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ABSTRACT

Multi-modal computing (M2C) has recently exhibited impressive
accuracy improvements in numerous autonomous artificial intel-
ligence of things (AIoT) systems. However, this accuracy gain is
often tethered to an incredible increase in energy consumption. Par-
ticularly, various highly-developed modality sensors devour most
of the energy budget, which would make the deployment of M?C
for real-world AIoT applications a difficult challenge.

To address the above issue, we propose AMG, an innovative
HW/SW co-design solution tailored to multi-modal AloT systems.
The key behind AMG is modality gating (throttling) that allows for
adaptively sensing and computing modalities for different tasks.
This is non-trivial since we must balance situational awareness,
energy conservation, and execution latency. AMG achieves our goal
with two first-of-its-kind designs. 1) It introduces a novel decou-
pled modality sensor architecture to support partial throttling of
modality sensors. Doing so allows one to greatly save AloT power
but maintains sensor data flow. 2) AMG also features a smart power
management strategy based on the new architecture, allowing the
device to initialize and tune itself with the optimal configuration. It
can predict whether a reasonable degree of accuracy will be satisfied
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during runtime, and react proactively to remediate the gating pro-
cess. Extensive evaluation based on our prototype system confirms
that AMG improves the AloT lifespan by 74.5% to 133.7% with the
same energy budget while meeting the performance requirements.
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1 INTRODUCTION

Multi-modal computing (M?C) has attracted tremendous atten-
tion [4, 72] in various AloT domains such as Unmanned Aerial
Vehicles (UAVs) [41, 80] and intelligent robots [7]. It leverages a
wide variety of modality sensors to capture different environmen-
tal data and then feeds the sensing data into perception modules
that run multi-modal deep neural networks to generate insightful
results [41, 78]. By federating multiple modalities, M2C has been
shown to improve accuracy by up to 30% [4]. Therefore, many
multi-modal algorithms and platforms [10, 52, 54] have emerged.
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Sensors devour up to 53% energy budget
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Figure 1: MC is power-/energy- hungry.

Despite its accuracy superiority, M2C incurs incredible energy
consumption. As shown in Figure 1-(a), the M2C task drive power
demand higher than its uni-modal counterparts. Particularly, its
sensing components devour most of the energy budget, which could
impede its deployment in many real-world AIoT scenarios with
constrained energy budgets. Typically, a multi-modal AIoT system
integrates numerous sensors [10, 64, 78], such as high-resolution
cameras and sophisticated microphones to sense the complemen-
tary environmental context. These sensors can consume 57% of the
total power and 47% of the total energy in a M2C task as depicted
in Figure 1-(b). It has been estimated that a thin-film battery with a
form factor of 5.7 mm x 6.1 mm, which stores an electrical charge
of 50 pAh or energy of 684 m]J [16], can be easily discharged in
about 4 days by a low-power TI MSP430 sensor with a standby
power of 0.5 pA [68]. This prompts us to think about this question:
from the perspective of computer architecture and hardware, how can
energy-limited multi-modal AloT systems actually run M*C tasks
in a highly-efficient way? To date, there is a lack of architectural
support and optimization mechanism in this important direction.

One of the most important issues is how to reduce the energy of
modality sensors in a way that does not affect situation awareness.
Conventional sensors are built with a tightly coupled architecture
that consists of three main pipelined modules including a sensor
array, an Analog-to-Digital-Converters (ADC) and a digital sig-
nal processor (DSP) [13, 15, 48, 69]. They sense and convert envi-
ronmental signals (e.g., light) into digital data (e.g., images) that
can be processed by the perception module without interruption.
In order to generate high-quality data, these sensors often imple-
ment sophisticated ADCs and DSPs, thus leading to high energy
costs [46, 48, 81]. Intuitively we can throttle modality sensors to
save energy. However, applying this conventional wisdom to M?C
is ineffective since it loses situation awareness of the associated
modalities when turning off a sensor. If we need the modality data
and turn on the sensor later, the timestamp of the data will be incor-
rect. Therefore, new solutions are needed, such as architectures that
allow for turning off only the energy-consuming modules while
maintaining sensor data flow.

Another critical challenge is how to provide quality M2C ser-
vice in complex scenarios in a power-saving mode. Existing M2C
efficiency optimization approaches are based on the fact that modal-
ities exhibit very different importance to a task [4, 80]. They rely on
a pre-analysis of all the modality data to select necessary modali-
ties [54, 60], thus reducing the back-end computation effort of multi-
modal DNNs. For example, the text modality performs better than
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visual or auditory modalities in a multimodal language-emotion
analysis [2]; in automated vehicle applications, the radar modality
may only be needed in extreme weather situations such as fog-
ging and snowing [60]. In a power-saving mode, however, the M?C
system does not have a priori knowledge of all the modality data.
Conventional designs would fail if a complex task demands different
modality processing to meet accuracy and latency requirements.

In this paper, we argue that the key of energy-efficient M2C is
modality gating (throttling) that reduces the energy consumption of
M?C from the sensor side. We propose AMG, an adaptive modality
gating solution that allows for adaptively sensing and computing
modalities for different tasks. At the hardware layer, we introduce
a novel decoupled sensor architecture that supports modality semi-
gating (i.e., partially throttle the sensor). Instead of turning off the
whole sensors, we only gate energy-hungry modules (e.g., ADCs
and DSPs) to save energy while maintaining situation awareness. At
the system layer, we implement an optimized modality activation
mechanism that follows the best modality gating orders and adjusts
the M2C task smartly. It can greatly improve AloT efficiency while
ensuring satisfactory accuracy and latency.

