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Abstract—Autonomous Things (AuT) refers to a collection
of self-sufficient tiny devices capable of performing intelligent
computations. Looking ahead, AuT promises to enable ubiquitous
deployment of intelligence on many emerging consumer electronics
and mission-critical infrastructures. Nevertheless, there is an
important research gap to date: architecting efficient AuT
systems requires both energy autonomy (EA) and inference
autonomy (IA). In other words, practical AuT application scenarios
necessitate tailored architectures with significantly expanded
inference performance and more efficient use of energy.

We present CHRYSALIS, a novel automated EA/IA co-design
methodology for autonomous things. It aims to guide the transition
from a traditional EA-only and IA-only design approach to
a truly AuT-oriented architecture design. To fully understand
the interrelationship between the EA domain and the IA
domain, CHRYSALIS first introduces an architectural modeling
framework encompassing every key AuT module involving energy
harvesting, intermittent execution, and accelerator control. Based
on the holistic system model, we design an intelligent architecture
generation tool that can help find the ideal design for targeted AuT
scenarios adhering to different SWaP (Size, Weight and Power)
constraints. To validate our work, we use CHRYSALIS for fast
construction and exploration of efficient AuT design and pre-RTL
design in representative AuT scenarios. Extensive evaluation shows
that CHRYSALIS outperforms state-of-the-art designs and our
proposed technique shows 56.4% better performance on average.
We believe that the methodology and tools developed in this paper
will foster the development of more performant and practical
architectures in the upcoming AuT era.

Index Terms—Edge Artificial Intelligence, Autonomous Embed-
ded Systems, Intermittent Computing, Accelerator, Deep Learning

I. INTRODUCTION

Autonomous things (AuT), or Internet of Autonomous
Things (IoAT), is emerging as a catalyst for a transformative
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edge computing paradigm [16], [22], [61], [63]. Some types
of AuT, including wearable devices and specialized sensors,
could empower users with intelligent computing services in
a highly sustainable and efficient manner in the wild [23],
[72]. In certain circumstances, such as data analytics during a
worldwide pandemic or continuous volcano hazards monitoring,
AuT would perform tasks much more economically and safely
than human labor [6], [51]. Today, many countries on our planet
are actively accelerating their development and deployment
of various autonomous devices for smart control of traffic,
street lights, transportation of goods and waste disposal [16].
Looking ahead, spaceflight and deep space exploration require
more powerful space-based IoAT for computation autonomy.

A true AuT system must achieve two unique goals: energy
autonomy (EA) and inference autonomy (IA). The former means
battery-free and self-powered, allowing the system to get rid
of bulky energy storage devices; and the latter refers to the
ability to perform in-situ AI computation, thus eliminating the
dependency on additional remote computing engine. Ideally,
AuT systems can diligently accumulate energy capacity from
ambient energy resources to support scenario-aware edge AI
applications. Due to power variability, the actual AuT systems
have to frequently resort to intermittent AI computation, the
performance and efficiency of which heavily rely on both
energy capacity and inference capability.

Currently, early-stage autonomous systems still suffer from
poor performance and low efficiency. They rely on traditional
energy-harvesting based IoT devices (EH-IoT) which are gov-
erned by microcontroller units (MCUs) such as MSP430x [9],
[30], [31], [50]. These devices have severely constrained com-
putational capabilities rendering them inadequate for running
computationally intensive AI inference tasks [24]. Oftentimes,



EH-IoT devices choose to offload large amounts of data to
external servers. It results in increased power consumption and
operational expenditure due to region-wide communication.

Meanwhile, although extensive work has been done on
edge AI accelerators and micro datacenters in recent years
[8], [15], [38], their superior computational capabilities are
limited to stable power environments [8], [38]. In scenarios
with depleted energy capacity, they frequently encounter power
exceptions, leading to reduced efficiency or unavailability [49].
Equipping existing high-performance edge AI accelerators
with a large energy subsystem, such as oversized solar panels
and capacitors, would enhance the inference speed of DNNs.
Doing so unavoidably introduces longer charging latency and
increased energy leakage [50], [59], ultimately reducing the
efficiency and practicality of AuTs. On the other hand, simply
reducing the size of accelerators to match the capacity of
ambient energy is an alternative approach. However, it sacrifices
inference accuracy, computing performance, and data reuse
opportunities [9], [31]. Additionally, it may introduce more
overhead in saving the inference checkpoints.

In this paper, we argue that the co-design of energy autonomy
and inference autonomy is non-trivial, and there is an important
research gap at the architecture level. It is imperative to
develop a comprehensive methodology that accurately describes
the interrelationship between the energy subsystem and the
inference subsystem as well as their implications on the
performance and efficiency of intermittent inference.

Specifically, the architecture design for an AuT system
encompasses numerous hardware and software modules of
both the energy subsystem and inference subsystem, with each
module offering a large number of configurations. Iterating over
the configurations of these components yields an explosion
of possible combinations, ranging from tens of thousands to
billions. Furthermore, many AuT systems are part of mission-
critical infrastructures in land, sea, air, and space. Each of
the AuT faces rigorous and specific Space, Weight, and
Power (SWaP) constraints that span the entire computing
stack [48]. These constraints further complicate the design
process. Previous EH-IoT research has dedicated effort to
designing the parameters of various DNN inference components
to suit specific tasks [2], [9], [33], [50], [59]. However,
conventional design space exploration methods [37], [42],
[53], [70] fall short of meeting the general requirements
of AuT design. They neither consider intermittent inference
scenarios nor account for the exponential growth of architecture
candidates resulting from the co-design of energy autonomy.

We introduce CHRYSALIS, a set of new techniques designed
to generate the ideal AuT architectures that meet specific
SWaP constraints. We first propose a comprehensive modeling
approach that captures the interrelationship between the energy
subsystems and the inference subsystems. Our AuT-oriented
approach evaluates different modules for both energy autonomy
and inference autonomy, assessing their impact on energy
consumption and computing performance during intermit-
tent inference. Leveraging this model, we further develop
an automated AuT architecture generation framework that

Figure 1: An ideal AuT harnesses the synergy of EH-IoT and
Edge AI to enable full autonomy in both computing capability

and power supply.
incorporates various hardware and software components, along
with configurable parameters within the energy subsystem and
inference subsystems. Our framework employs a bi-level search
strategy to efficiently explore alternative architectures and
identify the most suitable solution for scenario customization.
The significance of CHRYSALIS lies in its ability to speedup
the transition from traditional EA-oriented and IA-oriented
design to a new class of AuT-oriented holistic design. Moreover,
it serves as a valuable tool for exploring and guiding the design
of more powerful AuT devices suitable for versatile edge
applications. Overall, we make the following contributions:

1) We analyze the characteristics of AuT and identify the
limitations of existing architectures. We propose a novel
methodology for the comprehensive modeling of AuT
systems. It can effectively capture the dependencies
among different AuT subsystems and assess the impact
of various combinations on AuT intermittent inference.

