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Characterizing and Understanding End-to-End
Multi-modal Neural Networks on GPUs
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Abstract—Multi-modal neural networks have become increasingly pervasive in many machine learning application domains due to
their superior accuracy by fusing various modalities. However, they present many unique characteristics such as multi-stage execution,
frequent synchronization and high heterogeneity, which are not well understood in the system and architecture community. In this
paper, we first present and characterize a set of multi-modal neural network workloads of different sizes at inference stage. We then
explore their important implications from system and architecture aspects. We hope that our work can help guide future
software/hardware design and optimization for efficient inference of multi-modal DNN applications.

Index Terms—Multi-modal neural networks, computation analysis, deep learning, characterization.
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1 INTRODUCTION

MULTI-modal DNN applications have attracted tremen-
dous attention in recent years for its ability to outperform

traditional uni-modal networks. Through fusing information
from a variety of modalities, multi-modal DNNs achieve 5% to
30% improvements compared with SOTA uni-modal networks
in a wide spectrum of scenarios [1]. Thus multi-modal DNNs
are being deployed on multiple platforms from servers to edge
devices to handle various important tasks such as multimedia,
robotics and automatic driving.

Several reasons account for the popularity of multi-modal
DNN applications. First, real-world scenarios naturally possess
multiple modalities [2], [3]. For example, multimedia tasks
often involve modalities such as image, text and audio. De-
cision making in robotics depends on the results obtained from
multiple sensors. Multi-modal DNNs can best utilize all the
available data. Second, heterogeneous data sources start to pro-
duce increasingly massive data, which contains abundant inter-
modality and cross-modality information. Multi-modal DNNs
is capable of interpreting these types of information to produce
better results. Third, with both software and hardware support
from industry and academic [4], [5], it is able to run complex
multi-modal networks both on servers and edge devices.

However, despite their superiority, multi-modal DNN ap-
plications also pose severe challenges to system and architec-
ture designs previously applied to uni-modal networks. For
example, multi-modal DNN networks present a clear three-
stage execution mode (encoder-fusion-head), which causes re-
source under-utilization in certain stages. To understand these
newly emerged issues, we build several end-to-end multi-
modal DNN applications and conduct an in-depth analysis of
their implications at the system and architecture level.

Multiple benchmarks have been proposed to characterize
DNN applications. However, most of them only focus on uni-
modal networks. MLPerf [6] is a comprehensive benchmark for
measuring ML inference performance across a spectrum of use
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Fig. 1. The neural structure of multi-modal DNNs, which consist of three
key stages including encoder, fusion and head.

cases, while TBD [7] mainly focuses on ML training. A few
architecture-oriented DNN benchmarks [8], [9] analyzed the
architectural implications of uni-modal DNNs but fail to an-
alyze multi-modal DNNs. Although MultiBench [10] analyzes
multiple multi-modal networks from complexity, performance
and robustness, it does not characterize multi-modal networks
from the perspective of system and architecture. Besides, it
takes processed data as input in many scenarios, failing to
provide a complete end-to-end multi-modal framework.

In this paper, we first present and characterize a set of multi-
modal neural network workloads of different sizes at inference
stage. We implement them all in PyTorch leveraging existing
model designs. We then investigate the system and architecture
implications of multi-modal DNN applications.

Contributions: We first analyze the difference between dif-
ferent execution stages to find which stage contributes the most
to the overall performance overhead. We then discover and dis-
cuss the increasing synchronization problem. Heterogeneous
workload is also an important problem to be solved in multi-
modal DNNs. Finally, we extend our work from GPU servers
to edge devices to investigate possible bottlenecks when there
are only limited resources.

2 BACKGROUND

Multi-modal neural network learns and improves through the
use and experience of data from multiple modalities. As de-
picted in Figure 1, features from multiple modalities such as
image and audio are fused to produce more accurate predic-
tions. In this work, we mainly focus on the inference stage of
the applications. Compared with traditional uni-modal DNNs,
multi-modal DNNs possess certain characteristics:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 2

TABLE 1
Evaluation Setup

Datasets and Workloads
Domain Multimedia Smart Robotics

Application Avmnist Mmimdb Mujoco Push
Model size Small Large Medium

Modalties
1.audio,
2.image

1.image,
2.text

1.control, 2.image,
3.position, 4.sensor

Encoders 1,2: LeNet
1: VGG
2: Albert

1,2,4: MLP
3: CNN

Fusion
methods

Concat,
tensor

Concat,
tensor

Concat, tensor,
transformer

Task Class. Class. Reg.