This paper makes the following key contributions:

(1) We present unexploited opportunities for efficiency optimiza-
tion on multimodal AToT. We characterize the state-of-the-
art MultiBench system and show that modality throttling is
critical to enable energy-efficient M2C.

(2) We propose AMG, a novel HW/SW co-design solution tai-
lored to M?C. It introduces a decoupled modality sensor
architecture for energy-efficient, non-disruptive modality
throttling from the sensor side.

(3) We devise system optimization method for handling com-
plex inference tasks. Our speculative activation scheme can
further reduce performance penalty if additional modalities
must be progressively activated.

(4) We implement our design as a prototype and construct an
adaptive in-situ M2C system for real-world applications. The
extensive evaluation demonstrates that AMG can enable
highly-efficient in-situ M?C in a complex environment.

The rest of the paper is organized as follows. First, Section 2
details the background of M2C. Section 3 introduces the design of
AMG. Section 4 introduces architectural support. Section 5 intro-
duces system optimization. Section 6 shows experimental method-
ologies and Section 7 presents evaluation results. Section 8 summa-
rizes related work and finally Section 9 concludes this paper.

2 BACKGROUND AND MOTIVATION
2.1 M?3C Hardware and Software

As shown in Figure 2, M?C is a complex process that goes beyond
the conventional computing stack [60, 78, 80]. A complete M2C task
includes both sensing and computing processes. At the hardware
layer, it consists of a set of sensors that collect different modality
information from the environment as well as a computing board that
processes different modality data. At the software layer, it mainly
runs multi-modal DNNs that take the sensing data as input and
make inferences to realize different multi-modal AloT applications.

A very important architectural feature of M?C is that it relies on
multiple modality sensors to obtain the input data [78]. To gain an
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Figure 2: Multi-modal computing hardware and software.

Table 1: In most modality sensing devices, ADC and DSP
takes up 84.5% ~ 98.3% of power.

Applications Power Dissipation (mW)
PP Signal Sensor ADC DSP
Image Sensor [13] ~ 0.2uW ~ 10.6uW ~ 9.1uW
General UIS [81] 0.42 4.36 2.17
Doppler UIS [46] 10.56 57.44
3D UIS [36, 65] 5.68 160 [ 170
PDM Microphone [19] ~0.23 ~068 | 2.16

in-depth understanding of M?C, we analyze the modality sensor
pipeline as shown in Figure 2. A modality sensor is typically built
with three main pipelined modules: 1) a sensor array (e.g., Bayer
filters for cameras [20], receiver circuits for microphones [53]) that
perceives the environmental signals and transfers them into analog
electrical signals; 2) an ADC that converts the analog signal into
digital signals; 3) a DSP (e.g., ISP for image [48] and CODEC for
audio [15]) that pre-processes the digital signals and generates
formatted data for the back-end multi-modal DNN inference. It has
been reported that the sensor array only takes up a small amount
of energy to acquire modality signals [13, 19, 81]. However, modern
ADCs and DSPs are typically advanced components designed for
producing high-quality data for AIoT applications. According to
Table 1, they also consume a significant proportion (84.5% ~ 98.3%)
of the overall sensor energy.

2.2 Energy-hungry M?C Task

We evaluate representative M2C tasks with the latest models and
datasets (detailed in Section 6). Our workload encompasses three
most common modalities including image (I), audio (A) and
text (T).We run these tasks on a NVIDIA Jetson Nano board.

The M2C tasks drive power demand higher than the uni-modal
counterparts and also significantly increase the total energy con-
sumption. This makes deploying M2C on edge AloT devices a diffi-
cult challenge. In Figure 3, we collect the average power draw and
the total energy consumption of different computing components
(including CPUs, GPUs and storages) of each M2C inference task.
We also measure the results of running uni-modal tasks of the same
modalities with the same dataset. It shows that the actual power
usage of M?C task is comparable to the results of the uni-modal
task. The reason is that the power demand is mainly determined
by the number of activated hardware, regardless of the increased
computing complexity of the M?C task. However, the much larger
number of multiply-accumulate operations (MACs) in M?C leads
to longer execution duration, thus higher energy consumption. We
observe that M2C shows 0.45X ~ 17.48x more energy compared to
the traditional uni-modal tasks.
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Figure 5: Distribution of mutually exclusive data sample sets
correctly processed by different modalities.

2.3 Main Sources of Power Drawn

In Figure 4, we investigate the main sources of power drawn for
M?C tasks. We observe that various sensors for collecting differ-
ent modalities devour most of the power budget and the energy
resource. As shown in the figure, the power consumption of an
inference task includes two parts: i) the sensing power and ii) the
computing power resulted from MACs and data movements. Ac-
cording to our results, various sensors in a M?C inference task
pull over 40% of the total power of the AloT system. About half of
the energy is consumed by sensors, leaving very few energy for
MACs and data movements. This would significantly degrade the
productivity of the system. Thus, it can be problematic to turn on
all the modality sensors on a energy-limited AloT device, let alone
continuously perform in-situ M2C tasks.

3 TOWARDS ADAPTIVE MODALITY GATING

The above analysis indicates that throttling modality sensor power
drawn is the key to deploying M?C in piratical AloTs. While it
is intuitive that one can dynamically turn off hardware to save
power, applying this conventional wisdom to M2C is challenging. It
requires non-trivial architectural support and system management
to achieve the best efficiency, accuracy, and latency. This section
provides an overview of our design considerations.

3.1 Opportunities and Challenges

We analyze the characteristics of M2C and find that one can actu-
ally predict the results of a majority of data samples with features
learned from a small number of modalities.
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Figure 6: Accuracy (ACC), F-score (FSC) and energy (NRG)
consumption of M?C and the associated uni-modal models.

