
AlphaR: Learning-Powered Resource Management
for Irregular, Dynamic Microservice Graph

Xiaofeng Hou1, Chao Li1, Jiacheng Liu1, Lu Zhang1, Shaolei Ren2, Jingwen Leng1, Quan Chen1, and Minyi Guo1

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Department of Electrical and Computer Engineering, University of California, Riverside

Emails: {xfhelen, chaol, liujiacheng, luzhang, leng-jw, chen-quan, myguo}@sjtu.edu.cn, shaolei@ucr.edu

Abstract—The microservice architecture is a hot trend which
proposes to transform the traditional monolith application into
massive dynamic and irregular small services. To boost the overall
throughput and ensure the guaranteed latency, it is desirable to
process massive service requests in parallel with efficient resource
sharing in data centers. However, the disaggregation nature of
microservice unavoidably upscales the design space of resource
management and increases its complexity.

In this paper, we propose AlphaR, a learning-powered resource
management system tailored to the microservice environment.
The basic idea of AlphaR is to generate microservice-specific re-
source management policies for improving efficiency. Specifically,
we take the first step to use bipartite graph as a convenient
abstraction for application built with microservices. Based on
this, we devise a bipartite feature inference approach named
Bi-GNN to extract the temporal characteristics of microservices.
Furthermore, we implement a policy network to select appropri-
ate resource allocation choices for maximizing the performance in
resource-constrained data centers. AlphaR can improve the mean
and p95 response time by up to 80% and 77.5% respectively
compared with conventional schemes.

I. INTRODUCTION

In recent cloud system designs [43], there is a trend to fac-
torize a monolithic application into massive microservices [16],
[24], [41], [45]. The new architecture allows data centers to
balance user load distribution [6] and improve the overall
system throughput [29]. Many cloud computing giants such
as Microsoft [5], Google [45] and Amazon [42] are actively
accelerating their adaption of microservices.

However, it is a daunting task to devise an efficient resource
manager for the new applications due to the irregular and
dynamic characteristics of their small services. As shown in
Figure 1, a cloud application is disaggregated into multiple
microservices organized as different graphs. In Figure 1(b), we
use larger circles to represent microservices of more importance
and thicker arrows to indicate higher user load. We observe
that the characteristics of the microservices dynamically vary
with various user load [30]. Particularly, the most critical
microservice which can be the dominant performance factor of
the whole application (as circles marked in red) often changes.
To efficiently share the computing resources in data centers, it
is quite crucial to expose the irregularity and dynamicity of
microservices to the resource management.

Figure 1: Microservice discomposes traditional monoliths into
massive, irregular and dynamic service graphs.

Moreover, managing resources for microservices would be
more complex in production data centers. Specifically, there
are hundreds and thousands of microservices at the cluster
level, which leads to a larger problem size both in the amount
of information and the number of choices for the resource
manager. Meanwhile, the manager needs to be aware of
the irregular characteristics of numerous microservices. This
includes obtaining the multi-dimensional resource requirements
of different microservices and identifying their importance to
the performance of the entire application. It also needs to be
self-optimizing in response to the unexpected changes of the
environment. This requires that the system can automatically
make decisions without any human intervention whenever the
execution states such as user load change.

Current approaches are insufficient to handle the complexity
of resource management in microservice era. Most of the
data centers use straightforward schemes [7], [25], [36], [37]
or generalized heuristics [11], [14], [28] to make resource
allocation decisions. They oftentines overlook the relationship
between the allocated resource of each individual microservice
and the overall performance. As a result, it could waste
precious resource on some less critical microservices. Some
other existing resource management approaches are static
or offline-tuned based on pre-defined profiles of different
applications [15], [29]. They tend to require active actions,
which often incur unnecessary overheads like long response
latency. Compared to the existing methods, graph neural
network (GNN) techniques are promising in enabling efficient
resource management approach since they excel at handling
the complex issues in an automatic way.

In this paper, we propose AlphaR, a learning-powered

resource management system that leverages GNN to generate
microservice-specific resource management policies. To handle
the irregularity and dynamicity of microservices, we take bipar-
tite graph (BG) as a new abstraction for applications built with
microservices. A well-defined BG can incorporate the multi-
dimensional resource requirement of different microservices as
well as the relationship between the allocated resource and the
application performance. Based on this abstraction, we devise
a bipartite graph neural network (Bi-GNN). The core part of
Bi-GNN is an adaptive bipartite feature inference strategy that
can extract the time-varying characteristics of microservices.
Meanwhile, we also implement a policy network to select the
allocation choices that could maximize the gross normalized
product (GNP) with limited resources. Our experimental results
show that AlphaR can improve the mean response time by up
to 80% compared with the existing schemes. To sum up, we
make the following contributions:

1) We examine the characteristics of microservices through
extensive analysis and experiments. For synthesizing their
heterogeneous characteristics and interconnections, we
take bipartite graph (BG) as the new presentation of an
application implemented by microservices.

2) We construct AlphaR, a learning-powered resource
management system of microservices, which translates
the problem of resource management into a learning
problem. It takes BGs as inputs and automatically outputs
the optimal resource allocation policy.

3) We simulate AlphaR with realistic trace as input. We
define gross normalized product (GNP), a new metric
for evaluating overall performance with consideration of
request latency and throughput. We show that AlphaR
greatly outperforms the state-of-the-art schemes.

