
Cloud-Native Server Consolidation for
Energy-Efficient FaaS Deployment

Lu Zhang1, Yifei Pu1, Cheng Xu1, Du Liu1, Zeyi Lin1, Xiaofeng Hou3, Pu
Yang2, Shang Yue2, Chao Li1(�), and Minyi Guo1

1 Shanghai Jiao Tong University
2 Tencent

3 The Hong Kong University of Science and Technology
{luzhang,pkq2006,jerryxu}@sjtu.edu.cn, {lichao,guo-my}@cs.sjtu.edu.cn

Abstract. The lack of function-oriented power management scheme has
seriously hindered the serverless platform’s cost efficiency. In this paper,
we analyze the invocation pattern of serverless functions and investigate
its implications on server energy efficiency. Rather than using a one-size-
fits-all strategy, we propose DAC , a software-hardware co-design solu-
tion to offer differentiated cloud-native server consolidation. We build a
proof-of-concept framework and show that DAC can improve the energy
efficiency of tail function deployment by up to 23%.

Keywords: Serverless, tail functions, cloud-native consolidation

1 Introduction

In recent years, Function as a Service (FaaS) has attracted considerable attention
due to its easy application deployment. To mitigate the overhead of cold start,
most FaaS providers adopt a keep-alive policy [4,5]. However, Existing schedul-
ing frameworks either deploy functions on servers with idle resources or activate
a new server. This often leads to poor data center energy proportionality, due
to the significant static power consumption. In addition, functions incur various
invocation interval time(IIT) [3]. We refer to functions that can be kept in mem-
ory for frequent invocation as native functions. However, there are functions that
seldom invoke which we call them as tail functions. The different IIT of functions
bring challenges for optimizing energy efficiency of FaaS infrastructure.

A key insight driving our work is that energy-efficient consolidation scheme
should distinguish tail functions from native functions. First, reserving comput-
ing resources for tail functions would waste energy. Second, mixing tail functions
with native functions causes more servers alive for native functions, thus increas-
ing static power. Thus, it is necessary to treat tail functions differently.

Enlightened by the above observations, in this paper we envision cloud-native
server consolidation to explore differentiated function management. We maxi-
mally consolidate native functions on server cores with the keep-alive policy.
Meanwhile, we opportunistically map tail functions on cores that run native
functions. Although modern scale-out architecture has strict power limits for



2 Lu Zhang et al.

sustained workload, activating more computing resources for a very short time
will not cause significant thermal/overloading issues [1, 2]. Short-lived tail func-
tions are well-suited to take advantage of this opportunity. To ensure high per-
formance, we should also treat tail functions differently since some tail functions
can still benefit from warm start while some tail functions cannot.

We devise DAC (differentiate and consolidate), a novel load management
strategy for cloud-native server consolidation. First, DAC adopts a two-level
classifier to classify functions. The first-level classifier aims to distinguish native
functions from tail functions. The second-level classifier further identifies the
power-performance sensitivity for native functions and the invocation pattern
for tail functions. Second, DAC uses a consolidation controller to adaptively
invoke tail functions. It works to optimize the energy efficiency of servers.

This paper makes the following contributions:

– We classify serverless functions as native or tail functions according to their
IIT and discuss the key design considerations of functions’ consolidation.

– We propose DAC , a novel cloud-native server consolidation strategy that
can deploy functions in an energy-efficient way.

– We demonstrate that DAC can achieve the efficiency improvement of tail
function deployment up to 23% by extensive experiments.

2 Key Design Considerations

Function Invocation Patterns. We investigate invocation patterns from the
perspective of invocation rates and invocation intervals using the data set from
Azure Functions [3]. Some functions are invoked frequently and we term these
functions as native functions which can be kept on dedicated servers to ensure
warm start. Differently, there are also troublesome functions whose IIT is larger
than the given keep-alive value. We refer to them as tail functions and the system
cost of maintaining warm start for tail functions could be prohibitively high.

We show examples of native functions in Figure 1(a). The IIT is smaller than
10 minutes, which implies that they can be invoked with warm start under the
keep-alive policy. Differently, tail functions can be classified into two categories:
explicit tail functions and implicit tail functions. As shown in Figure 1(b), the
IIT of explicit tail functions is clearly longer than 10 minutes where all functions
would suffer from cold start. However, the implicit tail functions have an uncer-
tain invocation pattern as shown in Figure 1(c). It is not easy to identify whether
functions will suffer from cold start or warm start. The existence of implicit tail
functions makes function power management a challenging problem.

