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Abstract—Existing disaggregated memory (DM) systems face a
problem of underutilized far memory bandwidth, which greatly
limits the data throughput when processing data-intensive appli-
cations. Specifically, prior works all target runtime design for a
single PCIe-based secondary memory device (i.e., single-backend
far memory) with low data bandwidth and high system overhead.

In this work, we take the first step to realize a well-crafted,
multi-backend DM system with scale-out far memory paths.
We propose xDM, a novel DM management scheme that can
dynamically build and implicitly select appropriate far memory
access paths. As part of xDM, we devise a smart far memory
configuration strategy that can further optimize bandwidth usage
effectiveness by tuning a wide set of key parameters based on
synthesized information of application page data. Our design
shows up to 3.9× data swap performance speedup, 2.8× data
throughput increase, and 5.1× data center task throughput
improvement compared with state-of-the-art works.

Index Terms—multi-backend, far memory, multi-path, swap

I. INTRODUCTION

The proportion of data-intensive applications (e.g., graph
processing, data mining, AI training, and AI agent) in today’s
high-performance data center is experiencing rapid growth
[1]–[8]. Big data centers in the cloud [9]–[12] and micro data
centers near the edge [13], [14] all necessitate large memory
capacity and efficient data management. It is quite important to
provide flexible and powerful memory services for the widely
used cross-layer services in the cloud-native environments
[15]–[19]. In recent years, disaggregated memory (DM) archi-
tecture stands out as a way to enhance data center capabilities
by offering highly flexible memory expansion [20]–[25]. In
this case, a memory-hungry monolithic server can access a
PCI Express (PCIe) based secondary memory device (i.e., far
memory) with low data access latency.

While the addition of far memory (FM) could relieve a
server’s memory pressure, it unfortunately cannot meet the
needs of high data/task throughput in today’s data center. As
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Fig. 1: (a) Traditional single-backend far memory. (b) Band-
width comparison of various far memory technologies, in-
cluding CXL 1.0, DPU card of BlueField 3, ConnectX-
5/ConnectX-6 RDMA card, and NVMe-based SSD.

shown in Figure 1-(a), prior works mostly limit their designs
on a single FM device, which is often plugged into the server’s
PCIe Add-in-Card (AIC) interface as a fast backing store
[26]–[31]. Figure 1-(b) compares a variety of commercial
FM technologies. There is a wide gap between the data
transfer bandwidth that a single FM device could support
(from 7.9 to 46 GB/s) [25], [32]–[35] and the maximum
available bandwidth that modern PCIe protocol could provide
(64 GB/s on PCIe 4.0×16) [36]. This means that the single far
memory device could become a crucial bottleneck for scale-
out applications.

Incorporating multiple FM devices and oversubscribing the
PCIe subsystem allows one to push the limit of server data
throughput, as shown in Figure 2-(a). This approach, which
we call multi-backend disaggregated memory, unfortunately
cannot be implemented solely based on current data transfer
protocols and device drivers. The key reason is that the virtual
machines (VMs) still use a hierarchical data swap mechanism
with the host operating system (OS) involved, which does not
allow pages to be swapped to/from multiple swap backends
(each associated with a different backing store). In other
words, existing FM management schemes are blind to the
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Fig. 2: (a) System with multi-backend far memory. (b) Access
latency of different far memory backends. We transfer 64MB
data with page granularities (4KB) and test the latency on each
far memory backend.

possible multiple physical FM channels: they logically only
support one data exchange path to FM devices.

We introduce xDM, a novel FM management system engi-
neered to support high-performance data analytic workloads
running on the new multi-backend disaggregated memory ar-
chitecture. To realize this, a non-trivial transition from single-
path to multi-path memory management is necessary. The use
of multiple simultaneous FM access paths enables a server to
access FM devices in parallel, thereby substantially improving
the overall data throughput. We carefully tailor the VM OS
to support multi-path FM management. xDM features a low-
overhead switchable data swap module that allows memory-
hungry machines to customize their FM access paths. As a re-
sult, different users are able to dynamically choose appropriate
FM backends based on their specific workload characteristics
and resource pressure, eliminating the need to stall tasks while
awaiting the availability of machine bandwidth.

Importantly, the creation of multiple FM access paths brings
new performance optimization opportunities as well. For ex-
ample, Figure 2-(b) shows that FM devices exhibit a wide
range of latency. Previous single-backend far memory systems
only allocate local/FM resources to tasks based on a simple
analysis of their sensitivity to memory access latency [27],
[37], [38]. The introduction of multiple FM management paths
actually offers more knobs for fine-tuning FM data access.
We decompose far memory configuration down to a multi-
dimensional parameter tuning problem. We overhaul xDM’s
far memory configuration strategy so that it can adapt to appli-
cations according to a rich synthesis of page trace information.
As a result, it can greatly boost bandwidth usage effectiveness
as well as save memory, I/O, and network bandwidth, thus
improving the overall performance of the data center.

This paper makes markable research contributions and prac-
tical engineering contributions, listed as follows.

• We examine the possibilities and opportunities of a new
multi-backend DM architecture. We propose and design
xDM, the first multi-path FM management system that
not only allows simultaneous access of multiple FM de-
vices but also provides dynamic and implicit adjustment
of FM paths based on program behaviors.

• We devise an intelligent configuration console which
makes xDM a truly versatile and smart system. Our
method can synthesize multi-dimensional page informa-
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tion and configure FM devices from different aspects.
This guarantees highly effective bandwidth usage that no
prior FM system could satisfactorily provide.

• We implement xDM as a prototype and evaluate it on a
wide range of popular applications. Our system shows
up to 3.9× swap performance speed up, 2.8× data
throughput increase, and 5.1× data center task throughput
improvement compared with state-of-the-art baselines
with Quality of Service (QoS) guarantee.