The remainder of the paper is organized as follows. Section
2 introduces the background and motivation. Section 3 analyzes
the characteristics of microservices. Section 4 describes the
design and implementation details of the AlphaR. Section 5
presents experimental methodologies. Section 6 demonstrates
the important experimental results. Section 7 discusses related
work. Finally, Section 8 concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Challenges of Microservices

In recent cloud-native design, microservice is the main way
to build large, complex applications with scenario-focused mini
services. As shown in Figure 1, unlike a monolithic application
that consists of several huge functions, microservices are
structured with massive bipartite service graphs [9], [30], [41],
[44]. In the service graphs, an API layer consists of multiple
API microservices which mainly act as the access portal.
A Service layer contains massive loosely-coupled function
services and their separate database microservices. These
function microservices are mainly responsible for completing
the requested service such as data analysis, etc. With the
unique two-tier topology, user queries always access many
mini services through the given API layer.

Service graphs of microservices often have irregular and
dynamic characteristics, which make the microservice resource
management a more complex issue. Specifically, the smaller
size of microservice significally scales up the service number
as well as exposes irregular characteristics in data centers.
Meanwhile, each microservice’s characteristics dynamically
vary with unpredictable changes of user behaviors. In this
case, even if each service graph might be small, the irregular,
dynamic characteristics of numerous microservices requires the
resource manager to be able to automatically make decisions
whenever the user load changes. Particularly at the cluster level,
there are hundreds and thousands of microservices, which leads
to a larger problem size both in the amount of information and
the number of choices for the resource manager.

B. Limitations of State of the Art

The existing approaches allocate resources by simply dis-
cerning resource or performance requirements of different
applications [7], [25], [36], [37]. They overlook the dependency
among these small services and their importance to the
performance of the entire application. Thus, they can hardly
make informed decisions when facing applications composed
of multiple microservices. Traditional heuristics-driven policies
provide application-specific solutions [11], [14], [28]. These
methods initially profile resource-performance relationship
of various applications. After that, they continuously tune
parameters and validate until a satisfactory model is obtained.
For microservices, the procedure of tuning might be endless
before convergence since the features of each mini service
change with the unpredictable variety of the environments.

Resource management in the microservice era must be
able to identify different microservices’ characteristics and
their effects on the whole performance in a highly dynamic
environment. Compared to the simple strategies or ad-hoc
heuristics, GNN approaches excel at computing the charac-
teristics of irregular and dynamic graphs. Therefore, they are
promising in benefiting the cloud-native system with intelligent
resource allocation, choosing the best suitable strategy based
on execution states [27]. At present, ML is pervasively used
to discover relevant features in many other fields. Similarly,
the features relative to scheduling could be very powerful and
critical in targeting the optimal scheduling. Generally, wherever
we use heuristics, we can leverage ML to improve the accuracy
and effectiveness of decision making in resource management.

III. ANALYSIS AND CHARACTERIZATION

In this section, we explore the heterogeneity and dynamicity
of microservices by analyzing the trace data of a production
data center (global view) and characterizing a running applica-
tion composed of over 40 microservices (local view).

A. Analysis with Realistic Cluster Data

We analyze microservice behavior with the cluster trace re-
leased by Alibaba group in 2018 [1]. Alibaba implements most
of their online services based on microservice architecture [4].
The trace is collected from a production data center with around

Trace characteristics Value
Time span of trace 8 days

Number of machines 4000
Amount of applications 600

Usage records 28 GB
Container meta data 2.4 MB

Table I: Raw data from the realistic data center [13].

4000 machines in a period of 8 days. The trace contains rich
information/metadata and Table I summarizes the key statistical
properties of the trace. We mainly use two data files, namely
container meta.csv and container usage.csv. These two files
respectively describe the meta information and resource usage
of all the containers hosting online applications of Alibaba.
The real names of the applications have been obfuscated for
confidentiality. Each application involves many containers and
each container almost executes a unique kind of microservice.

We observe that the number of microservices changes a lot
(dynamicity) in the production data center. We first count the
quantities of microservices constituting each individual online
application in the Alibaba data center in one day. The statistical
result shows that these applications contain several to tens of
hundreds microservices. As shown in Figure 2(a), over 90%
online applications contain about 25 microservices and about
5% applications even include over 100 microservices. We then
randomly choose an online service numbered as app 66 and
observe its component microservices during 24 hours. Our
result also demonstrates that the number of microservices in
app 66 varies a lot in the whole day.

We show that microservices belonging to the same service
graphs use distinct resources (irregularity) during execution.
We plot the resource utilization of each microservice in app 66
during a week as shown in Figure 3(a)-(c). The result shows
that each microservice’s utilization changes sharply. Many
microservices consume very little CPU (as shown in Figure
3(a)) for most of the times. This is because each microservice
is dedicated to a simple task without large computation. In

21 25 29

Num. of Microservices per App
0.0

0.5

1.0

CD
F

(a) Upsizing Number (b) Granular Demand
Figure 2: Microservice upscales service density and exposes

granular service demands in production data centers [13].

(a) CPU Utilization (b) Mem Utilization (c) Disk Bandwidth
Figure 3: The resource utilization of the microservices

changes a lot in the realistic cluster [13].

Node name Role Description
Server A Zipkin/UI Observation interface.
Server B User program Sending user requests.

Server C1,3 Host server Running microservice.

Cluster’s server configurations
Cluster 4 host servers + 1 interface server
Server Dell Edge Power R730 6-core, 2.4 GHz

Host OS Ubuntu trusty kernel running docker

Table II: Testbed configuration in our experiment.