We first compare the performance and energy of multi-modal
models and their counterparts (uni-modal models). Apparently,
fusing features from multiple modalities provides the best accuracy
as shown in the multi columns of Figure 6. It shows that sometimes
a single modality (e.g., image for avmnist and text for sarcasm)
can yield satisfactory accuracy. This indicates that only not all data
samples require a full set of modalities to make correct prediction.

To confirm our observation, we further experiment with a mutu-
ally exclusive sets of data samples and count the number of datasets
that can be correctly processed with features learned from different
modalities. In Figure 5, the fusion-bar indicates the number of data
samples that can be processed correctly only by fusion. The results
show that features learned from a single modality are sufficient for
correctly processing most of the data samples (over 75%), only a
small fraction of samples (less than 5%) needs a fusion of features.
Thus, for a typical data sample, one can safely turn off some modal-
ity sensors and omit the associated modality calculations to reduce
power and energy consumption without visible accuracy loss.

Nevertheless, whenever we throttle a sensor, it also leads to
an embarrassing situation: the AIoT system becomes blind to the
associated modality, i.e., the modality data will not be prepared
in advance for the current M2C task. In the absence of complete
modality information, one can hardly determine whether or not a
typical M2C task is to be executed. According to Figure 5, failing to
fusion enough modalities can cause degraded inference accuracy
for some complex M2C tasks. Although the percentage of such
scenarios are relatively low (e.g., 5%), it is unacceptable to ignore
them in many mission-critical scenarios such as video surveillance.

3.2 Design Considerations for Efficient
Multimodal AloT

We summarize two key design considerations:

1) A new modality sensor architecture is necessary, since
power throttling on current sensors may disrupt normal
MZ2C execution. We need to deactivate some sensors for energy
conservation. However, we do not want to make the AloT blind to
certain sensitive information, even if the information is associated
with the throttled modality sensors. It is desirable to cap sensor
power while maintaining situation awareness (raw data streaming).

2) A new AloT system management strategy is necessary,
since the optimal execution order of each modality is un-
known. One must examine all the modality execution paths to
identify the optimal execution order of sensor gating. In addition,
dynamic scheduling of modality gating matters for complex tasks.
If by any chance the preset configuration does not satisfy results,
the cost of resorting to additional modalities can be expensive. It is
better to proactively fix the performance penalty issue.

Hou and Liu, et al.

'lHH"g\ N G‘r‘ee.dy AMG Center Speculative
JHH1HA [ Initializer Manager Activator
' '
¢ ' '
- ! . - B
F F W ! Initialization Actwation H

Address

Sensor Architecture Signal

S I (N
Fully-decoupled Modality Gate (@-10) Buffer e RV
Ro] o]

A Ko~
Memory N
Signal
t Sensor
AloT
Processors

Figure 7: An overview of AMG’s SW/HW co-designed
modality sensor gating approach.

3.3 Adaptive Modality Gating: An Overview

In this paper we propose adaptive modality gating (AMG), a novel
HW/SW co-design that augments AIoT systems and enables effi-
cient multi-modal computing. We modulate AloT system through
gating modality sensors. It is different from conventional system
power management such as CPU core power gating or DVFS with
idle period coalescing. For a given inference task, we neither turn
on/off a modality repeatedly in a fine-grained manner, nor delay
tasks for energy conservation.

Figure 7 depicts the overall system architecture of our design.
AMG, for the first time, leverages both hardware and software-based
tuning knobs to jointly control the sensing and computing power
of each modality for every data sample. At the hardware layer, we
introduce architectural support for low-power data sensing. At the
software layer, we adaptively orchestrate and control the modality
execution paths based on the feedback information from M2C ap-
plications. In total, the proposed design allows power-constrained
AIoT devices to execute M2C tasks while satisfying the accuracy
and latency requirements. Specifically, AMG addresses the previous
design considerations through two innovative approaches.

o Fully-decoupled Sensor and Modality Semi-Gating. At
the architecture level, AMG introduces a fully-decoupled
sensor architecture and divides the sensor pipeline into a
lightweight frontend that senses the environment and a
power-hungry backend that converts the data. We disable
the backend of unnecessary modalities and in the meantime
temporarily hold the associated analog signal in a buffer.
We selectively release backend data streaming based on the
M?2C applications’ requirement. Such an architecture design
allows one to partially throttle the modality sensor pipeline
and enable what we call sensor semi-gating.

e Optimized Speculative Sensor Activation. AMG does
not activate modality sensor purely on an ad hoc basis. It
initializes the AIoT platform with a carefully chosen route
of modality activation. We propose a greedy initialization
model that could maximize the likelihood of optimal modal-
ity gating in a dynamic environment. In case that complex
M?2C tasks require additional computation to ensure accu-
racy, we enhance our design with a speculative activation
scheme. AMG inserts lightweight probes to check each task’s
progress. By proactively activating necessary modality sen-
sors and parallelize data processing, we can achieve better
design tradeoff with low latency.
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4 FULLY-DECOUPLED SENSOR
ARCHITECTURE

Traditional sensors have a unified, static architecture that does not
support dynamic modality gating as shown in Figure 8-(a). In recent
years, the trend and benefits of modality pipeline reorganization
have been recognized. For example, Figure 8-(b) shows how current
AloT systems move the DSP component from the sensor part to
the compute board, which we classify as partially decoupled sensor
architecture. We find that doing so provides the AlIoT system with
much more control over its energy consumption. However, it fails
to support adaptive modality throttling since it does not decouple
the energy-hungry ADC component. In our AMG design, we take
one step further and propose fully-decoupled sensor architecture as
shown in Figure 8-(c). It allows one to store the analog signal of
a modality at the sensor array end, and then optionally decides
whether to execute the power-consuming ADC/DSP according to
the actual requirement of the M2C task. This architecture supports
highly flexible modality gating as shown in Figure 7.