2) We develop an automated AuT architecture generation
tool that enables the evaluation of AuT system perfor-
mance under different architecture alternatives. This tool
efficiently generates ideal architectural solutions tailored
to specific domain-specific tasks in an automated way.

3) We showcase the utility of CHRYSALIS and demonstrate
its capability to enhance the performance of existing AuT
devices while designing customized architecture for more
AuT applications. Our experimental results reveal that
the architectures obtained through CHRYSALIS exhibit
an average performance improvement of 56.4%.

The remainder of this paper is organized as follows: Section
II presents the background and motivation. Next, Section III
describes the design of CHRYSALIS. Then, Section IV and
Section V show the experimental methodology and result. After
that, Section VI summarizes the related work. Finally, Section
VII concludes the paper.

II. BACKGROUND AND MOTIVATION

The autonomous things (AuT) features distinctive operation
mode, as shown in Figure 1. EH-IoT puts an emphasis on
utilizing ambient energy for achieving energy autonomy in
some simple data collection tasks. Edge AI ensures in-situ
inference autonomy by integrating high-performance DNN
accelerators. Differently, AuT is expect to exhibit a synergism



Table I: Investigation into the existing AuT platforms.

AuT Design Methodology Subsystem Design Properties of Adaptability
Energy Inference Scalability Sustainability

WISPCam [50], Botoks [13] ✓ × × ×
SONIC [24], RAD [30] × ✓ × ×

HAWAII [35], Stateful [71] × ✓ × ×
Protean [2] ✓ × × ✓

CHRYSALIS (Ours) ✓ ✓ ✓ ✓

in which the system can yield a design effectiveness far better
than that can be offered by either EH-IoT or Edge AI.

A. The Two Domains of an AuT System

An AuT system consists of two key domains: an energy
subsystem and an inference subsystem. They work together to
achieve energy autonomy (EA) and inference autonomy (IA).
The inference subsystem allows edge devices to process data
and perform intelligent inferences locally, without relying on
the costly backend infrastructure. Meanwhile, energy autonomy
allows AuT to be battery-free and self-powered, eliminating
the need for inconvenient and bulky batteries.

Currently, inference autonomy is primarily achieved through
MCUs for runtime management [36], [49], [59] and low-power
accelerators for domain-specific DNN inference tasks [24], [30],
[35]. This forms a non-trivial edge computing stack, including
both inference control logic and acceleration logic, to meet
the performance requirements of the application. For example,
unmanned aerial vehicle (UAV) systems deploy specialized AI
chips or system-on-chips (SOCs) to run DNN models for object
detection [40]. Previous works have focused on co-designing
DNN models and accelerators to support DNN computation
and acceleration at the edge [2], [24], [30].

Typically, energy autonomy is achieved by utilizing renew-
able energy through energy harvesting (EH) technologies [43],
[44]. The energy subsystem comprises EH devices such as solar
panels or coils to receive energy from the ambient environment.
The collected energy is buffered in energy storage components
such as capacitors [1], [46], [48], [56]. When sufficient energy
is available, the computing subsystem is activated to perform
tasks. An energy manager chip controls the entire process,
and a runtime control unit (e.g., MCU) executes the runtime
layer. Note that the power supply in EH-based systems can be
intermittent and low, depending on environmental conditions.
Since DNN execution is lengthy and energy-consuming, power
interruptions can occur frequently. Some research focuses on
developing efficient analog power circuits [57], [67] or co-
designing applications to reduce the overhead caused by energy-
related interruptions [12], [29], [34].

B. Limitations of Existing Design Approach

Although multiple works have made efforts to build power-
and task-aware AI systems, they still face challenges in terms
of performance and efficiency due to a lack of co-design of
the energy and inference subsystems. As summarized in Table
I, our investigation into existing research has identified two
major limitations that contribute to this research gap.

First, an AuT scalability issue often arises due to the
inefficient architecture design for the AuT inference domain
[24], [35], [36], [49], [59]. Most AuT systems are implemented

Figure 2: (a) Comparison between the current intermittent
inference system (HAWAII [35]) and the popular AI

accelerator (Eyeriss V1 [8]), in the condition of
non-intermittent cases. (b) The cases for HAWAII, with

different capacitor sizes and three applications.

using classic intermittent computing platforms [24], [34], [35],
[49], which typically consist of MCUs (such as the MSP430x
series of cores [66]) with a low-energy accelerator (LEA)
for DNN execution, limited SRAM for shared memory, and
FRAM as non-volatile memory (NVM). This architecture could
become limiting factors for DNN inference due to their small
memory size (only 8KB SRAM and 256KB FRAM) and poor
computation performance. In addition, previous research has
mainly focused on optimizing individual components of AuT
systems [35], [49], [71], such as computational units and AI
accelerators [8], [53], [70]. However, many of these studies
emphasize increasing millions of operations per second (MOPs)
without considering the energy harvesting (EH) issue. The
resulted designs often demand excessive power, making them
unsuitable for low-power AuT applications. For instance, as
depicted in Figure 2(a), Eyeriss V1 exhibits significantly higher
energy consumption compared to an MCU [8], [66], rendering
it impractical for energy harvesting scenarios.

Second, an AuT sustainability issue often arises as a result of
ad hoc solutions for the AuT energy domain [50], [59]. Existing
EH-based power subsystems are often designed based on em-
pirical knowledge without systematic exploration. This can lead
to system inefficiency or even unavailability. For example, the
significance of capacitor size design within existing EH-based
AI inference systems, exemplified by the HAWAII framework
[35], is illustrated in Figure 2(b). Larger capacitor sizes enable
longer energy cycles but at the expense of decreased throughput
and leakage current. Similarly, larger energy harvesters provide
more energy budget but are constrained by specific application
scenarios. While some dynamic strategies have been proposed
to adjust capacitor size or cutoff voltage using dedicated circuits
[12], very limited attention has been given to the quantitative
analysis of critical hardware components, which should be
tailored to the specific application and deployment scenarios.

