure they are
all met, which means wasting a lot of resources [31]. With
fine-grained predictions, we can estimate the resources of the
stage it is likely to enter, based on the stage it is currently
running at. The specific details are shown in the Algorithm 1.

2) Regulator: Although our distributor has tried to avoid
multiple game peaks overlapping as much as possible, it is
bound to happen that peaks cannot be completely overlapped
due to the inherent high uncertainty of the games [34]. This
may be due to errors in prediction or due to some out-of-the-
ordinary behavior of the players. When such problems occur,
we need to introduce regulators to make timely adjustments.
Regulators use two main strategies:

Extend loading time. Users are more tolerant of appro-
priately extending the loading time compared to dropping
frames at peak times. So once we find that peak staggering
is unavoidable, we can make the loading stage of the game
take longer by reducing the resource allocation for the current
stage. Although a single loading stage extension does not
completely stagger the peaks, as our prediction algorithm is
forward-looking, we can overlap the peaks as much as possible
by spreading the time over multiple loading stages.

Distinguish game length. Although we have stressed that
the feature of game length is very much influenced by the
user, it is worth noting that game manufacturers often inform
players of the expected play time of the game at the time of
release. This suggests that it is feasible to distinguish between

Algorithm 1 Pseudocode of Distributor.

1: Input: the ith game, denoted by Si

2: Output: Whether this game can be distributed into a
current server, denoted by P

3: tasks.group(stage, cluster)
4: For tasks in type.history list do
5: Sum += Consumptioni

6: tasks.group(stage, cluster)
7: End For
8: If Sum > ConsumptionTotal then:
9: P = false

10: While tasks ̸= ∅ do
11: G = list{type.history}
12: N = Total.iteration
13: For each N ∈ G do
14: NextStage = prediction.G
15: G.append = NextStage
16: End For
17: M = maxG.Consumption
18: If M + ConsumptionSi > ConsumptionTotal

then:
19: P = False
20: break
21: Else:
22: P = True
23: End If
24: task.pop
25: End While

long-term and short-term games at a coarser granularity. While
long-term game runs, when we determine that the current stage
has reached a peak in resource consumption, and the next peak
stage is still a long time away according to the prediction, we
can deploy as many short-term games as possible between the
two peaks to make better use of resources and increase the
overall throughput.

D. Discussion

Admittedly, once two games with a sum of peak consump-
tion greater than the total resources are co-located together, no
matter how finely the scheduling is done, there is bound to be
performance degradation due to peak interleaving. Fortunately,
players can tolerate the loss of performance to a certain extent
as long as they are compensated. In practice, therefore, cloud
game operators are often comfortable balancing the player
experience by distributing game credits or other benefits, as
long as the performance degradation occurs for less than 5%
of the total time [18].

Moreover, when considering scales for larger servers with
more CPUs, GPUs, and also more games that are co-located,
our work is more expansive than the previous work [8] [39].
This is because when our pre-experiment analyzes the stage
characteristics of the game for a specific GPU and CPU, no
matter what platform the game is migrated to, the number of
stages and the logical relationship between the stages will not

6

change. These metrics are determined by the content of the
game itself. The only thing that will change is the amount
of resources consumed, which can be obtained in a single
experiment. So the matter of moving games between different
platforms is very easy for our algorithm.

V. EVALUATION

A. Experimental Setup

Software and hardware Environments. Our workloads
run on a 4-core Intel i7-7700 CPU, 8GB RAM, 2 NVIDIA
GeForce GTX 2080 GPUs, and Linux OS. Specifically, we
consider both CPU and GPU resources. The CPU can be mea-
sured by cores or by CPU usage, using the Linux cgroup tool.
GPU-Z [20] is involved in validating parameters including
GPU and GPU memory utilization.

We use GamingAnywhere (GA) [17] to build the cloud
game environment, which is a popular open-source cloud game
platform. The GA has two components: the GA server (for
running games, encoding, and streaming videos) and the GA
client (for decoding and displaying videos and transmitting
user commands).