Figure 3(b), almost all the microservices utilize much memory
during the 7 days because of its data-driven design. Figure
3(c) demonstrates that only a few microservices take up a lot
of disk bandwidth since most infrastructure microservices are
stateless without database [44].

B. Testing Configurations and Tools

We characterize the irregularity and dynamicity of microser-
vices through experimental analysis. We build up a cluster
environment which contains 2 server nodes with docker swarm.
As shown in Table II, the interface node provides web interfaces
for gathering timing data of each microservice related to
user’s requests. We deploy all the microservices in the cluster
for debugging specified microservice properties and ensuring
functionality integrity of the application. The interface node is
a six-core system with a peak frequency of 2.4GHz. Docker
swarm leverages a fair docker scheduling algorithm (round-
robin) to deploy all the related microservice dockers among
the two server nodes. Besides, we run a user program on the
client node to continuously access the running service.

We experiment with TrainTicket [31], a railway ticketing
application implemented by microservices. The number of
microservices in TrainTicket is more than any other existing
benchmarks [31]. In the following experiment, we mainly
consider two services each serving a kind of request in
TrainTicket, i.e., Advanced Ticketing service and Basic Search
service. We deploy TrainTicket in the cluster. We bound the user
interface microservice with the 80 port on the interface node.
The system fairly schedules the remaining microservices on
the two servers. We deploy these microservices with containers
and each container only executes a single microservice. By
collecting the request-tracing data with Zipkin [3], we can
obtain the request response time and the microservice execution
time. We repeat our experiment for 1000 times and report
the average results. We study the CPU, memory and disk
resources in total. Table IV describes the tools for monitoring
and controlling these resources. We write Python programs to
adjust the ratio of requests accessing the services.

C. Characterizing Active Microservices

To exploit the irregularity and dynamicity of service graph
in the real world, we monitor the resource consumption of each
microservie. We analyze the relationship between microservice
performance (response time) and its allocated resources.

We first evaluate how microservice workload varies with the
incoming request types and quantities. We consider three differ-
ent load scenarios, i.e., the ratio of requests accessing Advanced

A:B \ config basic order route price station travel

0
:

100

CPU (%) 25.97 183.13 10.11 61.47 129.74 131.86 163.23
Mem. (%) 2.6 5.058 3.59 4.41 5.23 5.44 5.968
Net. (KB) 4.68 11.14 0.93 8.47 8.43 9.65 9.87
Disk (MB) 11.86 10.43 13.86 5.19 3.94 10.43 5.45
Delay (ms) 1.52 8.38 1.498 1.458 29.33 13.4 25.46

50
:

50

CPU (%) 25.07 205.92 4.41 60.18 113.98 131.28 258.06
Mem. (%) 2.602 5.06 3.59 4.414 5.23 5.44 5.98
Net. (KB) 4.69 11.18 0.94 8.49 8.45 9.68 9.92
Disk (MB) 10.75 10.39 15.42 4.37 6.1 15.56 5.73
Delay (ms) 1.46 10.206 0.13 1.39 64.24 12.64 114.81

100
:
0

CPU (%) 19.37 180.3 0.11 47.87 88.37 109.62 284.9
Mem. (%) 2.6 5.06 3.59 4.42 5.23 5.43 6
Net. (KB) 4.7 11.18 0.94 8.51 8.46 9.69 9.93
Disk (MB) 10.67 10.98 20.33 6.51 9.73 8.39 7.45
Delay (ms) 1.38 9.44 0.84 1.41 50.14 13.17 117.61

Table III: The effect of users’ behaviors on granular demands.

Ticketing and Basic Search service is 0:100, 50:50 and 100:0,
respectively. Table III illustrates the resource utilization of
microservices in these scenarios. We can see that the resource
utilization of a microservice changes with the request states.
For example, when the ratio of requests accessing Advanced
Ticketing and Basic Search service transfers from 0:100 to
50:50, travel becomes the most CPU-intensive microservice.
With an increase in the number of requests accessing Advanced
Ticketing service, station replaces order as the most write-
intensive microservice. In this experiment, the input network
of all the microservices is almost unchanged since the total
number of requests is the same. The variation of memory usage
is also closely related to user input.

To further explore the relationship between allocated resource
and performance, we characterize the variation of microser-
vice’s execution time under different resource allocation
conditions. Specifically, we respectively limit the CPU, disk and
memory usage of each component microservice in the Advanced
Search service at 60%, 80%, 100% and 110% normalized to
its original demand. For measuring the performance effect,
we compute the mean response time (namely delay) of 1000
requests in each experimental setting.

Figure 4 shows the results. It is obvious that each microser-
vice in the Advanced Ticketing service is differently sensitive
to the variation of the allocated resource. In Figure 4(a), travel
is the slowest component microservice in Advanced Ticketing
service when the allocated CPU of all the microservices is
100%. However, when the allocated CPU reduces to 60%, seat
becomes the slowest ones. Namely, the performance of the
entire application depends on different microservices once the
allocated resource changes. Figure 4(b) and Figure 4(c) indicate
that reducing the disk and memory of most microservices
(like config, route) makes no difference on the performance of
the entire application. This is because the execution time of
these microservices at 60% allocation is still far less than the
execution time of some microservices like seat and travel at
100% allocation. Notably, boosting doesn’t always work such
as the execution time of seat increases when being allocated
10% more disk resource as shown in Figure 4(b). In Figure
4(c), although travel is not sensitive to memory resource, it
would fail if the allocated memory is less than 60%.