To overcome the above limitations, prioritizing full-system
EA/IA co-design is imperative. We need to identify the ideal
combination of hardware accelerators, mapping strategies, and
energy harvesters.

C. Challenges of AuT Design

Given that the existing approaches have limited the perfor-
mance of AuT, we take the first step to explore truly scalable



and sustainable AuT design. In this section, we outline two key
obstacles that need to be addressed for effective AuT design.

The first challenge lies in accurately describing a holistic
AuT system that encompasses both the energy subsystem
and the inference subsystem, while also considering their
implications on the overall system performance. Traditional
design methodologies often focus on individual subsystems in
isolation, neglecting the intricate interplay between EA and
IA. To overcome this challenge, a comprehensive methodology
is required that captures the interactions and dependencies
between these subsystems. It should provide a unified frame-
work to analyze and optimize the AuT system as a whole,
considering factors such as energy availability, intermittent
operation, and the impact of energy constraints on inference
performance. Developing such a methodology is crucial for
achieving efficient and effective AuT designs.

The second challenge involves determining the ideal AuT
architecture from the vast number of potential candidates,
considering the specific SWaP constraints imposed by diverse
AuT application scenarios. Different AuT systems operate
in various scenarios, such as land, sea, air, and space, each
with its unique requirements and constraints. These constraints
extend beyond the computing stacks and encompass factors like
size, weight, energy availability, and environmental conditions.
Designing an AuT architecture that meets these constraints
while maximizing performance and efficiency is a complex task.
Conventional design space exploration methods often fall short
in addressing the exponential growth of architecture candidates
resulting from the co-design of energy autonomy. Thus, novel
techniques are needed to efficiently navigate the design space,
considering both the energy and inference subsystems, to
identify ideal configurations that align with the specific SWaP
constraints of versatile AuT application scenarios.

To tackle the above challenges, it is quintessential to develop
a comprehensive and automated tool that can effectively explore
and optimize the design of AuT. This requires interdisciplinary
research efforts that integrate knowledge from architecture
design, energy systems, machine learning, and application
domains. By tackling these obstacles, we can unlock the
potential of high-performance AuT systems that effectively
balance energy autonomy and inference autonomy to meet the
demands of diverse real-world applications.

III. THE CHRYSALIS DESIGN

A. Overview

This paper introduces CHRYSALIS, a comprehensive frame-
work that seeks a synergism of the energy autonomy domain
and the inference autonomy domain in AuT design. The
proposed methodology takes a holistic perspective, considering
multiple aspects of different subsystems in an automated way.
The usage model of CHRYSALIS is as follows: Given a
domain-specific DNN model along with its corresponding
dataset, the high-level specifications of the AuT (including
environment and technology constraints) as well as specific
objective demands, the tool can automatically generate the ideal
AuT solution that encompasses the configurations of energy

harvester hardware (EH HW), inference hardware (Infer HW),
and the dataflow of the workload. The generated solution
is tailored specifically to the provided inputs, resulting in a
customized and efficient AuT architecture design. To provide
a clear summary of the usage model, we have compiled the
inputs and outputs of CHRYSALIS in Table II. This table
outlines the essential parameters and notations used in the
usage model, facilitating a better understanding of the design
process facilitated by CHRYSALIS.

Figure 3 provides an overview of CHRYSALIS. By default,
CHRYSALIS needs the following inputs: (1) DNN models
which include the specific DNN tasks that need to be performed
by the AuT, along with the corresponding datasets required for
inference. (2) Platform constraints which specify the hardware
architecture to be used for the AuT design and encompasses
the available ranges of the design space, such as the size
of capacitors, the size of the energy harvester (e.g. the solar
panel), and other relevant factors that impact the system’s
operation. (3) Objectives which define the optimization targets
and constraints for the AuT. It could include parameters such
as latency, system size, and combinations of multiple indicators
that need to be optimized while considering the constraints
imposed by the system’s requirements and limitations. (4)
Dataflow strategies which specify the tiles’ size and dataflow
taxonomy including weight stationary (WS), output stationary
(OS) and input stationary (IS) of the used AI accelerators.

Given these inputs, it consists of several components that
work together to generate the ideal AuT architecture, consider-
ing different Size, Weight, and Power (SWaP) requirements.
These components include:

1) The AuT HW and SW Describer: This component
describes the multifaceted components of both the energy
subsystem and inference subsystem in AuT systems.
It encompasses the hardware and software aspects,
capturing the intricacies of the system’s architecture.

2) The CHRYSALIS Evaluator: This component assesses
the performance and energy consumption of the AuT
under different architectural designs. It enables the
comparison and evaluation of various configurations,
providing insights into their effectiveness and efficiency.

3) The CHRYSALIS Explorer: This component is responsible
for generating the ideal AuT architecture. It leverages the
information from the AuT HW and SW Describer and
the evaluation results from the CHRYSALIS Evaluator to
explore the design space and identify the configurations
that meet the specified SWaP requirements.

These components collectively form a powerful framework
that automates the development process of high-performance
and energy-efficient AuT systems. By considering the holistic
perspective of the system and leveraging automated techniques,
CHRYSALIS enables the generation of ideal solutions, re-
ducing the time and effort required for manual optimization.
Importantly, when combined with state-of-the-art ubiquitous
Internet of Things (IoT) system optimization techniques such
as XiUOS [5], CHRYSALIS will provide researchers and



Figure 3: Overview of CHRYSALIS: Given the platform constraints, objectives and domain-specific DNN model along with its
dataflow strategy, the tool can automatically generate the ideal AuT architecture.

Table II: Usage model and associated parameter notations for
AuT modeling in CHRYSALIS.

Category System Param Introduction

Input

Environment
Constraint keh Environmental light coefficient

Technology
Constraint

kcap Leakage current coefficient
Uon
Uoff

Threshold voltage for the system state

er
ew

Energy cost of r/w each byte from NVM

pmem Static power of each byte of memory
Objective π Domain-specific objective demand function
Workload — Domain-specific DNN task and its dataset

Variable

Evaluation rexc Energy exception rate of the inference

Dataflow

Edf
Tdf

Whole energy and latency of
inference with 1 PE

Ndata Inference data size
Nckpt Checkpoint data size

Output

EH HW C Capacitor size
Aeh The size of solar panel

Infer HW
Ntile Tile number of the layer
Nmem VM memory size per PE
NPE PE number

Dataflow — Preferable dataflow of DNN task

designers with a valuable tool for developing AuT systems.