The remainder of this paper is organized as follows. Section
II provides more details of the background. Section III intro-
duces key design considerations and gives a system overview.
Section IV proposes multi-path FM management. Section
V presents evaluation methodology and results. Section VI
discusses related works and Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

This section presents more details about the background and
challenges that motivate this work. Ideally, a well-designed
FM system needs to achieve two goals: high PCIe bandwidth
utilization and high bandwidth usage effectiveness.

A. Far Memory Usage Bottleneck

PCIe has served as the de facto interconnect solution for
most of the FM devices. The PCI Special Interest Group
predicts that speeds will double approximately every three
years, as shown in Figure 3. The growing demand for data
has driven I/O bandwidth to increase faster than expected.
To meet the data bandwidth requirements of data-intensive
markets in the era of cloud-native deployment and AI-driven
applications, this trend will continue. Currently, PCIe 5.0
protocols can offer a bandwidth of 128 GB/s, providing a very
large bandwidth that any single FM device will not saturate.
This demonstrates the importance of efficiently utilizing the
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growing I/O bandwidth. Looking ahead, if we stick to the
single-backend DM architecture, it will cause under-utilized
computation power and highly limited serving throughput.
This observation mandates the design and optimization of
multi-backend DM architecture.

Nevertheless, the requirement of multiple parallel FM ac-
cess paths actually goes beyond the capabilities of the current
host operating system. Previous far memory system designs all
rely on a single-path swapping mechanism, where the original
disk-based swap backend is replaced with RDMA [27], [28].
A straightforward idea is to add more swap backends, but
this runs into complications as adapting different backends
requires unique modifications to the single swap frontend [39].
In general, it is impractical to directly support multi-path far
memory management in the OS.

An unexplored yet viable option is to create and manage
FM access paths within virtual machine (VM). While today’s
virtualization technology can deliver performance that is com-
parable to bare-metal servers, it unfortunately cannot manage
multi-backend disaggregated memory architecture very well.
We show the normalized data transfer latency the Y-axis of
Figure 4, and the ”times(x)” indicates the multiple of speedup.
As shown in Figure 4-(a), a naive VM-based FM system
has two key limitations. First, existing hosted VMs generally
employ a single shared swap channel, and therefore one cannot
dynamically assign different FM swap backends for different
VMs. Second, current designs all use a hierarchical swap
architecture [40], [41], which incurs considerable overhead due
to two data swapping processes (swapping data between the
VM’s swap space and the host operating system’s swap space,
plus swapping between the host OS and the far memory).

In sum, multi-path far memory access shows great promise.
Removing FM usage bottleneck requires expanding data swap
channels and tapping into light-weight swapping, as depicted
in Figure 4-(b). It is desirable to setup FM path directly within
guest OS to support multiple different FM paths. Meanwhile,
a non-hierarchical swapping approach can bypass the host and
reduce overhead. The key challenges here include how to build
isolated FM data swap channels and how to enable individual
configuration of each FM swap backend.

B. Far Memory Usage Effectiveness

Increasing the system’s PCIe bandwidth utilization alone
does not necessarily mean high performance. At the applica-
tion level, it is important to also optimize the effectiveness

Related works to Block Device to RDMA Hybrid Multi-path
Linux zswap [42] ✓ × × ×
Fastswap [27] × ✓ × ×
TMO [37] ✓ × ✓ ×
XMemPod [40] ✓ ✓ ✓ ×
Pond [31] ✓ × × ×
xDM (Ours) ✓ ✓ ✓ ✓

TABLE I: Single-path vs. multi-path far memory systems.

Related works Data Ratio
on FM

Data Ratio
on NUMA

Data
Granularity I/O Width

Linux zswap [42] ✓ × × ×
Fastswap [27] ✓ × × ×
TMO [37] ✓ × × ×
XMemPod [40] ✓ × × ×
Pond [31] ✓ ✓ × ×
xDM (Ours) ✓ ✓ ✓ ✓

TABLE II: Comparison of key tuning knobs of far memory
configuration used in related works.

of FM data access, namely, improved task performance under
given bandwidth consumption.

Most of the prior works follow a simple idea: by offloading
part of data to far memory based on workload behaviors,
the local DRAM can retain more latency-sensitive tasks [27],
[37], [42]. They have proposed low-overhead FM management
software [43], [44] and different schemes for data distribution
control between local DRAM and far memory [27], [37], [42].

Determining the most suitable FM configuration is crucial
for highly effective FM access, requiring a deep understanding
of tasks’ memory access behaviors. For regular data processing
applications such as AI model computing, tasks involve con-
tinuous memory operations including data copying and matrix
calculations [5]–[7], [45], [46]. On the other hand, irregular
data processing applications, like graph processing [1], [2],
[47], [48], entail random memory access operations such as
data searching and graph structure traversal.

Applications often exhibit more complex performance vari-
ation, which requires a detailed analysis of page behaviors.
Specifically, we evaluate the impact of data access granularity
and data transfer channel width in Figure 5. We test the end-
to-end latency of data loading from RDMA and Figure 5-(a)
shows the changing trends on different data unit sizes. We
analyze the varying patterns of latency changes that occur with
the addition of disk I/O access widths for graph processing
(lg-bfs, lg-pg) and AI inference (bert, clip) workloads, details
of which are listed in Table V. Results aredepicted in Figure
5-(b). Previous works unfortunately overlook the importance
of fine-tuning the above key system parameters, which could
significantly influence the application performance on multi-
backend disaggregated memory.

III. DESIGN OVERVIEW

Before getting into technical details, we first describe our
key design considerations with respect to multi-path FM man-
agement and give a brief overview of the overall architecture.