Summary: The microservice architecture leads to increasing

(a) CPU Utilization

(b) Disk Bandwidth

(c) Memory Utilization
Figure 4: The relationships between the allocated resources of

different microservices and overall performance.

irregularity and dynamicity in data centers. Resource manage-
ment of microservices should be able to learn their features to
make informed decision. Considering the large problem size and
complexity of resource management in the microservice era, it
is promising to leverage learning methods to manage resources.
Compared to conventional methods, learning-based approaches
can make proactive decisions, which is more tailored to the
characteristics of microservices.

IV. THE DESIGN OF ALPHAR

A. Overview

We propose AlphaR, a learning-powered resource manage-
ment scheme. The nature behind AlphaR is to construct an
agent with continuous environment states and rewards. The
trained agent can automatically achieve microservice-specific
resource management. As shown in Figure 5, it mainly contains
three components.

1) Interface Layer: The interface layer module is responsible
for interacting with the cloud environment as well as
expressing the states and the rewards. It monitors the
execution states of microservices, collects the resource
information and executes the allocation decisions.

2) Analysis Layer: The analysis layer leverages a bipartite
graph neural network (Bi-GNN) to infer microservice
characteristics. It represents each application as a bi-
partite graph (BG) which expresses the irregularity and
dynamicity of microservices with graphs.

3) Execution Layer: The execution layer ultimately produces
the optimal resource managing strategies based on the
inferred features. It implements a policy network to select

Figure 5: Overview of AlphaR.

allocation choices for maximizing the gross normalized
product (GNP) with limited resources.

B. Interface Layer

We can extract performance information from the collected
trace. The interface layer uses hierarchical message passing
technique to interact with the agent. It contains a local data-
collecting toolkit on each container running microservices and a
global massage-passing network distributed across applications.
The local data-collecting toolkit encapsulates several existing
interfaces and tools to obtain the execution states of the
containers. Table IV lists the related interfaces for monitoring
and controlling resources like CPU cores, memory and disk.
Our local data-collecting toolkit also relies on the lightweight
distributed tracing systems such as Jaeger [2] and Zipkin [3]
to obtain the end-to-end request time of each container. The
global message-passing network consists of massive agents.
As shown in Figure 6, the information collected with our
local data-collecting toolkit is fed into the Bi-GNN to generate
inferred features. Each Bi-GNN has an agent to report per-
microservice features and per-application features to the upper
controllers. Ultimately, these features are passed to the resource
management module.

The interface layer is also responsible for executing the
allocation decisions. As containers offer virtually isolated
environments with namespace, microservices can execute
independently wherever there are enough resources without
worrying about compatibility [20]. Thus, the problem of
executing resource allocation transfers into tuning the available
resource for each container on local servers. Our interface layer
implements multiple sub-controllers to adjust the resources of
each containers through mature tuning knobs and configuration
files. For example, it can directly use RAPL to limit the
frequency of cores running specific microservices. It can restrict
per-container usage of CPU, memory, disk by throttling the
processes and threads that run the containers. For example, it

Resource type Monitor Control Metric
Cores dockerstats cgroups cpuset Utilization

Memory dockerstats turbostate Utilization
Disk dockerstats cgroups blkio Write BPS

Table IV: Resource management tools.

can limit the container’s I/O write bytes by writing the expected
value to blkio.throttle.write bps device.

C. Analysis Layer
AlphaR uses a bipartite feature inference approach to learn

the characteristics of different microservices As shown in
Figure 6. It presents the applications as numerous bipartite
graphs. A bipartite graph (BG) can effectively synthesize the
basic characteristics such as uneven resource demands and
interactions of the component microservices of an application.
We compute the inferred features with the graph neural network
(GNN) method [22]. Unlike traditional GNN focusing on
homogeneous graphs with simple features, AlphaR employs a
bipartite GNN (Bi-GNN) with a bidirectional message passing
mechanism. Bi-GNN can reduce the huge action space incurred
by the heterogeneity and dynamicity of microservices.

Specifically, we denote the BG as g = (VA,VF,E) where
VA and VF are two disjoint sets of vertices and E is the
set of directed edges from vertex in VA to vertex in VF.
Each vertex in VA and VF respectively represents an API
and a function service. The edges in E actually represents the
dependencies of API microservices and function microservices,
for example eij ∈ E represents that the API microservice
i ∈ VA invokes the function microservice j ∈ VF. In the
graph g, the basic feature of each microservice is their resource
requirements. We assume n types of resources in the system.
Each microservice requires different resources and we use
a n-dimensional vector ~h ∈ Rn to represent the resource
requirements of a microservice. Thus, H = 〈 ~h1, ..., ~hp〉
represents the set of feature vectors of all the API microservices
and function microservices, where p is the total number of API
microservices and function microservices. Thus, the ultimate
goal is to extract a set of inferred features, presented with
H′ = 〈~h′1, ..., ~h′q〉 where ~h′ is a n-dimensional vector similar
to ~h. Vector ~h′ specifie how many resources the microservice
should be allocated.