Limitations of Current Solutions. The current FaaS load management
solutions largely ignore the invocation rate of functions. They deploy functions
according to the given policy and the current status. There are two key issues:
1) They mix tail functions with native functions. In this case, native functions
have to be put on other servers which introduces cold start overhead. 2) It tends
to activate more servers to process functions with load balancing. Since servers
are far from energy-proportionality, doing so will increase energy consumption.



Cloud-Native Server Consolidation 3

0

0.5

1

0 10 20 30
N

o
rm

. 
R

a
ti
o

IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30

N
o
rm

. 
R

a
ti
o

IIT(min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30

N
o
rm

. 
R

a
ti
o

IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

Func-A1 Func-A2 Func-A3 Func-B1 Func-B2 Func-B3

Func-C1 Func-C2 Func-C3

0%

20%

40%

60%

80%

100%

P
=

0

P
=

0
.3

P
=

0
.6

P
=

0
.9

P
=

0

P
=

0
.3

P
=

0
.6

P
=

0
.9

P
=

0

P
=

0
.3

P
=

0
.6

P
=

0
.9

P
=

0

P
=

0
.3

P
=

0
.6

P
=

0
.9

C
a
s
e
 1

C
a
s
e
 2

C
a
s
e
 3

C
a
s
e
 4

LWR MWR HWR HFP Mixed

D
e
p
lo

y
m

e
n
t

R
a
ti
o

Aggressive Deployment Conservative Deployment

(a) Examples of native functions (b) Examples of explicit tail functions

(c) Examples of implicit tail functions

Fig. 1. The invocation interval time (IIT) of different Azure functions [3]

Function Classifier𝛌 𝛌
𝛌 𝛌 𝛌

𝛌

Tail Functions

Tail Functions

Consolidation

Controller

S Status Monitor M V/F Control Modulator G Power Gating Module

Native Functions

Conservative Deployment Aggressive Deployment

< 𝐵𝑤𝑎𝑟𝑚 , 𝑃𝑤𝑎𝑟𝑚 , 𝐷𝐹 >

Power LatencyFunction

Function Sensitivity Table

Active Server
S
M
G

Active Server
S
M
G …

Inactive Server
S
M
G

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Sphinx Masstree Memcached Nginx Xapian

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2
.2

G
H

z

1
.9

G
H

z

1
.6

G
H

z

1
.3

G
H

z

1
.0

G
H

z

2
G

H
z

1
.7

G
H

z

1
.4

G
H

z

1
.1

G
H

z

0
.8

G
H

z

2
.1

G
H

z

1
.8

G
H

z

1
.5

G
H

z

1
.2

G
H

z

0
.9

G
H

z

2
.2

G
H

z

1
.9

G
H

z

1
.6

G
H

z

1
.3

G
H

z

1
.0

G
H

z

Sphinx Memcached Nginx Xapian

N
o

rm
. 
L

a
te

n
c
y

0

1

2

3

4

5

2
.2

G
H

z
2

G
H

z
1

.8
G

H
z

1
.6

G
H

z
1

.4
G

H
z

1
.2

G
H

z
1

.0
G

H
z

0
.8

G
H

z
2

.2
G

H
z

2
G

H
z

1
.8

G
H

z
1

.6
G

H
z

1
.4

G
H

z
1

.2
G

H
z

1
.0

G
H

z
0

.8
G

H
z

2
.2

G
H

z
2

G
H

z
1

.8
G

H
z

1
.6

G
H

z
1

.4
G

H
z

1
.2

G
H

z
1

.0
G

H
z

0
.8

G
H

z

Sphinx Memcached Nginx

N
o

rm
. 
L

a
te

n
c
y

Power LatencyFunction
Power LatencyFunction

Power LatencyFunction

Fig. 2. Overview of the DAC design

We explore cloud-native server consolidation for tail functions, there are two
deployment methods: Aggressive Deployment and Conservative Deployment.

Aggressive Deployment places tail functions with native functions. It faces
two challenges. First, aggressive deployment would exceed the thermal/power
constraint of servers. Servers must scale down the power level of cores, caus-
ing server-wide performance degradation. Second, due to the thermal limit, the
chip can not support aggressive deployment for long time. Thus, incoming tail
functions can not maintain the warm-start state.

Conservative Deployment has its merits. Native functions enjoy sufficient
power budget for high performance. If tail functions are invoked successively,
they can be deployed in the same server with warm start. The disadvantage of
conservative deployment is that it increases the total energy consumption.