Considering different CPUs and GPUs, or the impact of
the version of the game, and graphical settings, the specific
amount of resources consumed by the same game must be
different. However, based on our pre-experiments, we know
that these factors do not affect the division of stages in our
system.

Workloads. We study a suite of 5 cloud games that are
previously used in similar studies, which are DOTA2, CSGO,
Genshin Impact, Devil May Cry, and Contra. DOTA2 is a 3D
Multiplayer Online Battle Arena(MOBA) game and CSGO
is a 3D First Person Shooting(FPS) game. They all belong
to games with complex stages and significant user influence.
Genshin Impact is currently the most popular mobile game
in the world. Devil May Cry is an Action Role Playing
Game(ARPG) game and one of best selling Console games.
Contra is the most classic entry game for most people.

Performance measurement methodology. We have de-
signed a total of 3 schemes for the experiment. The modest
way is to default that each cloud game consumes the same
resources from the start of the operation to the end of the
application and allocate them based on this (as the solution
in GAugur). This method is our baseline. The second scheme
perceives that each game has different resource consumption
stages at runtime but does not predict the next stage at the time
of scheduling, and only redeploys the resource usage based
on the current operation(improved version). The last method
is our newly proposed scene resource model. On the premise
of comprehensively considering the corresponding relationship
between the scene and resource use, the machine learning
prediction is made for the layout of the scene to better guide
the implementation of the scheduling scheme.

B. Overall Improvement

1) Resource utilization of single games: Holding the stage
prediction in Section IV-A, we can allocate resources for

TABLE I: Evaluated Workloads

Game Scripts Script descriptions # of stage type

DOTA2 script 1 conducting a match
with 9 bots 3

script 2 playing a tower defense
game in the arcade 3

CSGO script 1 conducting a match
with 9 bots 4

script 2 moving in the training
map without shooting 3

Devil
May Cry

script 1 first level in simple mode 2
script 2 second level in simple mode 4
script 3 third level in simple mode 6

Genshin
Impact

script 1 run + battle + fly 5
script 2 fly + battle + run 5
script 3 battle + run + fly 5

Contra
script 1 first level 2
script 2 first two levels 2
script 3 first three levels 2

running games. Fig. 10 shows the comparison between the
allocated resources and the actually required resources in
Genshin impact. The resources we allocate basically cover the
actual resources consumed by the game. Moreover, compared
to always allocating space based on the maximum resource
consumption of the game (65%), our solution has saved a
total of 27.3% of resources in this case. Overall, for the five
games tested, it can save an average of 17.5%. These flexible
resources can be allocated to tasks with low latency-critical
tasks such as machine learning and graph computing, thereby
improving the resource utilization of the entire cloud platform.

It is worth mentioning that during the period from 300
seconds to 500 seconds in Fig. 10, our work underwent three
brief resource allocation increases. The reason for this phe-
nomenon is that there was a rapid resource fluctuation during
the game period, causing the program to mistakenly assume
that it had entered a new phase and made a jump. However,
this misjudgment was quickly adjusted after detecting that
the actual phase was different from the current judgment
phase, jumping back to the original phase. This leads to strong
robustness.

2) Resource utilization of multiple games: In order to
continuously distribute game tasks on the real machine, we
have designed scripts for each game to run automatically. In
order to increase the complexity of the situation, we have
designed different scripts for the same game as shown in Table
I. When a game is assigned, it randomly selects one from the
scripts to execute. This greatly increases the complexity of our
system. At the same time, it also shows that our scheduling
algorithm is not only suitable for transparent and processed
data but also has good scalability.

• DOTA2. We design 2 scripts, one is conducting a match
with 9 bots, and the other one is playing a tower defense
game in the arcade.