4.1 Modality Semi-Gating Modes

In the fully-decoupled sensor architecture, we use a small buffer to
actually decouple the two parts of the modality pipeline. In this way,
we can eliminate the high energy consumption of the data sensing
process while avoiding raw data loss. By adaptively choosing proper
modalities for different data samples, we can greatly reduce the
power/energy demand of M2C tasks.

In our design, we define three sensor operation modes that can
be determined by the performed M?C tasks. Specifically, the sen-
sor has one normal execution mode (@®: N-Mode) and two power
semi-gating modes (P-Modes) including the store (@: P;-Mode) and
restore (®: P,-Mode) raw data mode. The N-Mode is the same as the
conventional approaches where the sensor acquires and transmits
the modality data to the AIoT processor. In the Ps-Mode the sensor
temporarily saves the analog signal coming from the signal sensor
and amplifier into a buffer. Then, the upper system-level controller
(i.e., the AMG central manager) will decide whether to switch the
sensor to its P.-Mode where it performs ADC and DSP processing
according to the M2C application’s accuracy requirement.

ISCA 23, June 17-21, 2023, Orlando, FL, USA
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Table 2: Characteristics of the state-of-the-art non-volatile
memory technologies [8, 9, 14, 42]

Technologies RRAM PCM FeFET/FTJ | Flash
Cell size(F?) 4-10 4-10 4-20 4-10
Endurance(Cycles) 1012 1010 10° 10°
Speed(ns) 10 ~100 | 10 ~ 100 <10 10°
Energy(p)/bit) 1~10 10 0.01 > 100
Bits per cell 1~8 1~38 1~3 1~4
Price($/Gb) 1000 0.3 > 1000 0.014

4.2 Raw Modality Buffer

We leverage a small buffer, i.e., raw modality buffer to preserve the
analog signal as shown in Figure 9. The buffer consists of a non-
volatile storage array. Each cell of the array is a non-volatile memory
device that can hold one or more analog signals. Considering a
camera whose sensor is a 256*256 pixel array (each pixel contains
3 RGB signals each of which has 256 states), the buffer needs to
represent 256*256*3"8 bits to save the analog signals of a picture.
Assuming that a memory cell supports 8 bits, then the buffer size
would be 24KB. Generally, the buffer can be implemented with a
variety of non-volatile memory devices, as shown in Table 2. In
Figures 10 and 11, we estimate the energy and latency overhead of
various buffers for video modality with different resolutions with
the method provided by prior work [8, 14, 42]. It shows the energy
and latency overhead of a buffer relies on its technologies, bits per
celland ADC bits. It is worth noting that the buffer sizes in these two
figures can accommodate most modality data as video modality data
often requires a larger buffer than other modalities. Basically, it is
better to implement the buffer with emerging technologies such as
RRAM. Non-volatile storage devices have been increasingly adopted
by various AIoT devices [34, 63], making them more attractive.

4.3 Sensor Mode Switching

We leverage a 1-bit gate signal register to control the sensor to
switch between the N-Mode and P-Mode as shown in Figure 9. The
value 0 means working in N-Mode while 1 means P-Mode. The
gating signal is transferred to control the 1-to-2 MUX module via the
on-chip control bus. When working in the P-Mode, a buffer address
register will be used to determine where to store and restore the
analog signals. When storing analog signals (in Ps-Mode), the buffer
array is programmed with multiple voltage levels generated by the
signal sensor. The voltages pass through cells and are converted into
different resistance values for storage. If the analog signal needs to
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be read (in P,-Mode), a read voltage is added to the buffer array, then
the previously stored resistance becomes a current signal, which
is then converted into data by the ADC and DSP and transmitted
to the AIoT processor to process. In addition, the binary value of
the gate register should be larger than the number of sensors, i.e.,
for n sensors, the gate register should have x bits where 2*¥ > n.
Meanwhile, there should be n buffer address registers for the n
sensors. One can implement these registers using mrs [5].

5 OPTIMAL MANAGEMENT OF
MULTI-MODAL AIOT

Once having the decoupled architecture and the semi-gating mech-
anism, the next question is how to determine and control the oper-
ation modes of sensors. It is not straightforward to realize modality
selection since we do not have a priori knowledge of the M2C task
and it requires time-consuming online analysis as well. In this work
we devise an optimized sensor activation strategy.

5.1 Greedy Initialization Mechanism

As shown in Figure 7, we make the case for determining the best
modality configuration offline and only use online adaptation to
further improve performance. Such a design methodology is widely
used in embedded system design for its effectiveness and efficiency.
The purpose of our initialization is to automatically learn the opti-
mal modality execution orders.

Modality Ordering Strategy: In the initialization phase, our goal
is to determine the priority list of hardware modality (initialization
configuration) which specifies the order of modality activation
during runtime. We adopt a greedy initialization approach in that
we want to identify the activation order that benefits the greatest
number of data inputs. Figure 12 shows our initialization processes.
For AIoT systems with a limited number of modalities, we can
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Figure 12: Modality ordering process.

construct a permutation tree that covers all the possible execution
orders of modality. We call each execution order as a modality route
(MR). Since AloT applications have different modality preferences,
some features play a dominant role in terms of prediction accuracy.
During our training process, each data input votes its most desirable
MR. Finally, the MR with the most votes will be selected.