3 DAC Design

3.1 System Overview

Figure 2 gives an overview of the DAC . It consists of two main components
to ensure efficient deployment of tail functions. The function classifier groups
invoked functions into native or tail functions according to their IIT distribu-
tion. Meanwhile, a consolidation controller is used to coordinate the deployment
of functions. The consolidation controller cooperates with a server-level power
manager to robustly perform function consolidation. The controller monitors



4 Lu Zhang et al.

the status of servers and the collected information can be used to guide func-
tion deployment. The power manager can adjust server power consumption by
activating/deactivating cores or manipulating the V/F levels of cores.

3.2 Function Classifier

System running 

under TDP

System running 

equal to TDP

System running 

over TDP

Temperature

Temperature

Temperature

Rack

𝛌 𝛌
𝛌 𝛌 𝛌

𝛌

𝛌 𝛌
𝛌 𝛌 𝛌

𝛌
IIT-based 

Classifier

Native 

Functions

Tail 

Functions

Power-sensitive 

Functions

Non Power-

sensitive Functions

Isolated 

Deployment

Aggressive 

Deployment
Explicit Tail 

Functions

Implicit Tail 

Functions

Adaptive 

Deployment

Socket

Socket

Fig. 3. DAC function classification

As shown in Figure 3, the classi-
fier further divides native functions
into either power-sensitive and non-
power-sensitive functions. We can op-
portunistically place tail functions to
servers that run non-power-sensitive
native functions. Power-sensitive na-
tive functions must be processed in
an isolated way for high performance.
We create a sensitivity table to store
how power affects native functions’ la-
tency. Explicit tail functions can be

deployed with native functions for energy saving purpose. Importantly, we need
to carefully choose the deployment decision for implicit tail functions.

3.3 Consolidation Controller

The consolidation controller manage the status of native functions and oppor-
tunistically place tail functions with an adaptive algorithm. It requires two pa-
rameters to make the proper deployment decision for each function: 1) Bwarm,
the beneifts of functions’ warm-start and 2) Pwarm, the warm-start probabil-
ity. Bwarm is given by: Bwarm = Dinit

Dtotal
, where Dinit is functions’ initialization

time while Dtotal is the total duration. Pwarm of each function is presented as
Pwarm = Ivkwarm

Ivktotal
, where Ivkwarm is the frequency of invocations whose IIT is

less than 10 minutes while Ivktotal is the total number of invocation.
The consolidation controller further utilizes an adaptive function deployment

algorithm to deploy tail functions. The latency of functions is given by:

LA = DF , LC = DF ∗ (Pwarm ∗ (1−Bwarm) + 1− Pwarm)

where DF is the duration of the function, LA and LC are the estimated
latency of aggressive and conservative deployment. The system energy under
the two methods is given by:

EA = PowerDynamic ∗ LA, EC = Powertotal ∗ LC

To identify the best trade-off between energy and performance, we use the
metrics: Eff = 1/(αLA

LC
+β EA

EC
). where α, β presents the importance of functions’

latency and energy saving respectively (α + β = 1). If Eff > 1, it implies that
the aggressive deployment is more energy-efficient and vice versa.



Cloud-Native Server Consolidation 5

Table 1. The evaluated serverless functions

Function markdown img-resize sentiment ocr-img autocomplete matmul linpack dd
Runtime python nodejs python nodejs nodejs python python python
Bwarm 0.89 0.76 0.5 0.04 0.25 0.2 0.58 0.33

Table 2. Evaluated tail function pool

Tail Function Pool Abbr. Functions

Low Warm Ratio LWR ocr-img,matmul
(0 < Bwarm < 0.3) autocomplete

Medium Warm Ratio MWR dd, linpack
(0.3 ≤ Bwarm < 0.65) sentiment

High Warm Ratio HWR img-resize
(0.65 ≤ Bwarm < 1) markdown

Hybrid Function Pool HFP All functions
(0 < Bwarm < 1) combined

Table 3. Mixed function invocations

Case Mixed Functions

Case 1 LWR (P=0), MWR (P=0.3),
HWR (P=0.6), HFP (P=0.9)

Case 2 LWR (P=0.9), MWR (P=0),
HWR (P=0.3), HFP (P=0.6)

Case 3 LWR (P=0.6), MWR (P=0.9),
HWR (P=0), HFP (P=0.3)

Case 4 LWR (P=0.3), MWR (P=0.6),
HWR (P=0.9), HFP (P=0)

4 Evaluation

4.1 Methodologies

To validate and evaluate DAC under large-scale deployment, we implement a
trace-driven evaluation framework. Our test bench takes realistic function execu-
tion trace as input. The information of tail functions is shown in Table 1. Table 2
and Table 3 show various function pools (We use P as Pwarm for brevity). We
compare DAC with two deployment schemes: PerFst and EnerFst. Like Open-
Whisk, PerFst deploys functions on individual servers for the best performance.
Differently, EnerFst applies aggressive deployment for tail functions to reduce
the number of active servers which pursues energy saving [6].