A. Design Philosophy

Realizing multi-path simultaneous FM access is non-trivial.
In this work, we set two big yet attainable goals:
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• Make it dynamic and implicit. One possible solution is
to make the system static and implicit. It means that
users have to specify a flavor when they launch their
compute instances on FM-enabled machines. It actually
binds an instance to a specific physical FM channel (e.g.,
RDMA or SSD). Co-locating different user instances
allows the server node to simultaneously access different
FM backends, thereby increasing bandwidth utilization.
Since workload behaviors often change during runtime,
such a design only yields sub-optimal performance. In
this work, we aim to make the system dynamic: each
instance can evaluate task preferences during runtime and
implicitly select the optimal FM path without the need
of user intervention. To our knowledge, previous works
never implement a static multi-path FM system, not to
mention a dynamic one. The differences between our
work and related studies are shown in Table I.

• Make it versatile and smart. Instead of simply manip-
ulating the distribution of data across local DRAM and
far memory devices, xDM aims to be a truly versatile
system. To improve FM bandwidth usage effectiveness
and boost data center performance, one needs to take
additional configurable parameters into account. It is
important to leverage a rich set of application page data
and adjust system settings based on multi-dimensional
system information including data distribution, data gran-
ularity, as well as I/O characteristics. This allows us to
make informed decisions and enable xDM to smartly
configure each FM path. To the best of our knowledge,
previous works all use simple and straightforward data
management strategies. The differences between our work
and related studies are summarized in Table II.

B. Overview of xDM

In this work, we scale out the physical far memory channels
and build a multi-backend far memory system xDM, as Figure
6 shows. We aim to make the best use of the available FM
resources for lower task latency and high data throughput.

The basic idea is to decouple the management of far
memory backends from the traditional swap mechanism to
swap data at high bandwidth. We find that the traditional
hierarchy-based memory access pattern is inefficient due to the
single data swap path on very deep memory hierarchies. A flat
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data management method for disaggregated memory systems
is required, providing flexibility for each application to choose
and use the proper far memory path directly and quickly. To
achieve this, we devise a switchable FM swapper module and
multiple FM path configuration modules. The FM swapper
module’s job is to select an appropriate FM path and assign
reasonable far memory space for applications. The FM path
configuration module provides low-overhead configuration of
various tunable parameters of the FM paths. We further extract
important workload behaviors from three dimensions and use
a rich synthesis of system information to intelligently switch
and configure the FM access paths. In this way, xDM allows
customized high-performance far memory path configurations
to utilize architectural design optimizations and skip certain
data fetching overheads on far memory paths.

xDM considers both scalability and extensibility. This prac-
tical and portable design can easily migrate to other far mem-
ory environments and real-world applications. xDM analyzes
page data at the system level, which is all transparent to
applications. Its FM swapper module is designed to seamlessly
scale with the addition of new FM devices and access paths.
Meanwhile, its path configuration module is ready to incorpo-
rate additional system attributes to better accommodate new
application scenarios.

IV. MULTI-PATH FAR MEMORY MANAGEMENT

In this section, we discuss the key system and software
support for multi-path far memory management. We first intro-
duce xDM’s dynamic FM switching mechanism (Sec. IV-A).
We then describe xDM’s intelligent configuration strategy for
high resource usage effectiveness (Sec. IV-B).

A. Dynamic FM Switching Mechanism

The foundational component of xDM is a dynamically
switchable FM swapper module. As Figure 7 shows, it has
two main features: 1) a low-overhead, switchable FM swapper,
and 2) an efficient, implicit FM switching strategy.



1) Switchable FM Swapper: It is basically a modified
swap frontend plus a variety of adaptive FM swap backends.
Leveraging the data swap interfaces provided by Frontswap
[39], we redirect page swapping to our customized FM read
and write functions, as shown in Figure 7.

The modified swap frontend allows the use of flexible FM
access APIs to support multiple and heterogeneous far memory
paths. As a bridge between the page management process and
the swap backends, it needs to cooperate well with multiple
FM backends. As shown in Figure 7, it continuously performs
data offloading by receiving swapped-out page entries from the
running processes and data fetching by refining the required
swapped-in pages back to the related processes ( 1⃝ and
5⃝). Since only anonymous pages drawn from LRU lists are

involved in the page fault operations, the frontend skips file-
backed page operations directly. The swap mechanism for data
offloading and data fetching internally calls the FM access
interfaces ( 2⃝), which are adeptly integrated into the existing
page fault handling workflow. The interface can switch the
usage of far memory access channels ( 3⃝ and 4⃝) with
specified parameters switch to SSD and switch to RDMA.

We prepare a set of pre-configured FM backend modules to
serve as swapper backends. They handle the swap-out data
offloading and swap-in data fetching, including signal and
command transferring, data writing and indexing, etc. Two
primary backend modules are switchable RDMA backend and
switchable SSD backend. The former uses SR-IOV (Single
Root I/O Virtualization) to generate virtualized RDMA card
for each VM, and the latter creates separate swap spaces by
mounting different swap files on isolated SSD partitions. The
system can support more far memory types by injecting corre-
sponding far memory access APIs into the swap frontend. Each
FM backend module functions as a supplementary patch to the
original swap kernel. Implementing these patches into the OS
entails kernel recompiling overhead. To streamline this process
and minimize compilation time, we proactively assemble FM
backend modules as backups for low-overhead switching. We
use a listening queue in the frontend to handle page data
synchronization between page cache and FM backends.

90%
95%

30%

10%

0%

20%

40%

60%

80%

100%

0

0.5

1

1.5

gg-bfs lpk lg-bc sort

F
il

e-
b

ac
k

ed
 p

ag
e 

ra
ti

o

N
o

rm
al

iz
ed

 L
at

en
cy

SSD RDMA F ratioF page ratio

Fig. 8: Workloads with more
file-backed (anonymous) pages
prefer SSD (RDMA) backends.