If the types of modalities grow, the complexity of the above
process (O(n!)) may greatly increase. In this case, we model the
problem with a complete graph, where vertices represent different
modalities and each edge corresponds to the sequential execution
(transition) from one modality to the next. There is a direct tran-
sition between any two states that can be executed sequentially.
Each transition has a set of metrics that reflect the outcomes of
the transition. The graph model provides a resource-conservative
representation of the utilities of various modality execution orders.
We train the graph model with the classic exploring-and-exploiting
approach [44]. To be specific, we develop an evaluator based on
MultiBench with the extension of an energy model that considers
the computing energy of data movement and MAC operations as
well as the sensing energy to train our strategy based on the previ-
ous work [55]. Each data sample of the training dataset represents
an M2C task, denoted by < Dy, U, >, where D, represents the
modality data for this task and Uy, is a utility score calculated by the
weighted sum of the accuracy, energy and latency (obtained from
the evaluator) for the task. The weights are automatically searched
using the optuna [33] tool. The loss function is the overall loss of
the utility score for all the training data samples. After training, the
transition with the highest total utility score means that it is the
ideal candidate for most of the data samples.

The above ordering process ultimately outputs a modality list,
which stores the optimal orders of modalities for different M2C
tasks. Besides, we also obtain a power and performance reference
table after the offline profiling process. In the table, we record the
empirical power consumption and performance of a modality when
it is executed at different layers.

5.2 Speculative Activation Scheme

Because the optimal modality order only statistically satisfies most
of the data samples, we must use online adaption to guarantee the
accuracy of the inference tasks, particularly for some non-ideal data
input. It may cause a key performance issue that we call modality
mismatch. For some complex tasks, it is not unusual that the first-
ranked modality cannot provide the necessary accuracy. Then it
would incur a long delay since we need to restore the modality data
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of more sensors from their raw input buffers and perform extra
computation in serial. To address this, AMG monitors the current
modality’s execution progress. Then it uses a speculative activation
to proactively restore and compute the data of the next modality
that will be computed according to the modality routing list.

As shown in Figure 13, we design an probe-and-prediction con-
troller that determines whether the next modality needs to be com-
puted based on the current performance of the M?C task and the
remaining power budget. If so, the controller will process the data of
the next modality in advance. This includes two aspects of optimiza-
tion. First, it only operates the sensor of the most energy-efficient
modality rather than all the sensors in N-Mode which often leads
to much higher sensing energy at a time, thus improving energy
efficiency and avoiding unnecessary energy waste. Second, it proac-
tively determines whether to restore the raw data of the next sensor
and execute the corresponding modality data.

Since DNN applications have a layer-by-layer execution struc-
ture, we can easily insert some power and performance probes
between different layers. Each probe monitors the current power
consumption and the performance such as latency, and accuracy of
the M?C task. To monitor the energy consumption and execution
latency of tasks, today’s AIoT devices have integrated many sys-
tem performance monitor tools such as jtop [52]. To observe the
performance of the M2C task at the layer level, we add some neural
network exits to calculate the accuracy at the observed layer with
intermediate features. As shown in Figure 14, we implement the
exits by adding a few neural network layers to generate a prediction
of the present immediate feature based on the previous work [67].
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Algorithm 1: The probe-and-prediction process

Input: A pre-defined multi-modal task M;, reference table
Tyef, hierarchical control table T;;,;, and modality
routing list Ry,.

Initialization: Power on the sensor of the first modality in

R and power off the other sensors.
for modality m; in Ry, do

for Exit ej in Eyy, do

Check the probe flag (PF) at current exit.
Calculate PF(probe) acc. to Eq. (1).

if PF(A) > Aempirical then
| Invoke multi-exit DNN APIs.
if IF(probe) > 0 then
if The last exit of current modality then
| Restore data for the next modality.
Executing current modality.
| Reserve the state with checkpoint and exit.

Satisfied Remaining Probe Flag Control
Performance? Power? (PF)? Decision
0 0 0 CcP
0 0 1 CP
| 0 1 0 EX+AL A
| 0 1 1 Ex+nm |
Satisfied Performance? 1 0 0 EE_ [
1 0 1 EE_,
1 1/ 0 EE_|
1 1/ 1 EE |
dality route . Modality Worst T
CP: Checkpointing  NE: Normal Execution Mismatch Case
EE: Early Exit EX: Normal Exit @ @ A
NM: Next Modality ~AL: Alerts
N-Mode DPs-Mode Ps-Mode 2 P.-Mode Keep Ps-Mod.

Figure 15: Coordination state diagram for an inference task.

To make the decision, the probe-and-prediction controller com-
pares the data from the probe with the reference table which is built
offline. Assume that the power and performance from the probes are
respectively denoted by Py, ope and Apyope- The reference power
and performance are respectively denoted by P,y and A,.r. The
power and performance for completing the whole modality are
formulated as Prgpr and ARgr. Then, we can predict whether the
performance A,,.q will be satisfied. To this end, we use a probe
flag (PF) to illustrate the prediction result and compute its value
denoted by PF(probe),

PF(probe) = 1(ARgF _Apred <0) (1)

(AReF — Aref) X Aprobe) ()

A =ARer X (1 -
pred REF X ( AREF

where 1 is a bool function. We can roughly predict if there is any
remaining energy in a similar way. The details of this mechanism
are shown in Algorithm 1.

5.3 AMG Central Manager

The AMG Central Manager is responsible for coordinating all of
them and modulating modality execution. As observed in Section
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Table 3: Description of the used M2C tasks and datasets.