4.2 Evaluation Results

Figure 4 shows the latency, energy and efficiency of different schemes. All results
are normalized to PerFst which yields the best performance. As seen in Fig-
ure 4(a), DAC achieves similar performance (up to 5% latency increase) under
various warm-start probability values.

As for energy (Figure 4(b)), DAC consumes less energy than PerFst, but
more energy than EnerFst in some cases. When P=0.9 in MWR and P=0.6/P=0.9,
the latency of EnerFst could be very large. Although the dynamic power is
smaller than the total server power, significant latency degradation may neu-
tralize the benefits of power saving. Figure 4(c) shows the efficiency of different
schemes. DAC outperforms all other schemes.

In addition, we evaluate our design using hybrid function pools as shown in
Figure 5. The efficiency of DAC outperforms PerFst by 18% when P=0 while
the improvement is 45% compared with EnerFst (when P=0.9).

We also investigate DAC under mixed functions shown Table 3. As shown in
Figure 6, DAC achieves the best efficiency among all the evaluated schemes. On
average, DAC improve the efficiency by 6% and 23% compared to PerFst and
EnerFst, respectively. Although the latency of DAC is 2% larger than PerFst,
DAC can save 13% more energy. The high efficiency of DAC implies that it can
achieve a better design tradeoff between performance and energy.



6 Lu Zhang et al.

7750

7800

7850

7900

7950

PD AD DAC

A
n

n
u

a
l

C
O

2
(M

e
tr

ic
T

o
n

s
)

7750

7800

7850

7900

7950

CD AD DAC

A
n

n
u

a
l

C
O

2
(M

e
tr

ic
T

o
n

e
s

)

0.7
0.9
1.1
1.3
1.5
1.7
1.9

0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9

LWR MWR HWR

N
o

rm
. 
L

a
te

n
c

y

PerFst EnerFst DAC

P=
0.4
0.6
0.8

1
1.2
1.4

0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9

LWR MWR HWR

N
o

rm
. 
E

n
e

rg
y

PerFst EnerFst DAC

P=

0.2
0.4
0.6
0.8

1
1.2

0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9

LWR MWR HWR

N
o

rm
. 
E

ff

PerFst EnerFst DAC

P=

(a) Normalized Latency

7750

7800

7850

7900

7950

PD AD DAC

A
n

n
u

a
l

C
O

2
(M

e
tr

ic
T

o
n

s
)

7750

7800

7850

7900

7950

CD AD DAC

A
n

n
u

a
l

C
O

2
(M

e
tr

ic
T

o
n

e
s

)

0.7
0.9
1.1
1.3
1.5
1.7
1.9

0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9

LWR MWR HWR

N
o

rm
. 
L

a
te

n
c

y
PerFst EnerFst DAC

P=
0.4
0.6
0.8

1
1.2
1.4

0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9

LWR MWR HWR

N
o

rm
. 
E

n
e

rg
y

PerFst EnerFst DAC

P=

0.2
0.4
0.6
0.8

1
1.2

0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9

LWR MWR HWR

N
o

rm
. 
E

ff

PerFst EnerFst DAC

P=

(b) Normalized Energy

7750

7800

7850

7900

7950

PD AD DAC

A
n

n
u

a
l

C
O

2
(M

e
tr

ic
T

o
n

s
)

7750

7800

7850

7900

7950

CD AD DAC

A
n

n
u

a
l

C
O

2
(M

e
tr

ic
T

o
n

e
s

)

0.7
0.9
1.1
1.3
1.5
1.7
1.9

0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9

LWR MWR HWR

N
o

rm
. 
L

a
te

n
c

y
PerFst EnerFst DAC

P=
0.4
0.6
0.8

1
1.2
1.4

0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9

LWR MWR HWR

N
o

rm
. 
E

n
e

rg
y

PerFst EnerFst DAC

P=

0.2
0.4
0.6
0.8

1
1.2

0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9 0
0

.3
0

.6
0

.9

LWR MWR HWR

N
o

rm
. 
E

ff

PerFst EnerFst DAC

P=

(c) Normalized Efficiency

Fig. 4. Comparison of different schemes under functions with different warm ratios

0

0.5

1

0 10 20 30

N
o

rm
. 
R

a
ti
o

IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30

N
o

rm
. 
R

a
ti
o

IIT(min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30

N
o

rm
. 

