
ANT-Man: Towards Agile Power Management in
the Microservice Era

Xiaofeng Hou∗, Chao Li∗‡, Jiacheng Liu∗, Lu Zhang∗, Yang Hu†, Minyi Guo∗
∗ Dept. of Computer Science and Engineering, Shanghai Jiao Tong University
† Dept. of Computer Science and Engineering, University of Texas, Dallas

Emails: {xfhelen, chaol, liujiacheng, luzhang, myguo}@sjtu.edu.cn, Yang.Hu4@utdallas.edu
‡Corresponding author

Abstract—The emerging trend of decomposing cloud applica-
tions into microservices has raised new questions about managing
the performance/power trade-off of a datacenter at microsecond-
scale. We introduce ANT-Man, an Auto, Native and Transparent
power Management framework that can exploit fine-grained
microservice variability for system efficiency. To achieve this,
ANT-Man abstracts away two major sources of latency over-
head in traditional hierarchical power management frameworks.
First, ANT-Man proposes an auto power budgeting scheme for
reducing the power coordination latency at the datacenter level.
It can proactively determine the power budget tailored to each
individual microservice. Second, ANT-Man proposes a native
and transparent power control scheme to overcome the power
configuration latency for each microservice. It enables super-fast
power budget enforcement with nanosecond-scale performance
scaling. Extensive experiments on our prototyped system show
that ANT-Man could slash power consumption by 7.8∼43.5%,
and in the meantime reduce the 95th tail latency by 9.7∼12.5%
compared to existing techniques.

Index Terms—microservice, variability, power management

I. INTRODUCTION

While online data-intensive (OLDI) applications once have
largely monolithic software architecture, container technol-
ogy has recently catalyzed the shift from the monolith to
microservice [18], [28], [46], [62], [71]. Modern applications
of this new architectural style are formed by a myriad of highly
granular services that can be managed, tested, and scaled inde-
pendently [46]. Some key attributes of microservice, such as
domain-driven design and on-demand virtualization [3] make
it fit nicely to today’s scale-out cloud environment. Therefore,
many Internet giants, including Google [71], Amazon [12],
Microsoft [23], and Alibaba [4], are actively accelerating their
adaption of microservice-based applications.

The significance of microservice goes beyond design flexi-
bility. It also opens up a new door for improving efficiency in
the cloud by exposing an intra-application variability (IAV)
to datacenters. In this paper we use IAV to describe the
complexity of microservices composing an application. From
a scheduling point of view, IAV represents the differences
in characteristics of short-lived tasks that occur on granular
timescales. It puts an emphasis on two facts: 1) spatial vari-
ability, i.e., the disaggregated microservices exhibit different
power-performance characteristics; 2) temporal variability, i.e.,
the behavior of a microservice changes dynamically at a fine-
grained timescale. Figure 1 illustrates such variation across

(a) Power usage variability. (b) Execution time variability.

Figure 1: Intra-application variability (IAV). (a) Power demand
of microservices running in a realistic datacenter [5]; (b) The

cumulative distribution function (CDF) of microservices’
response time in TrainTicket service [79]. Detailed evaluation

methodology and results are shown in Sections III and V.

microservices that make up an application on production
systems. Clearly, microservices not only present an uneven
power usage profile but also exhibit a wide range of execution
time at µs-scale. This observation prompts us to think about
an important question: how can a well-managed datacenter
actually make use of this unique variability given by the
microservice architecture? For example, a highly agile power
management tailored to each service instance is expected to
bring unprecedented performance-power trade-offs. In other
words, IAV ultimately highlights an untapped energy-saving
opportunities that we should not overlook.

Unfortunately, today’s datacenter power management frame-
work incurs high overhead, which makes it impossible to reap
the full benefits offered by IAV. We mainly observe two broadly
defined sources of overhead: macro control latency and micro
control latency. The former one is usually related to a tedious
global coordination process, i.e., the power budget monitoring
and allocation in an iterative, hierarchical manner [54], [61],
[72]. For example, in many mainstream datacenters, the delay
can be up to 2∼10 seconds [20], [64]. The latter one is mainly
related to a highly granular configuration process, i.e., the
scaling of node performance at the chip level. Most of the
power optimization schemes eventually rely on a software-
enabled DVFS, which suffers from high latency of power state
transition (6∼89 of microseconds) [14], [15].

In this work, we aim to overcome the above sources of
latency overhead and build a truly agile power management

framework. In this way, one can operate datacenters in a
highly efficient, IAV-aware manner. Although sub-microsecond
scale power management seems not necessary for monolithic
applications, lacking such mechanism may cause imprecise
power allocation and energy waste for short-lived tasks (which
often finish execution within a few hundreds of microsec-
onds [25]). Recently, the "killer microseconds issue" [17] has
drawn people’s attention to highly granular system management.
However, little work has been done in terms of eliminating the
above latency overheads for short-lived (10∼100µs) tasks.

We propose ANT-Man, an Auto, Native and Transparent
datacenter Management framework for fully exploiting the
efficiency optimization opportunity exposed by IAV. First,
Our framework features a novel auto power budgeting (APB)
technique for capturing microservice characteristics with miti-
gated macro control overhead. It allows one to proactively
orchestrate power allocation based on workload criticality,
thereby avoiding the time-consuming global control loops. In
addition, our framework adopts a novel native performance
scaling (NPS) technique for eliminating the micro control
overhead. The NPS module can achieve super-fast performance
scaling by enabling the system to directly invoke on-chip
voltage regulators. Finally, ANT-Man employs a transparent
mapping mechanism to gracefully coordinate the above efforts
in a highly efficient, user-transparent manner.