Dataset | Samples Modality MZC Application

sarcasm 690 Language (BERT/GloVe), Affective

cmumos i 2,199 visual (ResNet), audio (Librosa) Computing [12]
mmimdb 25,959 text (Glove) ; image (VGG) Multimedia

avmnist 70,000 image (Raw), audio (Spectogram) Computing [26]

Table 4: SOTA M2C models for performance evaluation.

Type Scheme Description
Uni-modal |™4&¢ [24] Us%ng ResNet to process éata _from v1s.ual modality
1 audio [50] Using the speech processing library Librosa
text [17,57] | Processing text modality with BERT/GloVe
LF (BL) [47] Fusion by concatenation (Baseline)
SOTA .
M2C TF [79] Fusion by tensor outer product
Model LRTF [49] Fusion by a modality-specific factors
MIM [35] Fusion by inter-modality communication

Table 5: Evaluated power management schemes.

Category Scheme Description
CPU-First | Adjusting CPU frequency at first [40]
GPU-First | Adjusting GPU frequency at first [22]
Computing [ CPU-GPU | Co-adjusting CPU and GPU frequency [39]
Opti. Quan Using DNN quantization to manage energy [71]
Methods Prune Using DNN pruning to manage energy [25]
Qlearning | Using machine learning to tune different knobs [75]
OnlySen Assuming no computing overheads (Ideal)
P Rndm Randomly decide modality order (Adaptive acc.)
Opti ° Grdyl Completing current modality (Best modality order)
Me tho;is Grdy2 Arriving at the final exit (Best modality order)
AMG Ours method (Best modality order & adaptive Acc.)

3-A, for most simple data samples, only the first sensor works in
N-mode while the others work in Pg-Mode. To handle the very
complex execution environment of in-situ M?C, we might need to
switch more sensors into their P,-Mode. To determine this, AMG is
further driven by the state diagram shown in Figure 15. In the Cen-
tral Manager, we define three operating states including checking
point, normal execution and early exit. There are three inputs that
affect these states, indicating if the execution should be advanced
or not. We create checkpoint by interrupting the AIoT execution
temporally and save the system states into non-volatile storage.
Normal execution means that we compute the modality until the
expected performance is achieved. It can be interrupted by a check-
ing point state or an early exit state. Early exit happens when the
expected performance has been achieved.

Overall, AMG processes multi-modal data stream based on the
table shown in Figure 15. It is determined by three parameters,
namely, performance objective, remaining energy and the afore-
mentioned probe flag. In our design, a M2C task is deemed complete
if its performance (accuracy and latency) requirement is met; we
no longer perform more computation as shown in the last 4 rows of
the table. Before the performance is satisfied, we process data based
on energy availability. If there is inadequate energy, the system
will use a checkpoint to save the execution state and awake the
task until the accumulated energy passes a threshold. As shown
in the case (i.e., EX+NM) marked in green in Figure 15, the modality
mismatch occurs if the energy is adequate while the performance
is not satisfied. We will restore and compute the data of the next
modality using the speculative activation scheme in Section 5-B.
If a task has to compute to the last modality which happens less
frequently according to our analysis in Section 3-A , i.e., the worst
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Figure 16: Evaluated system prototype and key specs.
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Figure 17: Demonstration of AMG when processing data
samples of different difficulty from the avmnist dataset.

case EX+AL, it might result in poor latency for the task. In this case,
we need to make a better tradeoff between accuracy and latency,
which we do not discuss in this paper.

6 EXPERIMENT METHODOLOGIES

6.1 Real-world Applications and Datasets

To validate AMG, we use the MultiBench [47] which contains a
wide range of real-world applications. We choose 2 of the most
representative M2C applications including the multimedia applica-
tions and affective computing applications from the MultiBench.
We use 4 state-of-the-art (SOTA) multi-modal learning datasets as
described in Table 3. These 4 datasets have a wide range of data
samples from 690 to 70,000 samples. They cover the most com-
mon modalities such as language text, image, audio. Among
them, the sarcasm (sa) is a video corpus used for discovering sar-
casm [11]. The cmumosi (mo) is a real-world multi-modal dataset
for affect recognition which is regularly used in competitions and
workshops [70]. The avmnist (av) is created by paring the audio
of human reading digits from the FSDD dataset with written digits
in the MNIST dataset [58]. The mmimdb (mm) is the largest publicly
available multi-modal dataset for genre prediction on movies [4].

6.2 Baselines and the State-of-the-arts

We compare AMG with representative multi-modal algorithms to
verify that it can achieve similar even better performance compared
to the SOTA. We consider seven different algorithms, as shown in
Table 4. LF [47] represents the most common last fusion methods
that combine multiple uni-modal representations with the concate-
nation operation. We also compare AMG with both the uni-modal
methods and the state-of-the-art multi-modal methods. In each of
the uni-modal models (i.e., image, audio and text), we only use the
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Figure 18: Sensor gating reduces the sensor energy by 40.9%
and the inference energy by 19% for a M2C cmumosi task.

encoding network of one modality and connect it to the classifica-
tion network to obtain the output predictions. Tensor fusion network
(TF) [79] uses tensor outer product to fuse information from differ-
ent modalities. Low rank tensor fusion network (LRTF) [49] leverages
a modality-specific set of low-rank factors to improve the efficiency
of tensor fusion. Multiplicative interaction model (MIM) [35] further
generalizes the tensor products to include learnable parameters for
capturing the interactions between different modalities.

To show the superiority of AMG in optimizing the energy ef-
ficiency of M2C, we compare our design with two categories of
works including 1) various current methods that mainly optimize
the computing tasks and 2) derivatives of our design that optimize
the sensing components as shown in Table 5.