R
a

ti
o

IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

Func-A1 Func-A2 Func-A3 Func-B1 Func-B2 Func-B3

Func-C1 Func-C2 Func-C3

0%
20%
40%
60%
80%

100%

P
=

0
P

=
0

.3
P

=
0

.6
P

=
0

.9
P

=
0

P
=

0
.3

P
=

0
.6

P
=

0
.9

P
=

0
P

=
0

.3
P

=
0

.6
P

=
0

.9
P

=
0

P
=

0
.3

P
=

0
.6

P
=

0
.9

C
a
s
e
 1

C
a
s
e
 2

C
a
s
e
 3

C
a
s
e
 4

LWR MWR HWR HFP Mixed

D
e
p
lo

y
m

e
n
t 
R

a
ti
o

Aggressive Deployment Conservative Deployment

(a) Examples of native functions (b) Examples of explicit tail functions

(c) Examples of implicit tail functions

0
0.4
0.8
1.2
1.6

L E Eff L E Eff L E Eff L E Eff

P=0.9 P=0.6 P=0.3 P=0

N
o

rm
. 

V
a

lu
e

PerFst EnerFst DAC
0.6
0.8

1
1.2
1.4

L E Eff L E Eff L E Eff L E Eff

Case 1 Case 2 Case 3 Case 4

N
o

rm
.

V
a

lu
e

PerFst EnerFst DAC

Fig. 5. Comparison of different schemes
under HFP(L:Latency, E:Energy)

0

0.5

1

0 10 20 30

N
o
rm

. 
R

a
ti
o

IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30

N
o
rm

. 
R

a
ti
o

IIT(min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30

N
o
rm

. 
R

a
ti
o

IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

0

0.5

1

0 10 20 30
IIT (min)

Func-A1 Func-A2 Func-A3 Func-B1 Func-B2 Func-B3

Func-C1 Func-C2 Func-C3

0%
20%
40%
60%
80%

100%

P
=

0
P

=
0

.3
P

=
0

.6
P

=
0

.9
P

=
0

P
=

0
.3

P
=

0
.6

P
=

0
.9

P
=

0
P

=
0

.3
P

=
0

.6
P

=
0

.9
P

=
0

P
=

0
.3

P
=

0
.6

P
=

0
.9

C
a
s
e
 1

C
a
s
e
 2

C
a
s
e
 3

C
a
s
e
 4

LWR MWR HWR HFP Mixed

D
e
p
lo

y
m

e
n
t 
R

a
ti
o

Aggressive Deployment Conservative Deployment

(a) Examples of native functions (b) Examples of explicit tail functions

(c) Examples of implicit tail functions

0
0.4
0.8
1.2
1.6

L E Eff L E Eff L E Eff L E Eff

P=0.9 P=0.6 P=0.3 P=0

N
o
rm

. 
V

a
lu

e

PerFst EnerFst DAC
0.6
0.8

1
1.2
1.4

L E Eff L E Eff L E Eff L E Eff

Case 1 Case 2 Case 3 Case 4

N
o
rm

.
V

a
lu

e

PerFst EnerFst DAC

Fig. 6. Comparison of different schemes
under mixed function invocation

5 Conclusion

To optimize the efficiency of FaaS infrastructure, we introduce cloud-native
server consolidation and propose DAC . DAC differentiates functions accord-
ing to invocation patterns and carefully consolidate tail functions. We hope that
this paper can give insights to the design of energy-proportional FaaS platforms.

Acknowledgements. This work is supported in part by the National Natural Science
Foundation of China (No.61972247), and a Tencent Research Grant.

References

1. Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. In: ISCA (2011)

2. Hou, X., Hao, L., Li, C., Chen, Q., Zheng, W., Guo, M.: Power grab in aggressively
provisioned data centers: What is the risk and what can be done about it. In: ICCD
(2018)

3. Shahrad, M., Fonseca, R., Goiri, Í., Chaudhry, G., Batum, P., Cooke, J., Laureano,
E., Tresness, C., Russinovich, M., Bianchini, R.: Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider. In: ATC
(2020)

4. Shilkov, M.: Cold starts in aws lambda (2021)
5. Shilkov, M.: Cold starts in azure functions (2021)
6. Zhang, L., Feng, W., Li, C., Hou, X., Wang, P., Wang, J., Guo, M.: Tapping into nfv

environment for opportunistic serverless edge function deployment. IEEE Transac-
tions on Computers (2021)


	Cloud-Native Server Consolidation for Energy-Efficient FaaS Deployment