2) Implicit FM Switching
Strategy: There is not a
universal FM path setting
that can meet the needs for
all. We examine the pro-
portion of anonymous pages
and file-backed pages from
the page trace table. A key
observation is that the ratio
of anonymous to file-backed
pages provides a good indi-
cation of the preferred far
memory usage, as shown in Figure 8. For example, FM
switching from SSD to RDMA can greatly boost application
performance, as demonstrated by the improved performance
of graph workload lg-bc and array sorting workload sort in
Figure 8. Nevertheless, graph traversal workload gg-bfs and

floating computing workload lpk exhibit similar execution
latency on both SSD and RDMA backends. In this case, SSD
is preferred compared with the expensive RDMA-connected
memory devices.

We design a far memory switching strategy to choose FM
backends with the highest effectiveness based on the above
analysis. Both page distribution statistics and application’s
sensitivity to different FM paths are useful when making
switching decisions. We use a new metric memory effective-
ness improvement (MEI), defined as the quotient of runtime
performance improvement divided by the far memory device
cost. We label the backend priority of different workloads
by ordering the obtained MEI value. We maintain a list of
available backend that represents each backend’s availability.

We use warm-start optimizations to reduce the switching
overhead of each compute instance. The execution flow of
backend switching consists of three steps: (1) We initialize
multiple virtualized far memory devices when starting each
VM, which allows backend switching without shutting down
VMs. (2) We then prioritize placing new tasks in VMs already
equipped with the required far memory backends. (3) If no
suitable VM is available, the task is assigned to an active VM,
which then switches to the preferred far memory backend.

B. Smart FM Configuration Console

After FM backend switching, the next question is how
to configure the far memory access path to make the best
use of the I/O bandwidth. The abstraction and tuning of
far-memory parameters are non-trivial and complex. Each
parameter has a wide range of available candidates, which
can cause different memory occupation and execution latency.
In real-world environments, the states of the VM, memory,
and network affect the path choices and configurations of far
memory. To handle the complexity, we devise a versatile FM
configuration console that can smartly fuse data characteristics
and set up multi-dimensional parameters for each far memory
data access path, as illustrated in Figure 9.

1) Data Characteristic Fusion: By analyzing page data,
we find that data granularity, I/O width, and data distribution
significantly impact the performance and resource usage.
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First, when accessing far
memory, the data granular-
ity of transferred data has
an obvious influence on ap-
plication performance. For
example, the end-to-end la-
tency of data loading from
RDMA shows the changing
trends on different data unit
sizes, as shown in Figure 5-
(a). The reason behind this can be that the data fragment
distribution affects the ratio of available data when transferring
each data unit. Thus, a better configuration on data granularity
is critical. We analyze data segments formed from contiguous
memory addresses and their distribution, as shown in Figure
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Fig. 9: xDM’s adaptive FM parameter configuration. The characteristic fusion module provides a synthesis of information from
page access traces. xDM can configure and fine-tune multi-backend FM from various aspects.

10. This guides us to predict and choose the optimal data gran-
ularity by identifying page fragment ratio of each application.
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Second, the allocated I/O
width of each far mem-
ory path is essential to re-
source efficiency. We an-
alyze the latency changes
that occur with different I/O
width allocations on disks
for graph processing and AI
inference workloads. Some
tasks achieve lower end-to-
end latency when adding
I/O width assignments, while others do not, as depicted in
Figure 5-(b). The reason is that the task maintains different
distributions of sequential and random I/O access requests. As
indicated in Figure 11, applications with larger maximum sizes
of sequentially accessed data generally benefit from larger I/O
bandwidth, while applications with predominantly random-
access data segments may experience performance drops due
to I/O amplification. Thus, we prioritize adding/reducing the
bandwidth of applications with a more/less sequential data
access ratio.
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Fig. 12: Impacts of data distri-
bution on NUMA architecture.

Third, the data distri-
bution, i.e. the proportion
of frequently accessed data
segments, in each program
greatly affects overall ap-
plication performance and
memory efficiency. Usually,
decreasing the proportion of
local memory results in dif-
ferent performance degrada-
tion, which is relative to
the far memory sensitive-
ness. Thus, keeping a proper rate of data in local memory
can maintain the minimum acceptable latency. We estimate the
minimum ratio of hot data by accumulating distinguished high-
frequency data. In addition, local memory allocation strategies
also consider the memory usage in the same socket and

different sockets on NUMA architecture. In Figure 12, some
tasks show little sensitivity to these strategies, while others are
highly affected. NUMA memory nodes can be selected for in-
sensitive applications when facing issues of local same-socket
memory shortage.

As mentioned above, analyzing various page data allows
one to gain a deeper understanding of application features.
We derive page access characteristics from a page trace table
(shown in Figure 9-(a)). We collect data fragment ratio, page
load/store ratio, and hot data segment ratio from the trace data.
We then allocate and adjust the multi-dimensional parameters,
including the data granularity, I/O width, and data distribution.

2) FM Parameter Adjustment: Parameter configuration
shares similar data feature extraction ideas but different im-
plementation methods on far memory backends, as shown
in Figure 9-(b). We optimize the key tunable parameters on
different far memory paths, as shown in Table III.

The data granularity can be flexibly modified by altering the
size of data units transferred via RDMA (i.e. chunk size) or by
amalgamating data blocks on SSD (i.e. page size). Typically,
the page size is 4KB in common-used OS. The OS can also
support larger page sizes, like 2MB huge pages controlled by
transparent huge pages (THP). We adaptively turn on THP
to large-granularity programs to achieve higher performance.
There is a trade-off of configuring larger pages since huge
pages can reduce the number of TLB misses but cause extra
page reclaim overhead. We selectively enable THP by utilizing
khugepaged to tailor page size and huge page allocation. In
this work, the average page size can vary from 4KB to 2MB
by controlling the amounts of to-be-allocated huge pages.