• CSGO. We design 2 scripts, one is conducting a match
with 9 bots, and the other one is moving in the training
map without shooting.

• Devil May Cry. We design 3 scripts, one is passing the
first level in simple mode, another one is passing the

7

0%

20%

40%

60%

80%

100%

5

2
0

3
5

5
0

6
5

8
0

9
5

1
1

0

1
2

5

1
4

0

1
5

5

1
7

0

1
8

5

2
0

0

2
1

5

2
3

0

2
4

5

2
6

0

2
7

5

2
9

0

3
0

5

3
2

0

3
3

5

3
5

0

3
6

5

3
8

0

3
9

5

4
1

0

4
2

5

4
4

0

4
5

5

4
7

0

4
8

5

5
0

0

5
1

5

5
3

0

5
4

5

5
6

0

5
7

5

5
9

0

6
0

5

6
2

0

6
3

5

6
5

0

6
6

5

6
8

0

6
9

5

7
1

0

7
2

5

7
4

0

7
5

5

7
7

0

7
8

5

8
0

0

8
1

5

8
3

0

G
P

U
 U

ti
liz

at
io

n

Time stamp

An example of Game Co-location DOTA2 Genshin Impact

❶ ❷ ❸ ❹ ❺

Fig. 9: Co-location of Genshin Impact and DOTA2. Our scheduler can co-locate two games with maximum utilization of 78%
and 43%, and keep below the upper limit.

0

10

20

30

40

50

60

70

5 55 105 155 205 255 305 355 405 455 505 555 605 655 705 755 805

R
es

o
u

rc
e

u
ti
liz

at
io

n
 R

at
e

(%
)

Time(s)

Real Machine Prediction-based Allocation

Fig. 10: Genshin Impact prediction allocation

second level in simple mode, and the last one is passing
both the first and second levels.

• Genshin Impact. We design 3 scripts, with 3 different
orders to complete 3 same tasks.

• Contra. We design 3 scripts, one is passing the first level,
another one is passing the first two levels, and the last
one is passing the first three levels.

Fig. 9 shows one of our co-location results with Genshin
Impact and DOTA2. We can see that Genshin Impact has
a maximum resource consumption of 78% while Dota 2 is
43%. The overall resource consumption of the two games’
co-location does not exceed 95%. This shows that our fine-
grained scheme can better achieve peak shaving. In the first
period, both of the games are in the running stage, while
Dota 2 is in a higher consumption stage and Genshin Impact
consumes less at this time. The second period is just the
opposite, Genshin Impact enters a higher consumption stage
and Dota 2 consumption begins to decrease. During the third
period, our scheduler detects the rapid increase of DOTA2, so
we switch the Genshin Impact stage to a lower one. However,
the later performance shows that it is just a sudden event,
not a change of stage. So the consumption of Genshin Impact
returns immediately. At the beginning of the fourth period,
DOTA2’s resource consumption reached its peak, and in order
not to break through the upper limit, the system arranged
Genshin Impact to stay in the loading stage for an extra 15
seconds. Genshin Impact does not enter the next stage until
the peak is over. In the fifth period, Genshin Impact took
advantage of Dota 2’s loading stage to start a new task.

We compare our methodology with the following state-of-
the-art alternatives:

3

2 2

4
3 3

0

1

2

3

4

5

6

7

8

Our VBP GAugur

Th
ro

u
g

h
p

u
t

(t
as

k
n

u
m

b
er

)

DOTA2 Devil May Cry

6 5 6

8

2

4

0

2

4

6

8

10

12

14

16

Our VBP GAugur

Th
ro

u
g

h
p

u
t

(t
as

k
n

u
m

b
er

)

CSGO Genshin Impact

13 11 13

20
18

19

0

5

10

15

20

25

30

35

Our VBP GAugur

Th
ro

u
g

h
p

u
t

(t
as

k
n

u
m

b
er

)

Genshin Impact Contra

(a) Long-time games (b) Long and short games (c) Short-time games

Fig. 11: Throughput of games co-location. The throughput of
our work is 23.7% higher than that of others.