Evaluation platforms

GPU server
NVIDIA RTX 2080TI with 11GB DDR6

NVIDIA RTX 3080TI with 12GB DDR6Besi

Edge devices
Jetson Nano with 128-core Maxwell and 4GB LPDDR4
Jetson Orin with 2048-core Ampere and 32GB LPDDR5

Three-stage Execution. Most multi-modal DNN applica-
tions follow a three-stage execution pattern. In the first stage
called encoder, independent neural networks translate input
modalities to distinct representations suitable for machine
learning. These representations are then fed to the second fusion
stage where they are federated. Finally, the task-specific head
network produces the result in the third head stage.

Frequent Synchronization. The fusion stage takes the repre-
sentation from all modalities as input, thus requiring additional
synchronization process compared with uni-modal networks.
The application must wait until the completion of all modali-
ties. Extra CPU-GPU synchronization is also needed to process
intermediate data such as feature maps. CPU has to deal with
data processing operations, such as to and copy.

Heterogeneous Workload. Multi-modal networks apply
suitable models to process various modalities, which often
involve different network structures. Besides, different fusion
methods can be applied to learn from the modalities. Thus
there are no universal architectural solutions to optimize all
modalities with heterogeneous workloads.

3 EVALUATION SETUP

Benchmark. We implement three multi-modal DNN applica-
tions based on the representative datasets with different model
size as shown in Table 1. These models are implemented in
PyTorch with both lightweight subnets such as LeNet, concat
and complex components such as Albert and transformer. Al-
though the training process is also included, we mainly focus
on profiling and characterizing the inference stage.

Profiling Platform. We evaluate our benchmark both
on GPU-based server and edge devices. All the workloads are
profiled on a NVIDIA 2080ti server, a NVIDIA 3080ti server, a
Jetson nano board and a Jetson orin board. We use NVIDIA
Nsight Systems v2021.5.2 and Nsight Compute v2022.1.1 to
to analyze the GPU execution pattern as well as CPU-GPU
communication. Pytorch-profiler is also applied to help analyze
higher level information. Note that unless specified, we take the
average value when characterizing kernels.

4 IMPLICATION ON SYSTEM AND ARCHITECTURE

Based on the setup, we investigate the characteristics of multi-
modal DNNs from three main aspects: multi-stage execution,
execution synchronization and workload heterogeneity, which
lets us reveal the implications and suggest future optimizations.
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Fig. 2. Normalized GPU kernel time for the three stages. Fusion stages
are implemented in different methods. fusion-c refers to concat, fusion-t
refers to low rank tensor, fusion-trans refers to transformer.

(a) AV-encoder (b) AV-fusion-c (c) AV-fusion-tr (d) AV–head

(e) MM-encoder (f) MM-fusion-c (g) MM-fusion-tr (h) MM-head

(i) Push-encoder (j) Push-fusion-c (k) Push-fusion-tf (l) Push-head

Fig. 3. Comparison of stage GPU behaviors: 1) DRAM (DRAM utiliza-
tion; 2) GPU OCP (achieved occupancy); 3) IPC; 4) GLD Eff (global
memory load) efficiency; 5) GST Eff (global memory store) efficiency. c
refers to concat. tr refers to tensor, tf refers to transformer

4.1 Stage-level Analysis
Figure 2 shows the kernel time of the three stages implemented
differently on the selected datasets. Generally, encoder stage
takes much longer time compared with fusion and head stages.
This is because the fusion network takes the learned feature as
input, thus having much smaller data size to deal with.

The network we adopt also matters. In the case of mujoco
push, when we choose transformer as the fusion method, the
kernel time of fusion stage becomes 2.17× of the encoder stage.
The reason is that transformer gets about 15× more parameters
compared with the encoders. The encoder stage takes the largest
ratio in mmimdb since VGG and Albert adopted in encoder is
more complex than fusion models.