The existing methods improve the energy efficiency of an au-
tonomous AIoT system from two sides. One is to throttle the fre-
quency of task execution, i.e., sacrificing some latency for efficiency,
for example, CPU-First [27, 30, 40] and GPU-First [22] respectively
adjust the execution frequency of CPU and GPU to manipulate
energy consumption while CPU-GPU [39] jointly adjusts the fre-
quency of both. Another line of baseline is to adjust the amount of
DNN computation. For example, Quan [71] and Prune [25] are the
most common DNN compression schemes that reduce the energy
consumption of inference by abbreviating network models, while
QLearning fine-tunes multi-dimensional knobs based on online
learning. All the above methods only improve energy efficiency by
optimizing the back-end multi-DNN workload. To illustrate their
limitations in M?C, we further implement OnlySen which assumes
no computational overheads. We also compare AMG with several
sensing-aware optimization methods including Rndm, Grdy1 and
Grdy2. Among these approaches, the Rndm only uses the confi-
dence score returned by the model to determine the exit threshold,
without considering the remaining energy. The GrdyI method will
complete current modality without exit. The Grdy2 is a more ag-
gressive method that arrives the final exit.

6.3 Implementation Details

As shown in Figure 16, we implement a prototype bench of AMG
based on NVIDIA Jetson Nano, a representative IoT board with
rich interfaces. We add different sensors to the board and use them
to collect various signals. We use a Sony’s IMX219-77 camera and
a Waveshare’s USB to Audio to collect signals from the image
and audio modalities, respectively. For the text modality, we first
use the audio sensor to collect the audio signal and then use the
DeepSpeech model [3] to convert the audio signal into a text signal.
For each modality sensor, We devise a 24 MB raw input buffer (can
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store 30 frames of 1080P images) which is enough for most modal-
ities. We implement the buffer with an 8-bit per cell RRAM and
a 10-bit ADC which is commonly used in current sensors [1]. We
simulate it in NVSim [18] and observe that the energy and latency
of writing/reading the whole buffer are about 0.93mJ and 0.34s
respectively. Note that for most modalities, we do not need to read
the entire buffer since we design it with a large size. Moreover, with
the optimization of the speculation mechanism, the buffer’s read
latency does not affect the back-end multimodal DNN inference
much. We feed the data to our prototype testbench which mimics
the behavior of sensor semi-gating. We monitor the full system
power with a high-precision meter that follows SPECpower guide-
lines. We collect the power and energy usage data with the jtop
tool of Jetson Nano during the inference phase.

We implement the core components of AMG in about 3000 lines
of python as well as some shell scripts to communicate between
different modules. For all the multi-modal models (LF, TF, LRTF and
MIM), we use the same settings as described in the MultiBench [47].
We implement the probes by adding exits to the model architecture
of LF. We add 2 exits for avmnist and mmimdb while 3 exits for
sarcasm and cmumosi. All the evaluated models are implemented
in Pytorch and trained in a sever with GeForce RTX 2080Ti GPU.
After training, we save them with Pytorch’s utilities and deploy
these models to the Jetson Nano board. We assess task results
(accuracy) with the evaluation scripts provided by MultiBench. We
repeat our experiments multiple times and report the average value.

7 EVALUATION RESULTS

7.1 Effectiveness of AMG

7.1.1 Demonstration of Adaptive Inference. We first illustrate that
our proposed AMG has the ability to adaptively execute the ap-
propriate modalities for different tasks. In Figure 17, we plot the
results for the avmnist dataset which classifies data samples based
on two modalities including image and audio. The data samples
of image are represented in pixels, and the data samples of audio
are represented with a 112 X 112 spectrogram. We can see that
both Samples 1 & 2 can be classified accurately by exiting from
image modality. However, for Sample 3, AMG has to complete both
image and audio modalities to compute the final prediction. The
results indicate that Sample 3 is more complex than Sample 1 & 2,
thus requiring a fusion of modalities. AMG can predict results for
different data samples with optimal computational efforts.

7.1.2  Validation of Sensor Semi-gating Mechanism. We verify the
effectiveness of a sensor semi-gating mechanism, in reducing the
energy waste of sensors for simple and common data samples. In
Figure 18-(a), we count the operation time of different sensors com-
pleting the entire sensing pipeline (i.e., in N-Mode or P,-Mode)
under large (P3), medium (P2), and small (P1) capacity of the battery.
It shows that AMG almost relies on a single modality to accomplish
most inference tasks. For example, the activation time percentage
when the device should open is 0.14%, 0.14% and 43.31% respectively
for image, audio and text under cmumosi. In Figure 18-(b), we an-
alyze the energy breakdown of an M?C cmumosi task with/without
sensor gating. The result shows that sensor gating reduces the ADC
and DSP energy by 40.9% and the inference energy by 19% while the
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Figure 19: AMG achieves the same or even better accuracy than traditional M?C methods, while having a little tail latency.
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Figure 20: Accuracy comparison of AMG with the SOTA energy-efficient methods

write/read energy overhead of the raw data buffer is 0.062m]J. Thus,
modality gating can significantly reduce the energy consumption
of M?C with negligible overhead.

7.1.3  Analysis on Speculative Activation. We compare the accuracy,
energy consumption and latency of AMG to the baseline method,
i.e., LF in Figure 19. It shows that AMG can achieve the same and
even higher accuracy compared to LF with less energy for each
inference. AMG can significantly reduce the execution time for over
80% data samples by about 1 second. However, it can also lead to
increased tail latency. In this work we consider it to be less critical
for IoT scenarios that do not directly interact with users all the time
(e.g. wildlife detection). Our probe-and-prediction approach can
alleviate the long tail problem to some extent by activating sensors
for those complex data samples. To further optimize the long-tail
problem, one can use latency as a gating criterion as well.