• Vector Bin Packing(VBP). VBP assumes that the game
can run normally at 90% of its maximum resource
consumption. At the same time, an application can be
assigned to a server only when the server’s remaining
resources are higher than the peak of the application.

• GAugur. GAugur is a performance model proposed by
[23]. it uses profiling to predict whether two games can
be co-located on the same server. After allocating two
games on a server, GAugur also assigns a fixed resource
limit to each game through machine learning algorithms.

Combine the 5 games we have selected in pairs for co-
location, and there are a total of 10 scenarios. However,
there are multiple situations where both games consume a
lot of resources for a long time and cannot run on the same
machine. Therefore, we selected three scenarios in Fig. 11 as
representatives for detailed analysis.

The experiment in Fig. 11 shows two-hour duration results
of tasks completed by three game combinations (DOTA2 +
Devil May Cry, CSGO + Genshin Impact, and Genshin +
Contra) under different co-location strategies and the total
duration of performance loss. During these two hours, the se-
lected game will continuously run requests until the distributor
passes the request and starts running.

We use throughput T in Eq.2 to measure our work

T =

k∑
i=1

Ni · Si (2)

where k represents the number of different games running on
the server, Ni represents the number of the ith game running
in 2 hours, and Si represents the duration of the ith game.

8

0

2

4

6

8

10

12

14

LD 1 LD 2 LD 3 LD 4 LD 5 LD 6

Ti
m

e
(s

ec
o

n
d

s)

Game loading(LD) stages

(a) Genshin Impact

Predicting Running

0

5

10

15

20

25

LD 1 LD 2 LD 3 LD 4 LD 5 LD 6

Ti
m

e
(s

ec
o

n
d

s)

Game loading(LD) stages

(b) CSGO

Predicting Running

0

5

10

15

20

25

30

LD 1 LD 2 LD 3 LD 4 LD 5 LD 6 LD 7 LD 8 LD 9 LD 10 LD 11 LD 12

Ti
m

e
(s

ec
o

n
d

s)

Game Loading(LD) Stages

(c) DOTA2

Predicting Running

0

5

10

15

20

LD 1 LD 2 LD 3 LD 4 LD 5 LD 6 LD 7 LD 8 LD 9 LD 10 LD 11 LD 12

Ti
m

e
(s

ec
o

n
d

s)

Game Loading(LD) Stages

(d) Devil May Cry

Predicting Running

Fig. 12: Overhead of Scheduling

Regarding the combination of DOTA2 and Devil May Cry,
the sum of the peak resource consumption of these two
games is very large. Therefore only our work co-locates them
as much as possible, other solutions can only be executed
individually. The combination of CSGO and Genshin Impact is
a combination of long-term games and short-term games. Our
work can try to insert short-term games as much as possible
between the peak periods of long-term games, resulting in
a significant increase in the number of runs of Genshin
Impact. And the third combination, as it is two combinations
with less resource consumption, all three schemes have good
performance. According to the above formula, the throughput
of our work is 23.7% higher than that of others. Overall, our
work increased the throughput of cloud games with acceptable
performance losses.

C. Overhead

1) Scheduling overhead: For our overall scheduling pro-
cess, since the predictor training part is mainly offline, the
main time overhead of the real-time system is the prediction
between stage and stage. As mentioned in Section IV-A1,
loading time tends to be 5s-30s between stage and stage, which
provides the conditions for us to detect stage transitions. At
the same time, it means that as long as our prediction time is
shorter than the loading time, the overhead of our scheduling
can be reduced as much as possible. Fig. 12 illustrates the
average time for the four games to be evaluated at different
stages of loading and prediction time of resource usage.
The predicting time is between 3s-13s, which is basically