Considering that not all microservices are equally important
to the performance of the entire application, we propose a
bipartite attention mechanism to iteratively update the inferred
features. The bipartite attention reflects the uneven effects
on each other between the API and function microservices.
Specifically, the bipartite attention mechanism implements
a forward attention and a backward attention. The forward
attention updates the features of API microservices with the
features of their related function microservices. The backward
attention calculates the feature of function microservices
based on its API microservices. In the bipartite graph g,
we consider an API microservice i and denote its related
function microservices by Ai. Similarly, we also consider
a function microservice j and denote the set of the API
microservice invoking it by Fj . We present the forward
attention of microservice i as αij , where j ∈ Ai. Then we
leverage a neural network similar to work [26] with parameter
a to calculate αij as,

αij =
exp

(
LeakyReLU

(
~aT [Mαhi‖Mαhj]

))∑
k∈Ai

exp (LeakyReLU(~aT [Mαhi‖Mαhk]))
(1)

Figure 6: The architecture of the AlphaR. It aims at constructing an agent with continuous environment states and rewards.

where Mα is a weight matrix, || is the concatenation operation
and ·T is the transposition operation. The backward attention
βji of function microservice j can be updated in the similar
way with its invoked API microservice i ∈ Fj .

This message passing phase can aggregate the attributes of
the vertexes (both API and function microservices) and the
edges. To exclude uncertainties in practice, we compute the mi-
croservice characteristics related to resource management with
K loops in a message passing phase. Thus, the characteristic
of the API microservice i is formulated as,

~h′i = ‖Kk=1σ

∑
j∈Ai

αkijM
k
q [hj ||eij]

 (2)

where Mw is the weight matrix of the transformation, and σ
is the nonlinear transform function. The backward message ~h′j
passed by function microservice is similarly computed.

D. Execution Layer

Even if we can obtain the temporal characteristics in the
dynamic environment, it is still challenging to make scheduling
decisions. First, assigning m types of resource to different
microservices leads to an exponential action space such as at
least 2mn for n microservices. When considering the scheduling
problem at the entire system level, n can be a quite huge
number, which could make the learning process very time-
consuming. Second, due to the variation of the quantities of
microservices caused by service replacement, the scheduling
systems could make fast decision when the input changes. To
simplify the learning process, we decompose the decision-
making process into two connected learning problems: 1)
centralized budgeting on overall applications and 2) distributed
allocation on local microservices. The centralized budgeting
plans the resource capapcity for different applications according
to the graph features. The distributed allocation implements
massive local agents, each of which decides the resource among
the microservices in an application.

As shown in Figure 6, the execution layer is composed
of a two-level policy network. Each policy network contains
three main functions: getFeature(), allocate() and learn(). The
getFeature() function maps the application (node) features or

microservice (graph) features to a scalar value for comput-
ing the probability of allocating resources to the graphs or
microservices. The allocate() function takes the scalar values
computed by getFeature() as inputs. It deploys a basic L layer
perceptron (as follow) to make allocation decisions,

Y = Softmax
(
ML · · ·ReLU

(
M1

~Hq + b1

)
+ bL

)
(3)

After each allocation process, the learn() function receives a
reward from the environment and optimizes the policy network
with the stochastic gradient descent algorithm.

E. Implementation Details

We first denote the reward as rt in each time slot t
for training AlphaR in discrete timesteps. We begin with
defining a metric named gross normalized product (GNP),
which is deduced from an assessment metric of system quality
in prior work [38]. Specifically, GNP is a measure of the
degree to which the running performance accomplishes the
requirement of service-level objectives (SLO). It equals to
the ratio of the average performance AP , namely the mean
response time of applications to the required performance
RP . Generally, the required performance can be either the
maximum response time by running some benchmarks [41]
or the standard value given by a reputed organization [39].
Formally, the normalized product NPi of application i is given
by NPi = RPi/APi = RPi/AV G(req ti). Thus, GNP is the
sum of the normalized products in the system. Based on GNP,
The reward should reflect the influence of resource management
on the overall system performance. If NPi ≥ 1, the agent gets
more reward, otherwise it gets less reward. Therefore, the
reward rt is computed with,

rt = a

Nc∑
0

NPi + b

Nt−Nc∑
0

NPi (4)

where a and b respectively reflect the weight of the normalized
products of Nc applications whose NP ≥ 1 and Nt − Nc
applications whose NP<1 to the overall reward.

The training process is to construct the optimal agent
with continuous environment states and rewards. To minimize

Figure 7: The simulator of AlphaR.

Category Scheme Descriptions

Simple
scheduler

FairSched Give each microservice equal resources.
CurSched Allocate resources based on current load.
FullSched Allocate resources based on accumulated load.

Heuristic
profile

PartProfile Allocate resources based on performance profile.
FullProfile Allocate resources based on service-level objec-

tives.

RL-driven
scheme

Alpha RL-based policy with graph neural network (GNN).
AlphaP RL-based policy with graph attention network.
AlphaA RL-based policy with bipartite GNN.
AlphaR Our proposal.

Table V: The evaluated power management schemes.

the online training cost, we train the models offline and
conditionally adjust them online according to the feedback. In
each training iteration of time slot t, the agent observes the
state (i.e. resource demand) st to build BGs, and chooses an
action (i,e, allocation strategy) at, from the action space (all
possible allocation strategies) A. Following the action at, the
environment transits to state st+1 and sends a reward rt to the
agent. Then the agent optimizes its parameters according to
the reward rt. Considering T training slots in total, the goal
is to maximize the total future reward RT . To this end, we
define the Q-function Q(st, at) which represents the quality of
a certain action at in a given state st. Then, for a agent with
policy πθ(a|s), the loss function can be represent as,

L = −
T∑
i=0

∑
aj∈A

πθ(aj |si)Q(si, aj) (5)

where si is sampled with πθ. We stop training until the training
loss stops falling in given iterations, namely, the value of the
loss function stabilizes at a small value as the models converge.