We then examine the GPU resource usage of these stages in
Figure 3. We take DRAM utilization (1), achieved occupancy
(2), IPC (3), GLD efficiency (4) and GST efficiency (5) into
consideration. DRAM utilization refers to the utilization level
of GPU memory relative to peak memory usage. Achieved
occupancy represents the ratio of the average active warps
per active cycle to the maximum number of warps supported
on a multiprocessor. IPC is the executed instructions per cy-
cle. GLD efficiency means the ratio of the requested global
memory load throughput to the required global memory load
throughput. GST efficiency means the ratio of the requested
global memory store throughput to the required global memory
store throughput. In all cases, the encoder stage consumes more
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Fig. 4. Time consumption and breakdown for mujoco push. LF and
Multi are two multi-modal networks implemented with different fusion
methods. Control and image are counterparts of the modalities.
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Fig. 5. Inference time for different modalities in multi-modal DNN tasks.
uni-modals are described in table 1.

resources even when fusion stage takes longer time. The most
noteworthy gap exists in DRAM utilization, since fusion and
head stages take learned feature as input. And the difference in
GLD efficiency and GST efficiency is generally small.

Key Observations: There exists significant time and re-
source imbalance in different stages, which leads to possible re-
source under-utilization. If we assign resources to a multi-DNN
application adequately to execute the encoder process, more
than half of the resources, especially memory, may actually stay
idle when the application enters the fusion and head stages.
A possible solution is to apply more fine-grained concurrent
techniques similar to DNN applications [11], ensuring QoS
while improving overall system throughput.

4.2 Synchronization Analysis

Figure 4 displays the time consumption and breakdown for
an inference task on GPU. There is a clear increase in CPU
time and synchronization time between CPU and GPU, which
means that synchronization operations outweigh computation
expensive tasks on GPU. When it comes to Multi, the runtime
cost has increased by 8.68× while the GPU time only increases
by 2.38×. With much more complex network structure, CPU
have to frequently gather and process information from subnets
and wait for essential processing on GPU side.

Besides the synchronization of the workers, multi-modal
DNNs also suffer from the problem of modality synchroniza-
tion. In Figure 5, it’s obvious that the execution time of different
modalities is different. For example, the straggler (uni2) modal-
ity in mujoco push takes up to 4.09× of inference time compared
to other modalities. When executed concurrently, such as both
on deep learning accelerators (DLAs) and GPU on edge devices
and in different CUDA streams on a same GPU, the fusion stage
must always wait for the straggler.

Key Observations: There exists problems of frequent syn-
chronization. A possible solution is to modify the network
structure. Intermediate data such as learned representations
can be stored on GPU to prevent CPUs from frequent data
migration between devices. For the modality synchronization
problem in the encoder stage, a basic approach is to use fine-
grained DVFS [12] or assign less resources to manually slow
down faster modalities in exchange for energy conservation.
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Fig. 6. Kernel time breakdown for mmimdb in different phases. slfs is
the multi-modal implementation consisting of encoder, fusion and head.
uni1 refers to image, uni2 refers to text.
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Fig. 7. Dedicated kernel comparison different stages and fusion meth-
ods on avmnist. The result is normalized.

4.3 Heterogeneity Analysis

Figure 6 presents the kernel time breakdown for mmimdb. The
proportion of different kernels of multi-modal is close to the
proportion of its encoder stage, since its encoder dominates
the execution time. However, there is great difference in the
proportion in different stages. Fusion and head stages contain
no Relu kernels at all, while it is one of the dominant kernels
in enocder stage. What’s more, the encoder stage is actually
composed of two uni-modals, implemented in VGG and Albert.
While gemm takes 70% of the total kernel time of uni0, 67% of
the kernel time of uni1 is spent in Relu. This means that there is
no universal optimization for the entire Multi-modal DNN pro-
cess. Each stage, even different parts of a same stage, requires
independent analysis and specific optimization methods.

Moreover, even the same kernels, perform differently in
different stages and methods. We choose two hotspot kernels,
Reduce in different stages and Element-wise in different fusion
methods, and inspect their average resource usage in Figure 7.
The resource usage of the same kernel in different fusion
methods is basically at the same level despite a significant
increase in DRAM read bytes. However, when it comes to the
same kernel in different stages, its average resource usage can
vary from 15× to 80×. The large difference in memory and
compute resources possibly results from the input data size,
since fusion and head only handle the learned representations
from the encoder stage.