50

34

42

98

74

86

120

100

110

0% 20% 40% 60% 80% 100%

(a) CSGO

GAugur Our Best

40

28

46

46

60

60

75

97

91

83

88

121

0% 20% 40% 60% 80% 100%

(b) DOTA2

GAugur Our Best

35

30

23

50

40

27

60

45

30

0% 20% 40% 60% 80% 100%

(c) Genshin Impact

GAugur Our Best

28

24

40

45

45

57

55

60

70

0% 20% 40% 60% 80% 100%

(d) Devil May Cry

GAugur Our Best

Fig. 13: FPS of Co-location Games

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8

SS
E

K CLUSTERS

CSGO DOTA2

DMC GI

Fig. 14: Clustering result with different K value. The SSEs
remain few changes when K > 5.

completely covered by loading time. This means that the time
overhead of our scheduling system is perfectly acceptable.

2) QoS overhead: For cloud game applications, QoS (Qual-
ity of Service) is often measured by FPS(Frames Per Second)
[22]. The average gamer’s demand for FPS is a minimum of
30 frames, and reaching 60 frames is considered to achieve
the ideal performance. Previous work [23] has also measured
cloud game applications by this standard. Fig. 13 compares
our method with GAugur. For a game, the maximum number
of frames it can achieve will vary depending on the stage
while providing it with sufficient CPU and GPU resources. Our
experiments covered all 4 games as much as possible, and the
FPS of the games reached 78% of the best performance after
scheduling, compared to only 43% of GAugur. For the two
games Genshin Impact and Devil May Cry, the manufacturer
locked 30/60 frames in order to adapt to more devices. In
this case, our solution ensured that the game ran at a frame
rate of more than 30 frames as much as possible, meeting the
minimum standards. For CSGO and Dota 2, there is no upper
frame limit, so our solution can reach more than 60 frames to
obtain the ideal QoS. The experimental results show that the
two strategies we used in section IV-C2 significantly improve
the QoS of co-location games.

9

0.98

0.93

0.86

0.95
0.990.97

0.92

0.83

0.93

0.98
0.95 0.95

0.93 0.94
0.97

0.8

0.85

0.9

0.95

1

Devil May
Cry

DOTA2 Genshin
Impact

CSGO ContraP
re

d
ic

ti
o

n
 A

cc
u

ra
cy

DTC RF GBDT

Fig. 15: Prediction Accuracy

D. Performance Breakdown

1) Impact of clustering methods: We used the K-means
method to cluster each frame into different clusters. K-means
demonstrated significantly higher accuracy compared to other
clustering methods like Graph Partitioning, which does not
require the number of clusters. Additionally, we observed a
trade-off in the K-means algorithm: while a larger number of
clusters leads to higher accuracy, it also incurs more execution
overhead.

To determine how many clusters each game should be
divided into, we conducted experiments using different k
values. As shown in Fig. 14, there are obvious inflection
points in all four images. The existence of these inflection
points indicates that there are indeed similar characteristics
of resource consumption in the game, and also guides us to
choose the appropriate k value. In the end, we chose to divide
Contra into 2 clusters(Resource consumption of this game
changes very little during the run, so it is divided into two
clusters: the loading and the running.), CSGO and Genshin
Impact into 4 clusters, DOTA2 into 5 clusters, and Devil
May Cry into 6 clusters. This approach not only conforms to
our intuitive understanding of games but also has algorithmic
support.

2) Impact of prediction algorithms: We next show the
prediction accuracy of the machine learning model. Given
the current execution stage and previous stage history, the
model predicts the next game-running stage. As mentioned in
Section IV-B, for different types of games, we select different
samples for training. Our data consists of two parts. One is
the user information and corresponding resource consumption
collected during the running of the Alibaba Cloud game
platform, and the other is the data collected through repeated
games in the laboratory. Among the samples generated, we
used 75% of them (randomly selected) to train the model
and the remaining 25% for testing. We applied DTC, RF,
and GBDT machine learning algorithms to build the machine
learning model. Fig. 15 presents the mean prediction accuracy
produced by different machine learning algorithms for the
tested games. As can be seen, DTC achieves an accuracy of
over 92% in most cases, indicating that the model can predict
the next stage of a game. Also, we find that although DTC and
RF have lower accuracy in Genshin Impact, GBDT remains as
is. This is because Genshin Impact has a complex real-world
environment and requires more in-depth iteration.