V. EXPERIMENT METHODOLOGIES

We build an evaluation platform of AlphaR as shown in
Figure 7. We simulate a large-scale, cloud-native system with
the trace data of a realistic data center [13] as depicted in
Table I. Since the original trace data hides some information
like the application types, we further include two types of
microservice applications, namely an industrial application
named Trainticket [31] and an academic benchmark named
DeathStarBench [35]. In other words, we assume that each
container in the raw trace data executes a component mi-
croservice of these two applications. We run the simulator on
servers with the configurations as depicted in Table II. We
consider 6 dynamic and emergent user patterns as shown in

Figure 8: Peak user load patterns in the realistic cluster [13].

Figure 8. These are derived from the realistic one. Particularly,
we define gross normalized product (GNP), a new metric for
evaluating overall performance with consideration of request
latency and throughput. As depicted in Section 5.5, GNP is
the total normalized product of all the applications.

We compare AlphaR with several representative resource
management schemes as summarized in Table V. Simple
scheduler represents a group of methods, which allocate
resources to different services to ensure that they are executed
as required without any consideration of their performance
features. FairSched represents the fair scheduling approaches
which give each container equal resources [7], [25]. CurSched
allocates resources to each container in accordance with its
current load state, such as its task queue length, and FullSched
manages per-container resources based on its historical and
current load. Heuristic profile refers to a series of techniques
that manage resources based on the performance model of
individual services [29]. PartProfile allocates resources to
various microservices simply depending on the relationship be-
tween its performance and allocated resources [29]. FullProfile
represents the state-of-the-art workload-specific strategies that
manage resources based on the QoS requirements of the whole
application like Paragon [11]. We also establish some resource
management schemes based on RL . Among these, AlphaR
is our proposal. Alpha uses GNN to generate features relative
to resource management. AlphaP deploys a graph attention
network. AlphaA only leverages the bipartite feature inference
to learn the characteristics of microservices.

VI. EXPERIMENT RESULTS

A. Configurations for AlphaR

We first train AlphaR for generating the optimal decision-
making model according to the implementation details as
depicted in Section 4.5. Figure 9 shows the training process
of AlphaR. As shown in Figure 9(a), During the initial
training iterations, AlphaR cannot efficiently allocate resources,
completing only a small number of requests within the required

Figure 9: Training iterations of AlphaR.

(a) Bi-GNN

(b) Policy Network
Figure 10: Accumulated reward with different dimension (D)

and layer (L) configurations.

response time (although there are about 4000 arriving requests).
In this scenario, some requests have response time of even
over 100 milliseconds as shown in Figure 9(b). However, after
multiple training iterations, AlphaR can optimize itself and
achieve high reward and low latency. In our simulation, it
eventually converges at around the 8000th iteration.

We further examine how the dimension and layer of the
proposed Bi-GNN and policy network affect the effectiveness
of AlphaR. We train multiple models of AlphaR by building
several Bi-GNNs and policy networks with different dimension
and layer configurations. The green lines/bars highlight the
optimal parameter value. Figure 10 shows the reward under
different configurations. In Figure 12 and Figure 11, we also
compare the GNP of the system and the response time of
requests under different parameter configurations. The results
show that the optimal layer of Bi-GNN and policy network is
respectively 1 and 3, and their optimal dimension is 32.

B. Effectiveness of AlphaR

Embracing the scale-out users. It is highly desirable if
AlphaR could empower the cloud-native data centers to support
more scale-out user demands. In Figure 13(a), we present
the mean response time as well as the tail latency of users’
requests under different RL-driven schemes. It shows that
AlphaR can still respond to the clients’ requests within 1 ms
even when the user load increases to 2X. Our result shows that
AlphaA exhibits 34% less mean delay than Alpha implemented
with conventional RL algorithms since it can learn more
features of microservices by incorporating the bipartite feature
inference. Similarly, the mean delay of AlphaP is 13% better
than Alpha since it incorporates attention network. Particularly,
AlphaR gives 76% mean delay and 87% 95th percentile latency
better than Alpha. Figure 13(b) demonstrates that AlphaR can
complete more requests within the required time than the other
three RL-driven methods. Therefore, AlphaR maximizes the
GNP in the cloud-native systems as shown in Figure 13(c).

Adapting to the dynamic environment. One important
advantage of AlphaR is its ability to handle the dynamicity.
To verify this, we show the detailed running GNP from two
sides. The first one is to examine how AlphaR reacts to the
increasing peak loads. Figure 14(a) shows the GNP of AlphaR

(a) Bi-GNN

(b) Policy Network
Figure 11: Mean response time and tail latency with different

dimension (D) and layer (L) configurations.

(a) Bi-GNN

(b) Policy Network
Figure 12: Gross normalized products (GNP) with different

dimension (D) and layer (L) configurations.

at different peak loads arriving at the 200th second. It is evident
that AlphaR can adaptively manage resources according to the
load variation. We also evaluate the GNP of different RL-driven
schemes with the same peak load. In Figure 14(b), the peak load
comes at the 100th second and lasts 200 seconds. The figure
shows that AlphaR is the only one that can immediately react
to load peaks and quickly return to the normal state. As a result,
the GNP of AlphaR outperfroms the other three methods since
it always makes smart allocation decisions through bipartite
feature inference.