B. Modeling Comprehensive AuT Components

We first describe the holistic AuT model including the energy
subsystem and inference subsystem which will be included in
the evaluator and explain the complexity of the whole system.
This modeling approach takes into account various variables
that are essential for considering the existing relevant designs
[8], [12], [49], [50]. The associated parameters and notations
for AuT modeling are shown in Table II.

1) Energy Subsystem: The EH-based energy subsystem
consists of an energy harvester, a small capacitor, and a
management IC for control and voltage conversion [65], [67].
In CHRYSALIS, we use solar panels as examples of energy
harvesters. The harvested energy is stored in the capacitor and
then regulated to feed the computing subsystem. The sunlight
environment model is based on existing work, and the input
energy from solar panels is determined by their size and the
intensity of sunlight. Specifically, assuming the solar panel size
is Aeh, the power input Peh can be estimated as,

Peh = Aeh × keh (1)

where keh is a coefficient that reflects the complex attributes
of photovoltaic modules and can be obtained using existing
EH modeling tools [27].

For the capacitor, we store the collected energy at each step
and calculate the overhead of the leakage current. The leakage
current can be represented as,

IR = kcapCU (2)

where C is the capacitor size, and U is the rated voltage.
Within the search space, kcap and U are typically constants.
Larger capacitor size often results in a higher leakage current.

Therefore, the available energy during one energy cycle can
be calculated by adding the stored energy and the harvested
energy during the execution,

Eavailable = Estore + Eeh − Ecap

=
1

2
C(U2

on − U2
off) + T (kehAeh − kcapCU2

on)
(3)



Figure 4: Intermittent inference process modeling in AuT.

where Uon and Uoff are the threshold voltages of the system,
and T is the execution time. The leakage energy is simplified
as the voltage is unchanged.

2) Inference Subsystem: Existing literature has offered
valuable insights into modeling traditional intermittent com-
puting processes and AI inference, providing a foundation for
understanding the workflow of AuT systems. However, it is
important to note that the intermittent inference process of AuT
introduces unique challenges that have not been adequately
addressed in previous modeling approaches. In light of these
considerations, we present a comprehensive redefinition of
the inference system for AuT in our work. By taking into
account the specific requirements and characteristics of AuT,
our modeling approach aims to provide a more accurate and
effective representation of the inference system in this context.

Figure 4 illustrates the inference process modeling of AuT.
As shown in the figure, the intermittent mapping description
pertains to the mapping process that transforms the structure
of the DNN into a format suitable for execution on the
AuT inference hardware. We have improved the iteration
space dataflow model based on the data-centric mapping
directives [42] by introducing intermittent inference adaptation
(InterTempMap) and generating mapping schemes for DNN
layers in intermittent scenarios. As is shown in the mapping
description, the dataflow is firstly described in terms of data-
centric mapping directives, based on intermittent, temporal and
spatial mapping. Temporal mapping (TemporalMap) means the
inference is partitioned to execute in the temporal dimension,
namely they will execute one after another in the same compo-
nents. Spatial mapping (SpatialMap) means to be partitioned
in the spatial dimension so that they will execute in different
hardware (PEs). Finally, intermittent mapping (InterTempMap)
is an incremental description. It means to be partitioned into

two energy cycles for power interruptions between tiles. The
directives are used to describe the corresponding dataflow,
as shown in the loop nest in the figure. In the Loop Nest,
the checkpoint (cpkt) tile corresponds to the InterTempMap
directive, enabling larger layers to be divided into multiple
tiles for execution in intermittent inference scenarios.

The AuT inference hardware consists of an accelerator and a
general-purpose processor, both equipped with their respective
caches. Additionally, these components have access to Non-
Volatile Memory (NVM) and Volatile Memory (VM). The
hardware configuration imposes constraints on the dataflow,
which directly affects system performance. To accurately model
the hardware dataflow of intermittent inference behavior, we
need to consider the following processes: read (R), compute
(C), write (W), save checkpoint (save), and resume checkpoint
(resu). The AuT hardware dataflow can be described as follows:
Initially, all data resides in Non-Volatile Memory (NVM) and
is divided into multiple tiles. During the computing process,
a data tile is ❶ read from NVM into Volatile Memory (VM)
and awaits computation. The processing hardware ❷ fetches
a portion of the current tile’s data from VM and ❸ computes
a partial sum. The computed partial sum ❹ is then written
back to VM. If there is remaining data within the current tile
that has not been computed, the process continues to fetch
and compute the remaining data until the entire tile has been
fully computed. Finally, the computed result of the current
tile ❺ is written back to NVM. If there is sufficient energy,
the aforementioned process continues tile by tile. However, if
there is insufficient energy to proceed with the computation,
the current state, including all data in VM and the processing
hardware, ❻ is saved as a checkpoint in NVM. Once the energy
supply is replenished, the checkpoint ❼ is resumed from NVM,
allowing the inference process to continue.

In the above process, the checkpoints result in additional
overhead. Therefore, in quantitative modeling, the total energy
cost Eall during the execution can be summarized as,

Etile = Eread + Einfer + Ewrite + Estatic (4)

Eall = NtileEtile = Edf + TNmempmem +Ndataer

+Ntile(1 + rexc)Nckpt(er + ew)
(5)

where Ntile is the number of tiles divided from the layer,
and Etile is the energy cost of each tile. Edf is the cost of
the calculations. Nmem and pmem are the size of memory and
the static power of each byte of memory respectively. Ndata
indicates the total required number of data for the entire
inference and Nckpt is the number of data contained within each
checkpoint. The term rexc refers to the energy exception rate for
tile inference, which represents the probability of encountering
an energy exception for each tile during the inference process.
To simplify the model, we assume rexc to be a static coefficient
based on the specific scenario [59].

In the specific simulation process, variables such as Einfer
are mapper and hardware-dependent. This distinction will
be evaluated by utilizing different mapper and hardware
architectures. In our implementation, we have implemented



two main accelerator simulations in CHRYSALIS and will be
explained in the realization sections.