The I/O width is dynamically modifiable by assigning CPU
cores related to I/O channels on SSD and network channels
when transferring data through RDMA. We analyze the I/O
width requirement by analyzing the ratio of data segments
with continuous load operations. This information is obtained
from the counts of load and store page operations. For storage-
based FM, we adjust the I/O width by setting the block size or
allocating multi-threaded I/O channels on SSDs. For network-
based FM, we limit the network bandwidth by changing
the number of bound event queues, such as adding multiple
transfer queues on RDMA. We further enhance RDMA-based



Parameter Offline
Conf.

Online
Conf. Scale

Total CPU core Yes No ≤ Total CPU cores
Local memory size Yes No ≤ Server memory size
NUMA memory Yes No Different NUMA nodes
Far memory ratio Yes Yes 0 ∼ 0.9
Page size Yes Yes 4K ∼ 2M on average
Network channel Yes Yes ≤ Total I/O channels

TABLE III: The tunable FM parameters in our system.
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Memory node server Computing/Memory node server

Fig. 13: Our physical testbed with RDMA-based far memory
devices and block-device-based far memory devices.

far memory efficiency by enabling shared receive queues.
The data distribution is adaptively managed by setting far

memory ratio and NUMA memory nodes. We limit the overall
local memory usage to trigger page swap under certain data of-
floading ratios. We use the data segments ratio and the dataset
size to estimate the corresponding minimum local memory
size. Applications can be assigned a larger local memory
size than the minimal size to meet specific Service Level
Objectives (SLOs). Furthermore, we also consider different
NUMA control strategies: We bind the CPU and memory on
the same NUMA node to keep locality while on the different
NUMA node for load balance.

Note that in recent works [25], [31], [49], the advanced CXL
memory is considered mainly as a specific NUMA node, as
the physical CXL memory device haven’t occur yet. xDM can
support the usage of new-generation cache-coherent memory
devices and interconnects. As stated in Section IV.B., we
utilize NUMA control strategies to manage the cache-coherent
local memory allocations. Taking CXL as an example, the
PCIe-based CXL memory can act as a local NUMA node with
large memory space and no CPU, or one of the far memory
backends.

V. EVALUATION METHODOLOGY AND RESULTS

Our evaluation answers these questions:
• What is the overall performance and efficiency of our

system on real-world workloads? (Section V-B)
• Does this system bring significant overhead to the original

environment? (Section V-C)
• How scalable is xDM and what are the benefits of

deploying it in a large cluster? (Section V-D)

A. Experimental Setup

1) System Testbed: We build a system prototype of xDM.
As shown in Figure 13, it includes both SSD-based FM
and RDMA-based FM systems on physical machines. Each
server node is provided with two 10-core Xeon CPUs, (larger
than) 64 GB of DRAM memory (134 GB/s), 1TB SSD (3.8

Algorithm 1: Multi-backend FM System Workflow.
Input: Application set: A, online VM set: OVs, free VM set: FVs
Result: All applications have been efficiently dispatched

1 for a in A do
2 fa = page feature extraction(a)
3 ba = backend selection(fa, system pressure)
4 List pa = parameter optimization(fa)
5 for Online VM in OVs do
6 if Online VM.backend = ba AND Online VM.accept(a)

then
7 dispatch a → Online VM
8 Online VM.OptParameters(pa)
9 break

10 if no available online VM then
11 for Free VM in FVs do
12 if Free VM.backend = ba AND Free VM.accept(a)

then
13 dispatch a → Free VM
14 Free VM.OptParameters( pa )
15 break
16 else if no available idle VM with ba then
17 Free VM← SelectVM(FVs)
18 Free VM.SwitchBackend(ba)
19 Free VM.OptParameters( pa )
20 dispatch a → Free VM
21 else if no available idle VM AND host resource is available

then
22 Free VM← CreateVM(ba, system pressure)
23 Free VM.OptParameters(pa)
24 dispatch a → Free VM
25 add Free VM→ Vs

GB/s), 6 TB of HDD (0.4 GB/s), and Mellanox ConnectX-
5 RDMA NICs supporting dual-port 10 GB/s bandwidth. The
RDMA driver is version 5.4.0 of the OFED kernel with RoCE
protocol. We adopt SR-IOV (Single Root I/O Virtualization)
that provides direct virtualization of physical RDMA devices.
We use QEMU [50] in KVM [51] to manage the created
virtual far memory paths. We use Cgroup and namespace to
control the CPU core, memory usage, network channel, and
swap space for each process. Typically, the evaluated overall
latency comprises kernel-level time (sys time) and user-
level time (cpu time). We measure the overall task runtime
using time, maps, etc., collect real-time memory usage using
Intel VTune, test memory access latency using PMU, and
record the page fault number with Linux perf.

2) System Workflow: For easy deployment of our system,
we outline the workflow of xDM’s core part,detailed in Al-
gorithm 1. i). Far memory initialization: We configure the
memory.high file in Cgroup to limit the usage of local memory
and trigger data swap.We prepare the FM environment via
automated configuration shells. For storage-based FM, we
use swap files on different block devices and call for file
read/write APIs. For network-based FM, we use RDMA event-
driven queue to transfer pages with RDMA one-side read
and write operations. ii). Offline preparation: We track the
page behaviors of applications and prepare the offline fused
information. Utilizing the offline information, we generate the
FM path preference of each application and the parameter
adjustment shells on corresponding far memory paths. iii).
VM allocation and warm start: We set up virtual machines



Related works Far memory Max BW FM size

Linux swap [42] disk 2 GB/s 2T
TMO [37] SSD 7.9 GB/s 1T
Fastswap [27] RDMA 10 GB/s 256G
XMemPod [40] DRAM or RDMA 10 GB/s 1T
xDM-SSD multiple SSD 32 GB/s 1T
xDM-RDMA multiple RDMA 32 GB/s 256G
xDM-Hetero RDMA and SSD 32 GB/s 1.3T

TABLE IV: Baseline configurations.

Type Abbr. Algorithm Description Max
Mem.