Key Observations: There exists heterogeneous workloads in
different stages. In this regard, it is hard to find a universal op-
timization for the whole application. Multi-modal applications
must be analyzed first to identify the bottlenecks. It is hard
to design specialized hardware accelerators for multi-modal
DNN applications. For example, although the time breakdown
of multi-modal DNN performs similar like that of one of
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Fig. 8. Inference time of avmnist on GPU server and edge devices with
the change of batch size. slfs refers to an implementation of multi-modal
with 31x parameters. uni is one representative modality.
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Fig. 9. Execution stall breakdown and resource usage on edge devices.
uni0 refers to audio, uni1 refers to image.

its subnets implementing transformer, specific accelerator on
transformer [13] does not apply to all stages in this application.

5 EXTENDING TO EDGE DEVICES

Besides GPU servers, we also study the characteristics of multi-
modal DNNs on edge devices since some of these applications
such as robotics are generally executed on edge devices.

Figure 8 presents the inference time of avmnist on both GPU
servers and edge devices. On Jetson nano where resources are
limited, 6.48× more time is needed. With the increase of batch
size, while the latency of GPU server is constantly decreasing,
the latency of Jetson nano is even higher when batch size
reaches 320, where certain resources are used up. On Jetson
orin with abundant resources, it acts more like GPU servers.
The ratio of the time of multi-modal compared with uni modal
is higher on both Jetson nano and orin, since 2080ti possesses
more idle resources.

In Figure 9-(a) and (b), we illustrate the execution stall
breakdown and resource usage patterns of multi-modal DNN
running at the edge and on GPU servers. The stall caused
by execution dependency and instruction not fetch increases
dramatically, while memory and cache are the main causes

of stall on GPU servers. It possibly results from the lack of
computing power so that requisite operations cannot be fin-
ished in time. As shown in Figure 9-(c), on edge devices with
limited resources, DRAM utilization is almost always kept at
the highest level. Unlike GPU servers in Figure 3, fusion stage
now exhibits higher occupancy.

Key Observations: Extending to edge devices leads to
higher latency and new bottlenecks. Due to limited power
and resources, the inference time grows dramatically when we
switch from uni-modal DNN to multi-modal DNNs even on
a small dataset. It would be a huge challenge to streamline
multi-modal parameters to enable them to run on edge devices.
A technique called early exit can be applied to alleviate the
problem, where some of the modalities are skipped as long as
the result of some important modalities meets the QoS.

6 CONCLUSION

In this paper, we systematically study the characteristics of
multi-modal DNNs on GPUs. We characterize a set of rep-
resentative multi-modal DNN applications of different sizes
at inference stage and quantify the implications of different
execution stages, execution synchronization, and the workload
heterogeneity. We further extend our work to edge devices.
Our analysis suggests that multi-modal DNNs possess unique
characteristics compared with traditional DNN workloads, and
should be handled with customized optimizations.
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[3] T. Baltrušaitis et al., “Multimodal machine learning: A survey and
taxonomy,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 2018.

[4] Google, “Tensorflow: An end-to-end open source machine learn-
ing platform,” https://www.tensorflow.org/, 2022.

[5] Amazon, “Pytorch: An open source machine learning framework
that accelerates the path from research prototyping to production
deployment,” https://pytorch.org/, 2022.

[6] V. Red. d. ı̄ et al., “Mlperf inference benchmark,” in International
Symposium on Computer Architecture (ISCA), 2020.

[7] H. Zhu et al., “Tbd: Benchmarking and analyzing deep neural net-
work training,” IEEE/CVF Computer Vision and Pattern Recognition
(CVPR), 2018.

[8] Q. Zhang et al., “A comprehensive benchmark of deep learning
libraries on mobile devices,” ACM Web Conference (WWW), 2022.

[9] M. Almeida et al., “Embench: Quantifying performance variations
of deep neural networks across modern commodity devices,”
Embedded and Mobile Deep Learning (EMDL), 2019.

[10] P. Liang et al., “Multibench: Multiscale benchmarks for multimodal
representation learning,” in Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2021.

[11] M. Han et al., “Microsecond-scale preemption for concurrent GPU-
accelerated DNN inferences,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI).

[12] X. Hou et al., “Ant-man: Towards agile power management in the
microservice era,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2020.

[13] J. Fang et al., “Turbotransformers: An efficient gpu serving system
for transformer models,” in Symposium on Principles and Practice of
Parallel Programming (PPoPP), 2021.