For the parameters, the inference time of the system can be
estimated by the PE number of the architecture as,

T =
Tdf

NPE
(6)

where Tdf is the whole PE running time of the inference.
3) Holistic Model Analysis: The size of AuT and its

performance are quite important for the holistic design. The
size of AuT can typically be directly measured by the size
of the energy harvesters, as they usually occupy the majority
of the volume. The performance of the architecture can be
assessed using the latency of a single inference in the model.
In an AuT, the latency is mainly determined by the charging
latency. Considering the energy harvester is harvesting despite
the state of the architecture, the latency can be modeled as:

E2ELat =
Eall

Peh
(7)

Therefore, under specific objective conditions, improving the
performance of the system can be achieved by increasing the
size of the energy harvesting system according to Equation 1 or
reducing the energy consumption during inference according to
5. The former represents the tradeoff relationship between size
and performance, while the latter represents the optimization
space introduced by architectural design.

According to Equation 5, we observe that two ways are
possible to reduce the energy cost. Firstly, by designing a
reasonable dataflow, we can potentially further reduce Einfer,
data movement costs and Estatic by reducing execution time.
For a large number of existing neural network mappers, this
optimization has already reached a high level of effectiveness.
Secondly, by reducing Ntile, which represents the number of
partitions in the neural network, Eall can be further decreased.
However, Ntile can not be too small because every tile should
be executed in one energy cycle:

Etile ≤ Eavailable (8)

According to Equation 3 and 4, Ntile is constrained by:

Ntile ≥
α3 + α4Nmem

α1C + kehAeh
Tdf
NPE

− kcapC
Tdf
NPE

− α2
(9)

where αi, kcap and Tdf are constants under the specific
hardware technology and dataflow search. Nmem and NPE are
inference subsystem design parameters. C and Aeh are energy
subsystem design parameters. keh is the coefficient related to
the environment.

Based on the Equation 9, it can be observed that the size of
the memory hierarchy, the energy storage capacitor, the scale
of the energy harvester and the number of processing elements
(PEs) (related to execution time) influence the size of Ntile,
which further affects energy consumption as well as dataflow
design. These design metrics play a crucial role in EH-IoT
systems as they are directly related to system performance and
energy efficiency. The variations in constants caused by external
factors will also impact the design of AuT. For instance, in
the case of low environmental energy, i.e., when the energy

harvested (keh) is small, each layer of the network will be
divided into a larger number of tiles. However, when the
environmental energy is sufficiently high, the number of tiles
can be reduced to conserve more energy.

In practical scenarios, this assessment becomes more com-
plex as the optimization of dataflow is influenced by various
metrics such as Ntile. Therefore, in evaluating the design, we
employ a more rigorous step-based simulation and a bi-level
search to ensure the accuracy of system exploration.

Finally, the model optimization can be summarized as,
Res = {AuT∥Objective,Workload, Constraint}

= {AuT∥π(HWeh,HW infer, Df), T ech,Envir)}
(10)

where π is the objective function. In the following section, we
will introduce the specific CHRYSALIS implementation.

C. Generating Ideal AuT Solutions
Using the proposed modeling approach, CHRYSALIS can

effectively assess the performance as well as the energy
consumption of various AuT architecture candidates, and
ultimately identify the ideal AuT architecture tailored to specific
DNN tasks. The entire process is illustrated in Figure 3.

To begin with, CHRYSALIS utilizes the AuT HW and
SW Describer to provide comprehensive descriptions of po-
tential AuT candidates. The descriptors consist of the energy
subsystem describer and the inference subsystem describer.
The energy subsystem describer encompasses descriptions for
the environment, energy harvester, and energy storage, along
with an energy controller responsible for implementing the
logic of the energy subsystem. The three descriptions are
based on their respective realistic models, while the energy
controller emulates the intermittent computing power logic
and communicates with the inference subsystem describer.
The inference subsystem describer presents the operational
logic of the inference system, comprising mapping description
and inference hardware description. The mapping description
presents the execution strategy of the neural network, detailing
the dataflow during runtime for each layer of the neural network.
The inference hardware description characterizes the hardware
attributes of the inference subsystem, including the memory
structure and the computing logic units.

Subsequently, the CHRYSALIS Evaluator plays a crucial
role in evaluating and comparing different AuT architecture
candidates. It quantifies the number of data and compute
operations required by the modeling approach, enabling a
comprehensive analysis and comparison of various design
choices in terms of performance and energy consumption. This
evaluation process is performed using a step-based simulator
that accurately models the intermittent inference processes in
AuT systems. By simulating the intermittent inference under
different architectural designs, the CHRYSALIS Evaluator
provides valuable insights into the performance and energy
characteristics of the system, which are then inputted into the
CHRYSALIS Explorer for informed decision-making.

Ultimately, the CHRYSALIS Explorer leverages a bi-level
search strategy to explore the ideal output. Initially, the HW-
level optimizer generates a hardware configuration and employs



Figure 5: Implementation details of CHRYSALIS.

the current configuration as a starting point for the SW-level
optimizer to conduct a mapping search. Once the SW-level
optimizer iterates and generates the preferable result, the current
preferable mapping configuration and objective metrics are
returned to the hardware optimizer. Subsequently, considering
this solution as better achievable by the current hardware, the
HW-level optimizer proceeds to search for the next hardware
configuration. Ultimately, the HW-level optimizer delivers the
ideal hardware configuration along with its corresponding ideal
mapping configuration based on the designated objective.

D. CHRYSALIS Implementation

To implement CHRYSALIS, we have developed a solar panel
energy subsystem describer and two inference subsystems to
accommodate both existing and future AuT setups. The energy
subsystem describer incorporates a solar panel model based on
pvlib [27] and a capacitor model [50]. We consider stable
harvested energy during one inference while different light
conditions in different inferences because sunlight does not
undergo significant changes within a short time (<5 minutes)
[27] and may change greatly in one day. The variable source
during inference can be supported by component extensions
for other energy harvesters. The energy subsystem can be
accessed by the inference system through the energy controller
interface. The first implementation of the inference subsystem
describer targets the widely used MSP430FR5994 platform
[66], which features a low-energy accelerator (LEA) capable
of accelerating specific vector computation operations, as well
as a low-power analog-to-digital converter (ADC) for energy
measurement. For modeling purposes, we have adapted the
existing energy and latency models [49] of the MSP430FR5994.
The second implementation aims to evaluate reconfigurable
accelerators, and it utilizes the data-centric representation
from MAESTRO [42] as the dataflow description. However,
intermittent inference differs from continuous inference in terms
of how computation is partitioned between two energy cycles.
Since power interruptions occur between the two computation
blocks, all data needs to be retrieved again from non-volatile
memory (NVM), which deviates from traditional spatial and
temporal partitioning approaches. Consequently, we have
realized the describer based on MAESTRO and the intermittent

Table III: Supported AuT component setups of CHRYSALIS.