VI. RELATED WORK

A. Cloud Game

Resource management issues in cloud games have been
extensively studied, including request allocation, scheduling,
server configuration [2] [9] [11] [15] [24] [28] [36]. However,
the correspondence between game content and resource con-
sumption is not taken into account in these works. Some sim-
ple scheduling strategies were employed, including Disallow-
ing Co-location and Vector Bin Packing policies [9] [11] [24].
However, these tactics either lead to over-resource scheduling
or QoS violations. Performance predictions for coexisting
games were studied in previous work [2] [15]. However, their
model simply assumes that performance degradation depends
only on the number of co-located games, so it can produce
large prediction errors.

B. Prediction-based Scheduling

Extensive research [6] [7] [8] [13] [27] [41] [37] has
been conducted on the prediction of performance disturbances
caused by contention of shared resources. However, since
games are very different from general applications, applying
existing methods to our problem is not useful for many rea-
sons. Cuanta [13], and Bubble-Flux [37] cannot capture com-
peting behavior between multidimensional resources. Bubble-
Up [27] and SMiTe [41] can only handle co-location for
two applications. Paragon [7] and Quasar [8] rely on the
assumption that application capability is additive is incorrect
for cloud games. Machine learning techniques are used to
build performance prediction models. However, because these
models do not take into account the inherent nature of cloud
games, they produce a high prediction error.

C. GPU Co-location

Techniques have been proposed in previous work to improve
GPU utilization. TimeGraph [21], Baymax [10], vGASA [38],
and VGRIS [28] schedule GPU tasks for collaborative work-
loads to improve hardware utilization while guaranteeing QoS.
These technologies complement our work. Prophet [4] can
predict performance interference for co-located applications
on GPUs. However, it does not apply to our problem since
predictions are not done in real-time. DJay [14] dynamically
adjusts the game settings of the shared game as the game pro-
gresses to accommodate changes in the game scene, thereby
improving performance. However, it focuses on a set of well-
designed games, which cannot apply in real data centers. Our
approach and dJay [14] are complementary.

VII. CONCLUSION

In this work, we have presented a novel strategy that enables
efficient and adaptive resource scheduling for cloud games.
We break the cloud game into stages by frame clustering.
Our work leverages machine learning technology to real-time
predict game resource consumption. To improve multi-game
co-location, our work steals time from the loading stage to
avoid oversubscribing. The experimental results show that

10

our work increased the 23.7% throughput of the cloud game
deployment compared to the prior work at low overhead.

ACKNOWLEDGMENT

We sincerely thank all the anonymous reviewers for their
valuable comments. This work is supported by the Shang-
hai S&T Committee Rising-Star Program (No.21QA1404400)
and the National Natural Science Foundation of China
(No.62122053). The corresponding author is Chao Li.

REFERENCES

[1] M. Amiri, H. Al Osman, S. Shirmohammadi, and M. Abdallah, “An sdn
controller for delay and jitter reduction in cloud gaming,” in Proceedings
of the 23rd ACM International Conference on Multimedia, ser. MM ’15,
2015, p. 1043–1046.

[2] M. Basiri and A. Rasoolzadegan, “Delay-aware resource provisioning for
cost-efficient cloud gaming,” IEEE Transactions on Circuits and Systems
for Video Technology, pp. 972–983, 2018.

[3] W. Cai, R. Shea, C.-Y. Huang, K.-T. Chen, J. Liu, V. C. M. Leung, and
C.-H. Hsu, “The future of cloud gaming [point of view],” Proceedings
of the IEEE, pp. 687–691, 2016.