C. Comparison with Existing Schemes

Performance and scalablity. We compare AlphaR to exist-
ing schemes in terms of the overall performance. As shown in
Figure 15, we observe that both mean response time and tail
latency for different resource management schemes increase as
the user load grows. The response time under AlphaR is much
lower than other techniques such as PartProfile and FullProfile.
Although the mean delay of CurSched and FullSched is also
very small at low user load, it grows quickly with the increase
of user load. We also compare the GNP of different methods
under the six user patterns as depicted in Figure 8. As shown
in Figure 16, AlphaR guarantees higher GNP than any others.
The reason behind this is that AlphaR always tries to find the
optimal allocation for maximizing the efficiency of resources.
It well adapts to the unpredictable user behaviors.

(a) Mean Response Time

(b) Fulfilled Request Number (c) Gross Normalized Products

Figure 13: AlphaR empowers cloud-native systems to support
more scale-out user demand than existing RLs.

Figure 14: AlphaR can adapt to online load changes: (a)
AlphaR’s reaction to different peak loads; (b) The reaction of

different RL-driven schemes to the same peak load.

Analysis of resource utilization. In this part, we further
evaluate the resource utilization of various microservices under
different power management schemes. In Figure 17, figures in
the leftmost column respectively present the CPU utilization
under FairSched, the disk bandwidth under CurSched and
memory usage under FullSched from top to bottom. We only
present the results for these three results to avoid redundancy
since the distribution of resource utilization under these three
schemes are the same. This is because they manage resources
simply based on the resource demand whilst overlook per-
microservice utilization-performance relationship. The last two
columns respectively demonstrate the results of FullProfile
and AlphaR from left to right. FullProfile tends to manage
different resources in a similar way such as it always allocates
CPU, memory and disk to top-tier microservices. Compared to
FullProfile, AlphaR can always allocate various resources to
the most important microservices. Therefore, it can guarantee
the best GNP of the systems as shown in Figure 16.

VII. RELATED WORK

Resource management in data centers: Resource manage-
ment in large-scale systems has been studied for a long time.
General-purpose cluster resource management systems [7],
[10], [28], [36] assign resources to different incoming jobs
to ensure that they are executed as required. They mainly
deploy generalized scheduling policy like fair scheduling [7],
[25], [36], [37] and packing strategies [14], [28], which
would cause low-efficiency hardware resource utilization [13],

Figure 15: The impact of different resource management
schemes on response time with increasing user load.

Figure 16: The system’s GNP for different resource
management schemes under various user patterns.

[32] and poor application performance [21], [23]. Workload-
specific schedulers [11], [14], [28] perform better through
considering the individual performance characteristic. They
assign resources based on pre-defined profiling or plausible
heuristics at the initial time, and then tune to reach the
expected performance level. These optimizations often deploy
some simple, heuristic techniques like feedback control [14],
collaborative filtering [11] to collocate several applications.

Cloud-native design and microservice: Many cloud-native
design has been proposed [16], [17], [40], [43]. Most prior
works emphasize verifying and enhancing the robustness of
this software architecture itself [9], [12], [16], [35], [35]. Some
proposals focus on optimizing the execution of microservice-
based applications. For example, Yu et al. intends to mitigate
the performance unpredictability of microservice [33], [34].
Few work consider the resource management for microser-
vices. Chou et al. [14] propose µDPM to manage the power
resource of microservices through adapting the energy-saving

Figure 17: The utilization of CPU, disk and memory by each
microservice under different resource management schemes.

mechanisms to prolonging their execution.
Machine learning and resource management: In recent

years, ML techniques are widely used to solve complex
problems in many fields. Nevertheless, there is little prior work
on applying ML techniques to cluster resource management.
DeepRM [18] uses RL to train a neural network for multi-
dimensional resource packing. However, DeepRM only deals
with a basic setting in which each job is a single task.
Mirhoseini et al. [8] also uses RL, but relies on recurrent
neural networks to scan through all nodes for state embedding,
rather than a graph neural network. The objective here is to
schedule a single TF job well, and the model cannot generalize
to unseen job combinations. Decima proposed by Mao et
al. [19] is closely related to our work. It uses RL and
GNN to learn scheduling algorithms for short-lived job DAGs.
However, Decima, that adopts graph embedding cannot handle
the dynamicity of the long-running microservices.

VIII. CONCLUSION

In this paper, we explore the complexity of resource
management brought by the irregular, dynamic and small
service in microservice era. To enable efficient resource sharing,
we propose AlphaR, a learning-powered resource management
policy based on the emerging intelligent techniques. Although
the system of AlphaR is not highly interpretable, we have
validated that AlphaR can boost the throughput and ensure
better latency of the cloud system compared to the conventional
resource management approaches. The key novelty of AlphaR
such as its graph-based feature inference technique may be
applicable to other graph-structured applications. In future
work, we will incorporate hardware techniques to improve the
stability of our method and further reduce the training cost.

ACKNOWLEDGMENT

We thank all the reviewers and for their valuable comments
and suggestions. We also thank our anonymous shepherd
for helping improve the paper. This work is supported by
the National Key R&D Program of China under Grant
2019YFF0302600. It is also sponsored by the National Natural
Science Foundation of China (No. 61972247). Corresponding
author is Chao Li from Shanghai Jiao Tong University.