Subsys. Component Realization Base Model

EH
Energy Harvester Solar Panel pvlib [27]
EH Controller Power Management IC BQ25570 [65]
Capacitor Electrolytic Capacitor Physics Model

Infer

Infer Controller Microcontroller Unit MSP430 [66]
Strategy Tile Partition, ckpt. iNAS-like [49]

Accelerator &
Mapper

Existing AuT Setup MSP430FR5994 [66]
iNAS [49]

Future AuT setup
with Accelerators

CHRYSALIS-MAESTRO [42]
CHRYSALIS-GAMMA [37]

Table IV: Parameters as design space for the fast construction
and exploration of efficient AuT design.

Design Spaces
Parameter Name Type Potential Values
Solar Panel Size float 1cm² to 30cm²
Capacitor Size int 1uF to 10mF
Tiling Size list(int) Factors of each dimensions

Applications
Application Input Layer Parameters(k) kFLOPs
Simple Conv (3,32,32) 1 1.2 13.8
CIFAR-10 (3,32,32) 7 77.5 9052.1
HAR (9,128,128) 5 9.4 205.2
KWS (250,1,1) 5 49.5 49.5

mapping description illustrated in Figure 4. Furthermore, we
implement the CHRYSALIS Explorer based on the open-source
library Optuna and utilize a genetic algorithm to generate
potential architecture configurations.

To ensure the accuracy and real-time impact of energy
fluctuations on the system, each component of CHRYSALIS is
realized through a step-based approach. Unlike most existing
accelerator and system simulators that rely on statistical
methods and simply sum up the energy or time of individual
components, our approach captures the dynamic nature of
energy fluctuations and their real-time effects on system
behavior. We achieve this by dividing the inference process
into steps, each lasting several seconds (adjustable based on
requirements), and tracking the changes in various metrics
within each subsystem at every step. The evaluator initializes
the process and iterates through the steps to drive the simulation.
In each step, the evaluator invokes the energy controller, which
monitors energy changes, and the inference controller, which
tracks inference changes. These controllers, in turn, recursively
call the corresponding simulators for each subsystem.

To ensure the scalability of CHRYSALIS, we have imple-
mented each component of CHRYSALIS using an interface-
oriented approach. This design allows for the substitution of any
component within CHRYSALIS, enabling the evaluation of
AuTs with different structures. By utilizing newer or more
sophisticated simulators for hardware or inference models
through an interface, users can explore a broader range of
possibilities. Case studies serve as examples of substituting
reasoning simulators, but the scope extends beyond these
scenarios. For instance, by directly modifying and integrating
relevant simulators, considerations such as temperature, input
correlations, additional energy harvesting devices, and even user
programming can be incorporated to explore specific scenarios.



Table V: Parameters as design space for AuT design with
reconfigurable accelerators.

Design Spaces
Parameter Name Type Potential Values
Solar Panel Size float 1cm² to 30cm²
Capacitor Size int 1uF to 10mF
Architecture union TPU [11], Eyeriss [8]
PE Number int 1 to 168
PE cache size int 128bytes to 2KB

Applications
Application Input Layer Parameters(M) GFLOPs
BERT (1,768) 5 56.6 1.28
Alexnet (3,224,224) 7 58.7 1.13
VGG16 (3,224,224) 13 138.3 15.47
Resnet18 (3,224,224) 20 11.7 1.81

IV. EXPERIMENTAL METHODOLOGIES

Overall, we explored a series of AuT architectures using the
established CHRYSALIS platform. The evaluation components
deployed in CHRYSALIS are listed in Table III. Building
upon the realized components in CHRYSALIS, we have the
capability to perform coordinated searches for both the energy
subsystem and inference subsystem, with support for two
accelerators and mappers within the inference subsystem.
Leveraging these two subsystems, we aim to fully show
the search capabilities of CHRYSALIS and demonstrate its
superiority over other search methods.

Existing AuT setup: In the first part of the experiment,
we utilize the established evaluators for existing inference
hardware and extensively searched the design space for EH and
Mapping, showcasing the rapid prototyping capability of the
CHRYSALIS system and demonstrating the rationale behind
considering multiple aspects in AuT modeling. We utilize
the commonly used low-energy accelerator as an inference
accelerator and tile searcher for the inference mapper. The
target platform [66] contains a low-energy accelerator (LEA)
that can accelerate certain vector computation operations. Table
IV clearly delineates our search space, which includes the size
of the energy harvester and capacitor, as well as the tile size of
the neural network. Specifically, the size of the energy harvester
ranges from 1cm2 to 30cm2, while the capacitor’s capacity
extends from 1uF to 10mF. The tile size, an integral aspect
of our design, is determined by a list of factors selected from
each dimension. To cater to diverse application requirements,
we implement four distinct neural networks: basic convolution
[52], CIFAR-10 [41], HAR [58], and KWS [69]. Each of
these networks is characterized by unique attributes in terms
of layers, parameters, and floating-point operations per second
(FLOPS), providing a robust framework to validate our system’s
effectiveness comprehensively.

Future AuT setup with Accelerators: In the second part, we
consider comprehensive redesigns for future AuT, equipping
them with AI reconfigurable accelerators for neural network
inference. Here, we employ the extended accelerator evaluator
and mapper developed in this work for inference system
performance. The detailed configurations of the design space
are presented in Table V. In the current design space, we
also have the flexibility to adjust hardware-related parameters,
namely the PE number and PE cache size. As detailed in Table

V, our study employs two widely-used accelerator architectures,
namely TPU and Eyeriss, and examines four notable network
models. These include three classic Convolutional Neural
Network (CNN) models and one transformer model and all of
them have a suitable size for running on edge devices. AlexNet,
a 7-layer CNN, exemplifies the standard architecture for image
recognition tasks. VGG16, a deeper 13-layer CNN, utilizes
smaller filters to achieve image recognition, contrasting with
the use of larger filters in conventional designs. ResNet18,
part of the ResNet family with 20 layers, introduces residual
connections to the CNN architecture. Besides image recognition
tasks, we also incorporate BERT, a prominent transformer
model, representing Natural Language Processing (NLP) tasks.
Our evaluation involves testing these four distinct networks
on both accelerators to demonstrate the performance across a
variety of scenarios.