H
PC

w
or

kl
oa

ds

stream Stream [52] for memory bandwidth 4G
lpk Linpack [53] for floating-point computing 4G

kmeans K-means clustering on sklearn [48] 4G
sort Quicksort [53] on c++ std 8G

sp-pg Page rank on Spark [2] 10G

G
ra

ph
w

or
kl

oa
ds

gg-pre Graph preprocess on GridGraph [47] 16G
gg-bfs Breadth-first search on GridGraph [47] 16G
lg-bfs Breadth-first search on Ligra [1] 16G
lg-bc Betweenness centrality [1] 16G

lg-comp Connected components [1] 16G
lg-mis Multiple importance sampling [1] 16G

A
I

w
or

kl
oa

ds

tf-incep Resnet inception on Tensorflow [45] 1G
tf-infer Resnet inference on Tensorflow [45] 1G

tf-tc CNN inference on text classification [46] 10G
bert Inference on Bert [7] 1.5G
clip Inference on Clip [6] 1.7G

chat-int Inference on ChatGLM [5] (int4) 14G

TABLE V: Evaluated workloads.

(VMs) with appropriate CPU cores, memory size, storage, and
network channels via the hypervisor. We prioritize using idle
VMs with the required FM paths and online VMs to avoid
a cold start. iv). FM path selection and switching: We get
the priority list from page feature extraction and then select
the appropriate FM path according to the list. If there is no
available idle VM with the required FM path, we switch FM
paths and adjust optimized parameters accordingly. v). FM
parameter configuring: The parameter optimization always
happens behind FM path selection and before each application
starts. For each FM path, we use the optimal configurations
including the page size, minimum CPU core, I/O channel
number, local memory ratio, NUMA core binding, etc.

3) Baselines: We compare our system with state-of-the-art
far memory systems including TMO, Fastswap and Xmempod.
We deploy Linux swap and Fastswap as the basic far memory
runtime emvironments. We also realize and test the far mem-
ory management strategy of these works on the required far
memory devices. We list the configurations of the evaluated
baselines in Table IV. Additionally, xDM system is tested
on various multiple backends, including on multiple SSD
devices (xDM-SSD), multiple RDMA devices (xDM-RDMA),
and heterogeneous environments (xDM-Hetero) that integrate
both SSD and RDMA devices.

4) Workloads: We use a range of real-world applications
prevalent in today’s data centers, as outlined in Table V.
Except from regular computing applications from standard
benchmarks, such as Linpack, Stream, and Spark, we also
consider graph processing algorithms like graph traversal, page

rank, subgraph searching, and simple sampling on popular
high-performance graph frameworks including Ligra and Grid-
Graph. In addition, we also test commonly used inference
workloads on foundation and fine-tuned AI models including
models on ResNet, Bert, Clip, Chatglm, etc. In our detailed
performance analysis, we categorize the workloads into two
types based on their runtime characteristics in relation to
memory, computation, and I/O: swap-sensitive, and swap-
friendly. This classification helps us precisely evaluate the
impact of our system on different types of workloads.

B. Overall Benefits

Our system shows significant swap performance speedup
and memory efficiency improvement on physical machines as
testbeds and real-world applications.

1) System Swap Speedup: xDM can significantly improve
the swap performance with minor overhead compared with
baselines. The results are detailed in Table VI. We run work-
loads from table V at an appropriate local memory ratio. The
swap performance improvement is then assessed using kernel-
level sys time. The results show that our design achieves
up to 2.43× speedup over Fastswap on the DRAM backend,
a 2.16× speedup over Linux swap on the SSD backend, and
a 3.89× speedup over Fastswap on the RDMA backend. In
general, workloads experience higher speedup on the RDMA
and DRAM backend, compared with the SSD backend. In a
few cases of running swap-sensitive applications such as sort
and clip, xDM on DRAM and SSD backends is suboptimal
due to irregular memory access. In most cases, our work shows
positive speedup except for some special conditions, like
kmeans on SSD and clip on DRAM backend. The maximum
average speedup on each workload is 2.32× on the chat-int
workload, which inspires us to optimize the memory efficiency
of AI inference tasks in our future work.

2) System Data Throughput: To assess data throughput
enhancement, we measured the amount of data swapped per
second for each workload. We use the results of TMO on a
single SSD backend as the normalization basis and show the
data throughput of our designs compared with baselines in Fig-
ure 14. Basically, the disk-based Linux swap acts much worse
than SSD-based baselines due to the I/O operation difference.
The stream and means workloads are memory-intensive with
no extra I/O operations, thus they maintain nearly the same
throughput on the disk-based and SSD-based FM paths. Our
system consistently achieves higher data throughput than our
baselines. It shows an improvement of up to 2.63× on multiple
SSD-based FM paths, 2.82× on configurations with multiple
RDMA-based FM paths, and 2.76× on heterogeneous FM
paths, compared with TMO. For applications of stream, tf-
incep, and lg-comp, xDM on heterogeneous FM paths (xDM-
hetero) has better speed up compared with xDM on multiple
RDMAs (xDM-RDMA), which infers heterogeneous devices
can bring higher efficiency. The above findings underscore that
incorporating multiple far memory paths leads to improved
data throughput, thereby enhancing the bandwidth efficiency
of far memory access.