7.2 Comparison with the State-of-the-art

7.2.1  Accuracy. 1t is critical to meet the accuracy requirement of
M?C applications. In Figure 20, we compare the accuracy of different
datasets under different power management (PM) methods. In order
to verify that our proposed algorithm can match the state-of-the-art
performance. We use the accuracy of the state-of-the-art (SOTA)
M?C algorithms (described in Section 6.2) as reference points. We
can see that AMG achieves the best accuracy among all the PM meth-
ods. It is remarkable that AMG can achieve the same accuracy and
even outperform the best SOTA M2C algorithms in most scenarios.
For example, on the cmumosi and sarcasm datasets, AMG shows a
significant improvement over existing algorithms. This is because
it can effectively balance multi-modal information with multi-exit
co-training, and plays a certain regularization effect through multi-
modal and unimodal co-feature extraction, which trains a better
model under the same architecture as LF. Conversely, traditional
power optimization methods can severely degrade performance
as they blindly manage energy consumption without taking into
account the important characteristics of M2C applications.
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Figure 21: Comparison of throughput (normalized to AMG)
and system last time under various energy budgets.

7.2.2  Throughput. In Figure 21-(a), we compare the number of
completed inference tasks under different PM methods. The x-axis
depicts different scenarios of different datasets under various energy
budgets, and the y-axis shows the number of completed tasks which
is normalized to the number of AMG. The results show that AMG
can accomplish much more inference tasks compared to the other
methods with the same energy budget. For example, AMG can
complete 1.6X ~ 1.8X avmnist tasks and 1.8X ~ 3.8X sarcasm tasks.
One of the main reasons why AMG can complete more tasks is
that it reduces the waste energy of sensors for most data samples.
Overall, AMG can have 1.6~ 3.8X higher throughput than the SOTA
methods with the highest accuracy in our experiment.

In Figure 21-(b), we compare the lifespan (how long the system
can sustain its functionality) and energy usage trace of AMG with
the other methods. The results show that the energy usage time of
AMG is longer than the others due to its adaptive modality sensing
and computing control. In detail, AMG can execute 10% ~ 280% more
time with the same energy budget. Although the system must face
an energy crunch, AMG adjusts the accuracy of inference tasks to
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Figure 22: Energy consumption and system last time of different M?C tasks under different energy-efficient approaches.

the remaining energy. In this way, other sensors are gated, so the
system can accomplish more tasks without losing much accuracy.

7.2.3  Energy Utilization. In Figure 22, we further analyze the en-
ergy usage under different PM schemes. In Figure 22-(a), we show
both the average sensing (of different sensors) and computing en-
ergy for each inference task. The result illustrates that AMG sig-
nificantly reduces both the sensing and computing energy of the
M?C, i.e., LF. It consumes the least energy compared to the other
PM schemes. It is notable that the SOTA PM schemes are too blind
and thus waste much energy. This further runs out of the energy
budgets and leads to shorter last time as shown in 22-(b). Overall,
AMG is able to employ less power consumption while guaranteeing
very high performance due to its ability to efficiently activate the
modalities and early exit mechanisms.

8 RELATED WORK

Multi-modal Deep Neural Networks: Multi-modal DNNs [31, 80]
are designed to leverage complementary information from multiple
heterogeneous modalities. They have been shown to outperform
uni-modal networks in many fields [47]. Most of the current studies
focus on finding more effective fusion or representation methods
of different modalities [7, 72, 79, 80], including two main classes
of approaches, i.e., early fusion methods [51, 76] and late fusion
methods [6, 74]. Different from these works focusing on multi-modal
fusion algorithm optimization, we improve the efficiency of existing
M?C applications running in AloT environments.
Energy-Efficient Edge DNN Inference: Deploying DNN in-
ference tasks on edge devices is gaining popularity due to the
advancement of compact DNN models [24, 61] and specialized
accelerators [10, 21, 52]. One of the biggest issues of edge DNN
is energy management. Besides conventional power optimization
techniques such as DVFS [28, 29, 45], power gating [66, 73], re-
searchers also propose to optimize DNNs’ energy consumption by
alleviating the power dissipation of silicon devices [38, 77] or abbre-
viating neural network models [56], such as quantization [59, 71],

pruning [25, 75]. AMG is orthogonal to most of the existing power
optimization methods. It would be easy to integrate them with AMG
to achieve better energy optimization.

Adaptive DNN Inference: Several prior works have imple-
mented adaptive DNN inference through the early exit technique [23,
43, 62] which provides better trade-offs between inference latency
and accuracy. These approaches can also enable faster inference by
sacrificing some accuracy [37, 43]. A few works aim to deploy the
lightweight and dynamic NNs with early exit on energy harvesting-
powered IoT devices, which often have limited computation re-
sources and energy budgets [32, 75]. To our knowledge, there is no
prior work on building effective early exits for various modalities in a
multi-modal network. We are the first to apply the early exit approach
to multi-modal analysis.

9 CONCLUSION

It is attractive to implement efficient multi-modal computing for
handling various sensory modalities. We introduce AMG, a novel
design that enables energy-efficient M*C on power-constrained
systems. It synergistically integrates two inventive techniques: 1) at
the hardware layer, we introduce decoupled sensor architecture and
modality semi-gating mechanism; 2) at the system layer, we devise
optimized speculative sensor activation. The proposed design can
greatly slash M?C overhead while maintaining high performance.
It can greatly contribute to the wide adoption of multi-modal com-
puting on various AloT devices and edge micro/nano data centers,
thereby benefiting numerous real-life smart applications.
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