In the experiment, we consider three objective functions that
have been utilized in existing design targets. Firstly, we aim to
minimize latency while adhering to the solar panel constraint
(lat) as proposed in [24], [35], [49]. This target is suitable for
scenarios where stringent hardware size requirements exist.
Secondly, we aim to minimize the solar panel size while
satisfying the latency constraint (sp) as discussed in [4]. This
target is applicable in scenarios with specific application
requirements. Lastly, we define the objective function as the
product of latency and solar panel size (lat*sp) which provides
a direct measure of the throughput achievable per unit area of
the solar panel in the given scenario. This objective function
effectively captures the overall system efficiency of AuT [67].

V. EXPERIMENT RESULTS

A. Optimizing Existing AuTs with CHRYSALIS

In this part, we try to illustrate the benefits of the proposed
CHRYSALIS for rapid AuT construction with the configuration
in Table IV. Firstly, for the comprehensive search of the design
space, we try 10,000 points in the hardware search and each of
the layers are searched with 100 points. The whole design space
reaches 104+2*n, where n is the layer number of the current
network. To consider the different power environments, we use
two solar environments brighter and darker environments for
the design space search. When doing the search, we use the
average latency under two solar environments as our results
to ensure the system is able to run in both environments. We
conduct each search on a workstation (Intel Core i5-12400
2.50GHz, 32GB RAM) for less than 6 hours (339 minutes,
CIFAR-10). This timeframe is relatively short compared to the
overall time required for AuT architecture design and can be
further reduced by employing high-end computing servers.

Enhancement Analysis over Existing Designs: As is shown
in Figure 6, the points are the searched hardware results. The
points on the Pareto optimal curve are highlighted and the better
points are shown in the figures. The better points are considered
based on the objective of latency multiplied by solar panel size
(lat*sp), showing the least space-time cost of the inference.
According to the Pareto optimal curve, we position the tradeoff
between inference latency and the energy harvester scale. The



Figure 6: Searching for objective results for the existing
MSP-based AuT systems: CHRYSALIS can improve the AuT

architecture in the existing AuT systems.

Figure 7: Validating the improved AuT system over iNAS on
the real platform under different scenarios.

current search yields performance improvements compared
to the original system [49]. Taking CIFAR as an example,
the system performance using the original configuration was
estimated to be lat*sp=150cm²*s (approximate value), whereas
the final result of this search shows a 50.8% improvement over
the original system.

Application to Real Platforms: Taking a single convolution
layer as an example, we build the real system according to our
search result, which is shown in Figure 7. We perform actual
latency testing on the implemented system. We employ an
oscilloscope to monitor the power supply status of the current
inference subsystem, which manifested as periodic energy
cycles. We confirm the capacitor voltage within a reasonable
range during energy harvesting through a voltmeter. The EH
Controller and Inference Hardware utilize existing chip-based
solutions (BQ25570 [65], MSP430FR5994 LaunchPad [66]).
We redesign PCB for the EH Subsystem to explore various ca-
pacitor configurations. As shown in the figure, we observe that:
(1) The latency trends in the actual test results were similar to

the simulated results, which demonstrates that our overall model
is capable of effectively simulating the current system. (2) We
attempt to replicate the position of the current design within
the system if the design approach of iNAS are to be adopted
without any further optimization(Pin = 6mW, C ≥ 1mF). Our
system achieve 79.7% faster with the same solar panel size and
82.3% faster in latency with a bigger (15cm2) solar panel. This
indicates that considering hardware aspects led to significant
efficiency improvements in the overall system.

Rationality Validation: To further validate the rationality
of our design space and modeling approach, we conduct
explorations of the search space. Firstly, we consider using
capacitors of the same size (100uF) and employed solar panels
of different sizes. Based on these configurations, we apply tile
strategies for four different applications and obtained the energy
consumption of each stage. As Figure 8 shows, we observe
that a smaller solar panel size leads to excessive checkpoint
energy overhead due to frequent checkpoints (Ckpt. Energy).
Once the solar panel reaches a certain size, the total required
energy can maintain a relatively stable state. However, the
system efficiency (System Eff., Einfer/Eeh) starts to decrease
because the additional collected energy may be wasted when
the inference latency is longer than the energy harvesting
latency. Finally, preferable solar panels are chosen with the
better performance (lat*sp) in current occasions.

Secondly, we consider using solar panels of the same size
(8cm2) and employing different capacitor configurations. As
Figure 9 shows, a small capacitor size leads to excessive
checkpoint energy overhead due to frequent checkpoints (Ckpt.
Energy), while a large capacitor size results in an obvious
capacitor leakage energy (Cap. Leakage). Preferable capacitor
sizes are highlighted due to the minimized latency with the
current solar panel. In the current design, we only explore a
few discrete values for the capacitor size. In practice, the
specific values for the capacitor can be determined based
on the available options for capacitor selection. Overall, the
exploration highlights the importance of capacitor search, which
aligns with the conclusions drawn from our modeling.

B. AI Accelerator-based AuT design with CHRYSALIS

To enhance the inference performance of AuT, it becomes
imperative to incorporate dedicated accelerator architectures.
Therefore, we aim to showcase CHRYSALIS’s capacity for end-
to-end architecture redesign, providing pre-RTL level design
references for AuT accelerator development as well as other
parts of AuT. Similar to the previous experiment, we search
for each condition with 104+2*n points and use two solar
environments as the target environment. On our experimental
workstation, each search with the workstation takes less than
30 hours (1760 minutes, Resnet18-tpu).

Adaptability to Diverse SWaP Constraints: Figure 10 il-
lustrates the CHRYSALIS’s design ability under different
conditions. We use CHRYSALIS to design ideal architectures
for four existing neural networks (Alexnet, Resnet18, VGG16,
BERT) and two architectures (TPU, Eyeriss) with three objec-
tives (minimize latency with solar panel constraint, minimize



Figure 8: Optimizing solar panel for the existing AuT
(capacitor=100uF2): Smaller solar panel size leads to

excessive checkpoint energy (Ckpt. Energy), while bigger size
results in decrease in system efficiency (System Eff.).

solar panel with latency constraint, minimize lat*sp, latency
multiplied by solar panel size). To showcase the advantages
of CHRYSALIS, we compare it with six other methods as
shown in Table VI, each of them lacking design considerations
in certain dimensions. wo/Cap and wo/SP do not perform a
search for the capacitance size and solar panel size in the
energy harvesting system, but instead provide a fixed value.
wo/EA, similarly, does not consider searching for parameters
of the entire energy harvesting system. Likewise, wo/PE and
wo/cache do not search for the number of PEs and cache
size in the inference system, and wo/IA does not search for
parameters of the entire inference system. From the results,
we observe that CHRYSALIS consistently outperforms other
methods under various conditions. Specifically, we observe that
a limited design ability often leads to poorer design outcomes.
For instance, results obtained from designs focuses solely on
wo/Cap or wo/SP are superior to those obtained from the
wo/EA approach (which ignores the design of both Cap and
SP). Instead, CHRYSALIS can consistently outperform the
other design approaches in a wide range of cases. By imposing
SP constraints, the latency reduces from over 20s to below
5s (TPU, IA approach), and the average size of SP decreases
by 36.2% under latency constraints (IA). These improvements
make it feasible for the architecture to be implemented in
real-world scenarios.