Evalauted Workload stream lpk kmeans sort s-pg gg-pre gg-bfs lg-bfs lg-bc lg-comp lg-mis tf-infer tf-incep clip tf-tc chat-int bert
Swap Feature S S S S S F S F F F F F F S F F S
Sp. on DRAM 1.32× 1.18× 1.64× 1.05× 1.44× 2.24× 1.29× 2.00× 2.16× 2.43× 2.17× 1.88× 1.72× 0.82× 1.28× 1.15× 1.03×

Sp. on SSD 1.01× 1.52× 0.88× 0.86× 1.01× 1.02× 1.18× 1.40× 1.42× 1.52× 1.36× 1.51× 1.34× 0.91× 2.16× 1.92× 1.75×
Sp. on RDMA 1.25× 1.09× 1.40× 1.40× 1.37× 2.06× 1.19× 2.24× 2.26× 2.22× 2.07× 2.70× 2.53× 2.46× 2.55× 3.89× 1.10×

Average Speedup 1.19× 1.26× 1.31× 1.11× 1.28× 1.77× 1.22× 1.88× 1.95× 2.05× 1.86× 2.03× 1.86× 1.40× 2.00× 2.32× 1.29×

TABLE VI: The swap performance speedup (Sp.) of our xDM compared with baselines on the same backends. The baselines
include Linux swap [42] on SSD backend, Fastswap [27] on RDMA and DRAM backends separately. We categorize application
swap features into two types: swap-sensitive (S, average Sp.≤ 1.5×) and swap-friendly (F, average Sp.≥ 1.5×).
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Fig. 14: Our design shows larger data throughput than baselines on evaluated workloads with different far memory backends.
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Fig. 15: Our design shows larger memory offloading ratios than baselines on evaluated workloads under different SLOs.
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Fig. 16: The overall task throughput under different SLOs.

Furthermore, we test PCIe bandwidth utilization with read
and write bandwidth to prove that xDM can improve as much
PCIe bandwidth as possible. The results show that xDM can
achieve almost upper-bound bandwidth of each device and
achieve full PCIe bandwidth when using RDMA and SSD
backends, as shown in Table VII. This proves that the usage
of multiple far memory backends in xDM can easily saturate
the provoded PCIe bandwidth.

3) Memory Pressure Reduction: We examined the memory
efficiency of our system.We investigated the local memory

TABLE VII: PCIe bandwidth of xDM on different backends.

Devices
in xDM PCIe configuration

Device
R/W bandwidth
(Max, GB/s)

PCIe BW
is full?

RDMA
backend

Speed 8GT/s,
Width x16 10.72 GB/s Full

SSD
backend

Speed 8GT/s,
Width x8 8.95 GB/s Full

usage reduction and execution latency under various SLOs
(permissible latency increase over the original workload la-
tency). We then compare the results with the Linux swap
and Fastswap baselines. As illustrated in Figure 15, a larger
memory offloading ratio means better memory efficiency.
Consistently, our system demonstrates superior memory of-
floading ratios compared to the baseline under identical SLO
constraints. As the SLO rises, the memory offloading ratio
increases, with up to 54% local memory pressure reduction.
Notably, swap-friendly workloads such as clip, gg-pre, tf-tc,
and bert benefit significantly from our approach. We also find
that a larger SLO does not always bring memory efficiency
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improvement. This is because performance degradation tends
to be magnified when local memory falls below the hot data
size, and in this case even increasing the SLO value will not
trigger memory offloading. In most cases, appropriate SLO
settings, like an SLO of 1.4 in sort and tf-incep, can offer
a balance between enhanced user experience and increased
memory efficiency.

4) System Task Throughput: System serving throughput
matters in data centers. We analyzed task throughput across
different program distributions, adhering to specified SLO
limits. We varied the proportion of swap-friendly programs
from 0 to 1 and observed the corresponding changes in task
throughput. As illustrated in Figure 16, larger SLOs lead
to more pronounced throughput improvements, reaching up
to 5.6× compared to the baseline without far memory. A
noteworthy finding is that the highest efficiency is not always
achieved with the largest SLO. For instance, SLOs of 1.6
and 1.8 yield similar throughput, making an SLO of 1.6 a
more optimal choice over 1.8. Furthermore, the presence of
a larger proportion of swap-friendly applications correlates
with increased system throughput, underscoring the impact of
program type on overall system performance.

5) Swap Isolation: Swap isolation is important, as it re-
duces data contention among different workloads. We evaluate
the effectiveness of swap isolation in our system compared
with other isolation methods. We co-locate each workload with
a specific task and measure the average latency of each swap
operation on shared swap, isolated swap and vm-isolated
swap methods, as shown in Figure 17. The evaluated shared
swap method is the traditional shared-LRU swap mechanisms
in Baseline Linux swap and Fastswap. It shows the worst swap
latency performance since applications often face obvious data

Fig. 19: MBE improvement on Alibaba 2017 and 2018 traces.

competition when sharing swap channels. The isolated swap
uses separated isolated swap channels with no colocated tasks
in Canvas [30], which has a significant swap performance
increase. Our method utilizes VM to isolate the swap channels
(vm-isolated swap), which shows close performance with the
isolated swap method. Compared with shared swap method
in the traditional far memory works, our method can gain an
average 1.7× speedup on swap performance.

C. System Overhead

It is important to minimize design overhead. We compare
the system backend switching overhead of the traditional
method and xDM. Our design incurs significantly lower op-
erating system boot overhead on VMs. In contrast, existing
works [27], [40] typically require a physical shutdown and
system reboot. The detailed latency at the user level and
system level is as illustrated in Figure 18-(a). By utilizing
VM reboot rather than host boot, xDM performs 2.6× faster
than related works.

We also assess the specific backend switching overhead, as
depicted in Figure 18-(b). We provide a detailed analysis of the
overhead for each switching scenario between SSD, DRAM,
and RDMA. The overhead primarily involves the time taken
to shut down and start up swap backend modules. Notably,
all backend switches are completed in less than 5 seconds, a
duration that is generally acceptable for many long-running,
data-intensive tasks. Specifically, backend switching on both
SSD and RDMA FM paths shows a quite short duration, which
benefits from our configuration of the prepared swap backends.
The startup of the DRAM backend is the most time-intensive,
primarily due to the delay associated with memory allocation
on the host machine.