[4] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise qos prediction on non-preemptive accelerators to
improve utilization in warehouse-scale computers,” SIGARCH Comput.
Archit. News, p. 17–32, apr 2017.

[5] S. Chen, C. Delimitrou, and J. F. Martı́nez, “Parties: Qos-aware resource
partitioning for multiple interactive services,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19,
2019, p. 107–120.

[6] Y. Cheng, W. Chen, Z. Wang, and Y. Xiang, “Precise contention-aware
performance prediction on virtualized multicore system,” J. Syst. Archit.,
p. 42–50, jan 2017.

[7] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” SIGPLAN Not., p. 77–88, mar 2013.

[8] ——, “Quasar: Resource-efficient and qos-aware cluster management,”
p. 127–144, feb 2014.

[9] Y. Deng, Y. Li, R. Seet, X. Tang, and W. Cai, “The server allocation
problem for session-based multiplayer cloud gaming,” IEEE Transac-
tions on Multimedia, pp. 1233–1245, 2018.

[10] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in 2013 IEEE 34th Real-Time Systems
Symposium, 2013, pp. 33–44.

[11] D. Finkel, M. Claypool, S. Jaffe, T. Nguyen, and B. Stephen, “Assign-
ment of games to servers in the onlive cloud game system,” in 2014 13th
Annual Workshop on Network and Systems Support for Games, 2014,
pp. 1–3.

[12] M. Ghobaei-Arani, R. Khorsand, and M. Ramezanpour, “An autonomous
resource provisioning framework for massively multiplayer online games
in cloud environment,” Journal of Network and Computer Applications,
pp. 76–97, 2019.

[13] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta:
Quantifying effects of shared on-chip resource interference for consoli-
dated virtual machines,” in Proceedings of the 2nd ACM Symposium on
Cloud Computing, ser. SOCC ’11, 2011.

[14] S. Grizan, D. Chu, A. Wolman, and R. Wattenhofer, “Djay: Enabling
high-density multi-tenancy for cloud gaming servers with dynamic cost-
benefit gpu load balancing,” in Proceedings of the Sixth ACM Symposium
on Cloud Computing, ser. SoCC ’15, 2015, p. 58–70.

[15] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“Placing virtual machines to optimize cloud gaming experience,” IEEE
Transactions on Cloud Computing, pp. 42–53, 2015.

[16] X. Hou, L. Hao, C. Li, Q. Chen, and M. Guo, “Power grab in
aggressively provisioned data centers: What is the risk and what can
be done about it,” in International Conference on Computer Design,
2018.

[17] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen, “Gamingany-
where: An open cloud gaming system,” in Proceedings of the 4th ACM
Multimedia Systems Conference, ser. MMSys ’13, 2013.

[18] G. Inc., “Google cloud game,” https://cloud.google.com, 2017.
[19] M. Inc., “Metaverse,” https://www.pwc.com/us/metaverse, 2021.

[20] T. Inc., “Gpu-z,” https://www.techpowerup.com/gpuz/, 2021.
[21] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:

Gpu scheduling for real-time multi-tasking environments,” in Proceed-
ings of the 2011 USENIX Conference on USENIX Annual Technical
Conference, 2011.

[22] Y. Li, H. Liu, X. Wang, L. Pu, T. Marbach, S. Tang, G. Wang,
and X. Liu, “Themis: Efficient and adaptive resource partitioning for
reducing response delay in cloud gaming,” in Proceedings of the 27th
ACM International Conference on Multimedia, ser. MM ’19, 2019.

[23] Y. Li, C. Shan, R. Chen, X. Tang, W. Cai, S. Tang, X. Liu, G. Wang,
X. Gong, and Y. Zhang, “Gaugur: Quantifying performance interfer-
ence of colocated games for improving resource utilization in cloud
gaming,” in Proceedings of the 28th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’19, 2019.