Energy Efficiency Analysis: Finally, we show the Energy
Efficiency (Einfer/Eeh) for the better configurations across
different network and architecture scenarios in Figure 11. The
energy efficiency of the system obtained through CHRYSALIS
approach can consistently maintain at a high level. Although
some results may have slightly lower energy efficiency com-
pared to other search results, this is because CHRYSALIS
ensures energy savings during the computation process. Other
search methods, particularly those that do not consider energy
harvesting (EH), often yield lower energy efficiency in some
scenarios. This is primarily due to the mismatch between
the design of the SP and Cap components and the current

Figure 9: Optimizing capacitor size for the existing AuT (solar
panel size=8cm2): Smaller capacitor size leads to excessive

checkpoint energy overhead (Ckpt. Energy), while larger ones
result in obvious capacitor leakage energy (Cap. Leakage).

Table VI: Comparison of search spaces for different methods.

Search Methodology EHer Capacitor PE Number PE Cache
wo/Cap ✓ × ✓ ✓
wo/SP [49] × ✓ ✓ ✓
wo/EA [24], [35] × × ✓ ✓
wo/PE ✓ ✓ × ✓
wo/Cache ✓ ✓ ✓ ×
wo/IA ✓ ✓ × ×
CHRYSALIS (Ours) ✓ ✓ ✓ ✓

inference subsystem. CHRYSALIS approach ensures a higher
proportion of energy efficiency, indicating that energy is not
wasted on leakage or system static power. This demonstrates
the superiority of architecture through our search method over
other approaches.

VI. RELATED WORKS

Edge AIoT Device: Energy harvesting systems and intermit-
tent computing have been longstanding research areas, but most
prior intermittent computing work targets low-computation
scenarios [9], [31], [50], [56]. Early automated artificial
intelligence system (AuT) research includes SONIC&TAILS,
demonstrating feasible energy harvesting-based inference. RAD,
ACE, and FLEX [30] explored further system optimizations.
Additionally, Protean enables AuT verification [2], while
iNAS [49], HAWAII [35], JAPARI [36] and Stateful [71]
examine inference strategies. Nevertheless, some works tried to
utilize in-memory inference for intermittent computing systems,
leading to speedups and efficiency improvements [55]. However,
most current AuT implementations use limited hardware like
the MSP430FR5994 [66]. Bottlenecks remain for inference
accelerators and memory. Unlike previous work, CHRYSALIS
is a tool of EA/IA co-design that can improve hardware
architectures to enable more efficient AuT designs for future
edge computing devices.

Edge AI Acceleration: Developing AI accelerators for
constrained hardware is an active research area [14], [20], [25],
[26]. There have been several efforts to explore acceleration of



Figure 10: Design results for the four evaluated deep neural networks and the two AuT architectures with three objective
functions: CHRYSALIS can consistently find the better configurations in all cases while the baselines can only work in specific

circumstances. SP: Solar Panel Size. Lat: Latency.

Figure 11: Comparison of energy efficiency.

ML inference with MB/GB sized models on FPGAs [7], [18],
[21]. Different from these works, CHRYSALIS does not have
constant energy support for executing AI application operations
and hence such operations cause huge slowdowns. Recently,
Qiu et al. proposed an adaptable RRAM crossbar accelerator
named ResiRCA [54] for MAC operations for CNNs in energy
harvesting environments. Nevertheless, it manages power at
the crossbar level and neglects the importance of power source
control and intra-application characteristics.

Intermittent Computing: Maximizing the energy potential
of renewable sources requires power source-aware control
techniques [32], [45]. Early work focused on low-power
embedded systems [10], [32], [64]. Li et al. proposed load
matching to leverage CPU slack time in a solar-powered
wireless system [45]. Clark et al. demonstrated heuristic control
for a battery-less solar RFID system [10]. Stewart et al.
examined renewable intermittency and proposed power transfer
systems [32]. Numerous maximum power point tracking
algorithms exist [19], [64], with comparisons by Esram et
al. [17]. King et al. reviewed photovoltaic panel modeling
approaches [39], [60]. Unlike prior work, we propose the
first renewable energy-aware power management technique
coordinating provisioning control and load matching. Our
approach enables joint optimization of energy utilization and
application performance for EH systems.

Design Space Exploration: The increasing demand for AI
has led to more complex DNN models and heterogeneous
computing. To reduce manual design effort, researchers have
proposed automated design space exploration categorized into
three approaches: neural architecture search [3], [47], [68]
to find ideal DNN models for workloads and constraints;
automated DNN mapping [28] for co-design to map models
onto hardware; and hardware design automation [62] to
streamline chip design. In summary, these intelligent techniques
aim to alleviate the cumbersome process of designing high-
performing DNNs and hardware. However, they are not tailored
for the complex AuT design which makes them efficient to
directly apply to our scenario.

VII. CONCLUSION

As the significance of AuTs is rapidly growing, this paper in-
troduces CHRYSALIS, a comprehensive co-design framework
that automates the generation of ideal AuT designs tailored to
various application scenarios and constraints. CHRYSALIS
stands as a pioneering methodology and toolset, enabling
the co-design of power budgets and computing capabilities.
This advancement holds immense promise in facilitating the
development and deployment of AuTs, an emerging and
highly intriguing area of research and practical interest. By
leveraging CHRYSALIS, researchers and practitioners can drive
innovation and unlock the potential of AuTs to revolutionize
a wide range of industries and domains. Further research and
development in this field will undoubtedly yield transformative
breakthroughs and open up new avenues for energy-efficient
and autonomous systems.
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