D. System Scalability

Finally, we evaluate the scalability of our design. We use
public cluster traces of large-scale production systems [54]
to evaluate the effectiveness of our system. We design a
metric called memory balance effectiveness MBE), which
reflects the increase in memory utilization on underutilized
nodes and the corresponding decrease on nodes with high
memory pressure. The MBE is calculated as MBE =
C% × (c̄ − β) − A% × (ā − α). In clusters, we assume that
A%, B%, C% is the percentage of servers with low, medium



and high memory utilization. When balancing memory, the
A% servers can share memory resources with C% servers
while the B% servers perform no memory adaption. We set
variables α and β (β ≥ α) as the utilization threshold between
low, medium and high utilization servers. ā is the average
utilization of A% servers and c̄ is the average utilization of C%
servers. In cluster traces, A%, B%, C%, ā, c̄ can be calculated
given the α and β.

Utilizing multi-path far memory environments can balance
resource pressure among busy and idle servers without adding
new server nodes. Figure 19 shows the contour percentage
of memory balance effectiveness improvement of Alibaba
cloud trace in 2017 and 2018. Specifically, (a) is a low-
pressure trace with 48.95% average memory utilization and
(b) is a high-pressure trace with 87.05% average memory
utilization. As Figure 19 shows, we can achieve a memory
balance effectiveness improvement by up to 13.8% when
α = β = 31% if the memory pressure is low and up to
19.7% when α = β = 80% on the trace of high memory
pressure. The results show that we have a better effectiveness
improvement on clusters with a high average memory usage
rate. It demonstrates robust scalability under conditions of
increased memory resource pressure in the data center.

VI. RELATED WORK

A. Disaggregated Memory Runtime

Disaggregated architecture [20], [22], [55]–[57] has attached
great attention in recent years. Existing works build large
memory pools [58] with various memory devices including
CXL memory devices [25], [31], [59]–[62], non-volatile per-
sistent memory [24], [63]–[65] and solid-state drive (SSD)
[37], [42] on local servers as intra-node FM. They also share
memory resources among servers through network channels
including RDMA network cards [27], [28], [66], OpenCAPI-
based fabrics [22], [67], [68], smart-NICs [43], [69], and
smart network switches [70], to access inter-node FM on
remote servers. In the early years, works utilize user-defined
remote memory access APIs to improve the performance of
far memory access [71]–[75]. These works help to utilize
and manage different FM resources in the single FM-path
environment. Complementarily, our work focuses on the prob-
lem of managing a new multi-backend disaggregated memory
architecture, enabling elastic and flexible expansion of far
memory resources.

B. Task Management in Far Memory Environment

Existing disaggregated memory management systems typ-
ically allocate resources to applications by detecting current
resource pressure [42], [76]. Based on the existing memory
resource scheduling strategies [77]–[79], related studies [24],
[37], [40] have introduced adaptive allocation strategies that
utilize heterogeneous backends to accommodate varying re-
source pressures effectively. Previous works [27], [37], [38],
[44] have examined application sensitivity on far memory
platforms. Based on this analysis, they adjust the far memory
ratio and memory size allocated to tasks to meet Quality of

Service (QoS) requirements. Some works take the size of
the transferred data chunk is considered to accelerate data
transferring in recent works [43], [44], [80]. Canvas [30] builds
separated isolated swap channels on RDMA far memory to
isolate tasks. However, they lack detailed page information
analysis to fully extract the application behavior. Our work
outperforms previous studies by analyzing page data in a fine-
grained way and fine-tuning various FM parameters for higher
performance.

C. Data Placement on Hybrid Memory

In hybrid memory architecture, data on far memory or
slow memory is often considered as an exclusive relationship
with the data on local or fast memory, managed by data
swapping [24], [81]–[84]. There are some works concentrated
on swap mechanism design at different system levels. VSwap-
per [85] builds data swap channels across virtual machines.
Hybridswap [86] optimizes the data swap between VMs and
host disks. XMemPod [40] enables virtual machines to access
RDMA-based remote memory on the host with a shared
swap channel on the host. Hybrid2 [87] handles near and
far memory access between SRAM and DRAMs. In GPU-
involved heterogeneous environments, related works utilize
unified memory to place data into CPU memory and SSD [19],
[84], [88]. However, these works swap data in a hierarchical
way, with data copies on VM, host, and FM. Our work
supports host-bypass FM access in each VM, reducing data
duplication for enhanced efficiency.

VII. CONCLUSION

In this work, we design and implement xDM, a novel multi-
backend far memory system with high bandwidth utilization
and application performance. By turning the conventional
swap mechanism into a switchable data swap module, we
successfully realize simultaneous multi-path FM access. In
addition, based on a rich synthesis of application page data,
we tailor the far memory path configurations to the needs
of various applications. Our work shows up to 3.9× data
swap performance speedup, 2.8× data throughput increase,
and 5.1× data center task serving throughput improvement
compared with state-of-the-art works. Our design provides a
flexible solution to scale out far memory access paths and
an efficient way to manage them on monolithic servers. We
expect that our design can improve the execution performance
and memory usage effectiveness of memory-hungry tasks in
cloud and near-edge micro data centers.
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Walid G. Aref. The case for distributed shared-memory databases
with rdma-enabled memory disaggregation. Proceedings of the VLDB
Endowment (VLDB), 2022.

[67] Opencapi specification. https://opencapi.org/.
[68] Esha Choukse, Michael B Sullivan, Mike O’Connor, Mattan Erez, Jeff

Pool, David Nellans, and Stephen W Keckler. Buddy compression:
Enabling larger memory for deep learning and hpc workloads on gpus. In
ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2020.

[69] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. Clio: A hardware-software co-designed disaggregated memory
system. nternational Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2021.

[70] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin
Zhong, and Abhishek Bhattacharjee. Mind: In-network memory manage-
ment for disaggregated data centers. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (SOSP), 2021.

[71] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-optimized
distributed b+tree index on disaggregated memory. In Proceedings of
the 2022 International Conference on Management of Data (SIGMOD),
2022.
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