[24] Y. Li, X. Tang, and W. Cai, “On dynamic bin packing for resource
allocation in the cloud,” in Proceedings of the 26th ACM Symposium
on Parallelism in Algorithms and Architectures, ser. SPAA ’14, 2014,
p. 2–11.

[25] Y. Li, C. Zhao, X. Tang, W. Cai, X. Liu, G. Wang, and X. Gong,
“Towards minimizing resource usage with qos guarantee in cloud
gaming,” IEEE Transactions on Parallel and Distributed Systems, 2021.

[26] T. Liu, S. He, S. Huang, D. Tsang, L. Tang, J. Mars, and W. Wang, “A
benchmarking framework for interactive 3d applications in the cloud,”
in 2020 53rd Annual IEEE/ACM MICRO, 2020.

[27] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in 2011 44th Annual IEEE/ACM MICRO, 2011, pp. 248–
259.

[28] Z. Qi, J. Yao, C. Zhang, M. Yu, Z. Yang, and H. Guan, “Vgris:
Virtualized gpu resource isolation and scheduling in cloud gaming,”
ACM Trans. Archit. Code Optim., jul 2014.

[29] R. Ren, X. Tang, Y. Li, and W. Cai, “Competitiveness of dynamic bin
packing for online cloud server allocation,” IEEE/ACM Transactions on
Networking, pp. 1324–1331, 2017.

[30] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: architecture
and performance,” IEEE Network, pp. 16–21, 2013.

[31] S. Shi, C.-H. Hsu, K. Nahrstedt, and R. Campbell, “Using graphics ren-
dering contexts to enhance the real-time video coding for mobile cloud
gaming,” in Proceedings of the 19th ACM International Conference on
Multimedia, ser. MM ’11, 2011, p. 103–112.

[32] K. T. and Mark, “On frame rate and player performance in first person
shooter games,” Multimedia Systems, 2007.

[33] X. Tang, Y. Li, R. Ren, and W. Cai, “On first fit bin packing for
online cloud server allocation,” in 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2016, pp. 323–332.

[34] J. Wang, C. Li, Y. Liu, T. Wang, J. Mei, L. Zhang, P. Wang, and M. Guo,
“Fargraph+: Excavating the parallelism of graph processing workload
on rdma-based far memory system,” Journal of Parallel and Distributed
Computing, 2023.

[35] J. Wang, C. Li, T. Wang, L. Zhang, P. Wang, J. Mei, and M. Guo,
“Excavating the potential of graph workload on rdma-based far memory
architecture,” in 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2022, pp. 1029–1039.

[36] D. Wu, Z. Xue, and J.-Q. He, “icloudaccess: Cost-effective streaming
of video games from the cloud with low latency,” IEEE Transactions on
Circuits and Systems for Video Technology, pp. 1405–1416, 2014.

[37] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online qos management for increased utilization in warehouse scale
computers,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture, ser. ISCA ’13, 2013, p. 607–618.

[38] C. Zhang, J. Yao, Z. Qi, M. Yu, and H. Guan, “vgasa: Adaptive
scheduling algorithm of virtualized gpu resource in cloud gaming,” IEEE
Transactions on Parallel and Distributed Systems, pp. 3036–3045, 2014.

[39] W. Zhang, B. Chen, Z. Han, Q. Chen, P. Cheng, F. Yang, R. Shu,
Y. Yang, and M. Guo, “PilotFish: Harvesting free cycles of cloud gaming
with deep learning training,” in USENIX ATC 22, Jul. 2022.

[40] X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin, and
D. O. Wu, “Improving cloud gaming experience through mobile edge
computing,” IEEE Wireless Communications, pp. 178–183, 2019.

[41] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise qos
prediction on real-system smt processors to improve utilization in ware-
house scale computers,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 406–418.

11