REFERENCES

[1] “Alibaba cluster data,” https://github.com/alibaba/clusterdata, 2019.
[2] “Jaeger,” https://www.jaegertracing.io/, 2019.
[3] “Zipkin,” https://zipkin.io/, 2019.
[4] Baeldung, “Introduction to dubbo,” https://www.baeldung.com/dubbo,

2018.
[5] A. Buck, “Microservices architecture style,”

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-
styles/microservices, 2019.

[6] A. Clouder, “Capacity planning for alibaba’s double 11 shopping festival
- alibaba cloud community,” https://www.alibabacloud.com/blog/594164.

[7] A. G. et al., “Dominant resource fairness: Fair allocation of multiple
resource types,” in NSDI, 2011.

[8] A. M. et al., “Device placement optimization with reinforcement learning,”
in ICML, 2017.

[9] A. S. et al., “µsuite: A benchmark suite for microservices,” in IISWC,
2018.

[10] A. V. et al., “Large-scale cluster management at google with borg,” in
Eurosys, 2015.

[11] C. D. et al., “Paragon: Qos-aware scheduling for heterogeneous datacen-
ters,” in ASPLOS, 2013.

[12] C. L. et al., “Power attack defense: Securing battery-backed data centers,”
in ISCA, 2016.

[13] C. L. et al., “Imbalance in the cloud: An analysis on alibaba cluster
trace,” in Big Data, 2017.

[14] C. C. et al., “µdpm: Dynamic power management for the microsecond
era,” in HPCA, 2019.

[15] C. H. et al., “Adrenaline: Pinpointing and reining in tail queries with
quick voltage boosting,” in HPCA, 2015.

[16] D. E. et al., “Towards the understanding and evolution of monolithic
applications as microservices,” in CLEI, 2016.

[17] G. K. et al., “Service fabric: a distributed platform for building
microservices in the cloud,” in Eurosys, 2018.

[18] H. M. et al., “Resource management with deep reinforcement learning,”
in HotNets, 2016.

[19] H. M. et al., “Learning scheduling algorithms for data processing clusters,”
SIGCOMM, 2019.

[20] I. A. et al., “Sand: Towards high-performance serverless computing,” in
Usenix ATC, 2018.

[21] J. D. et al., “The tail at scale,” in ACM Communication, 2013.
[22] J. Z. et al., “Graph neural networks: A review of methods and

applications,” in ArXiv, 2018.
[23] L. B. et al., “The datacenter as a computer: An introduction to the design

of warehouse-scale machines, second edition,” in SLCA, 2013.
[24] L. B. et al., “The datacenter as a computer: Designing warehouse-scale

machines, third edition,” in SLCA, 2018.
[25] M. I. et al., “Quincy: fair scheduling for distributed computing clusters,”

in SOSP, 2009.
[26] P. V. et al., “Graph attention networks,” in ICLR, 2018.
[27] R. B. et al., “Toward ml-centric cloud platforms,” Communications of

the ACM, 2020.
[28] R. G. et al., “Multi-resource packing for cluster schedulers,” in SIG-

COMM, 2014.
[29] X. H. et al., “Power grab in aggressively provisioned data centers: What

is the risk and what can be done about it,” in ICCD, 2018.
[30] X. H. et al., “Unleashing the scalability potential of power-constrained

data center in the microservice era,” in ICPP, 2019.
[31] X. Z. et al., “Poster: Benchmarking microservice systems for software

engineering research,” in ICSE-Companion, 2018.
[32] Y. C. et al., “Characterizing co-located datacenter workloads: An alibaba

case study,” in ArXiv, 2018.
[33] Y. G. et al., “The architectural implications of cloud microservices,” in

CAL, 2018.
[34] Y. G. et al., “Seer: leveraging big data to navigate the complexity of

cloud debugging,” in HotCloud, 2018.
[35] Y. G. et al., “An open-source benchmark suite for microservices and their

hardware-software implications for cloud & edge systems,” in ASPLOS,
2019.

[36] A. Hadoop, “Hadoop fair scheduler,”
https://hadoop.apache.org/common/docs/stable1/fair scheduler.html,
2014.

[37] P. Helland, “Cosmos: big data and big
challenges,” http://research.microsoft.com/en-
us/events/fs2011/helland cosmos big data and big challenges.pdf,
2011.

[38] B. Moffat, “Normalized performance ratio - a measure of the degree to
which a man-machine interface accomplishes its operational objective,”
International Journal of Man-Machine Studies, 1990.

[39] J. Nielsen, “Usability engineering,” 1993.
[40] I. C. R. of Eventuate, “Introduction to microservices,”

https://www.nginx.com/blog/introduction-to-microservices/, 2015.
[41] M. Richards, “Microservice vs service-oriented architecture,” in O’Reilly

Media, 2015.
[42] A. W. Services, “Microservices on aws,”

https://docs.aws.amazon.com/aws-technical-content/latest/microservices-
on-aws/microservices-on-aws.pdf, 2019.

[43] R. Vettor and S. Smith, “Architecting cloud native .net applications for
azure,” https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/.

[44] T. Wenisch, “µtune: Auto-tuned threading for oldi microservices,” in
OSDI, 2018.

[45] M. Wu, “Taking the cloud-native approach with microservices,”
https://cloud.google.com/files/Cloud-native-approach-with-
microservices.pdf, 2017.