Summarily, we make the following contributions:
• We demonstrate power saving opportunities introduced

by intra-application variability (IAV) through detailed
microservice characterization. We show that traditional
hierarchical datacenter power management frameworks
cannot exploit IAV due to high latency overhead.

• We propose ANT-Man, a novel power management frame-
work that can fully exploit IAV under the complexity of
microservices in the cloud. ANT-MAN provides necessary
system abstractions and automation processes to enable
highly efficient sub-microsecond performance scaling.

• We build a prototype of ANT-Man. We verify its ef-
fectiveness with the best benchmark suites available
at this moment, including an industrial microservice
suites (TrainTicket) as well as an academic microservice
benchmark (DeathStarBench). We show that ANT-Man
can save power by 7.8-43.5% compared to the state-of-
the-art power optimization of OLDI applications.

The remainder of the paper is organized as follows. Section
2 introduces more backgrounds. Section 3 details the opportu-
nities and challenges. Section 4 proposes ANT-Man. Section
5 presents experimental methodologies and results. Section 6
discusses related work. Finally, Section 7 concludes the paper.

II. BACKGROUNDS

A. Microservice Architecture

Microservice architecture is taking cloud computing by
storm as the preferred style for developing highly scalable
and modular applications [3], [12], [46], [62], [71]. It presents
a code-heavy monolithic application as a suite of self-contained

User Requests

Function Services

API Layer

uid text media write-timeline social-graph storage …

mongoDB memcached mongoDB memcached

Home Timeline Composing Post User Timeline

Figure 2: Dependency graph of Composing Post service in
SocialNetwork application [31].

process-level microservices, as shown in Figure 2. Built based
on the concept of share-as-little-as-possible, microservice
leverages bounded context, which is a domain-driven design
to restrict service range. The bounded context refers to the
coupling of a microservice and its associated data as a single
closed unit with minimal dependencies [62]. Microservices
in different bounded contexts communicate with each other
through light-weight mechanisms such as remote procedure
calls (RPC) [7]. Unlike traditional service-oriented applica-
tions (SOA) orchestrated by a message-passing middleware,
microservice implements an API layer as a service-access
facade (Figure 2). Generally, SOA presents itself as a grid with
complex links of services, while microservice architecture is
more like a bipartite graph [39], [62], [68], [69]. In the graph,
the API layer acts as a service-access portal and the service
layer contains massive loosely-coupled microservices.

B. Cloud Power Management

Cloud datacenters need appropriate power management
strategies to reduce energy consumption while ensuring Service-
Level Objectives (SLO) [22], [62], [65]. The SLO determines
specific service level targets (e.g., response time of the appli-
cation). In general, an SLO-aware power management scheme
can save energy by controlling the application’s execution to
just meet the deadline (SLO target). In Section 7 we provide
a detailed comparison of different strategies.

In this paper, we envision that datacenter power management
frameworks need to be cloud-native [1], [32], which means
that the system should take into account the nature of the
cloud application. Today, the "cloud native" initiative [1] is
gaining popularity and microservice architecture has become
the core of it. However, many architectural features and system
mechanisms for energy efficiency are not built specifically
to run in the emerging microservice environment. When
facing a myriad of short-lived microservices, traditional power
management needs to be re-examined at different layers to
meet the new latency requirements.

III. OPPORTUNITIES AND CHALLENGES

In this section, we conduct in-depth analysis using the state-
of-the-art microservice benchmark suites from both academia
and industry. Our characterizations disclose the intra-application
variability (IAV) issue brought by the microservice and the
ensued energy-saving opportunities. We also demonstrate the
challenges of managing power for microservices which often
serve a request within a few microseconds.

User Req. 1

Time

User-Specific
Management

IAV-Aware
Management

Original Task

Monolithic App. uService A uService B uService C

Extra Saving 2
1

3

User Req. 2 User Req. 3

SLO Target 1 SLO Target 2 SLO Target 3

The height of each application or uService indicates its power consumption

Influencial Microservice

Per-Service Ctrl.

Figure 3: Energy saving opportunities brought by IAV in the
microservice environment.

A. Opportunities: IAV-Aware Power Management

1) Overview of the Opportunity: Using a schematic example
in Figure 3, we show how IAV brings additional latency-saving
and energy-saving opportunities. In this example, a monolithic
application is triggered by three separate user requests, resulting
in different execution time and energy consumption.

We assume that the monolithic application could be decom-
posed into three independent pieces of microservices, namely
µService A, B, and C. The system uses the execution time
of the longest microservice as the new deadline for each
service. These microservices have little dependencies and would
not cause interference with each other. Since microservices
execute intrinsically faster, they present longer latency slacks
between the new execution deadline and the target SLO
(extra energy saving opportunities)¶. One can reduce power
through per-service management mechanisms that fine-tune
the core frequency of each microservice ·. In addition, some
microservices play a more important role. We define influential
microservices ¸ as those that are most likely to result in SLO
violation of the associated request under power capping. It
is desirable to track and locate microservices that affect the
dynamic power consumption most when user request changes.

2) Analyzing the Inter-Application Variability: To under-
stand how IAV affects power management decisions, we exper-
iment with SocialNetwork from the open-source microservice
benchmark DeathStarBench [31]. This is a unidirectional social
network implemented with loosely-coupled microservices. It
serves three kinds of requests including reading home timeline
(Home), reading user timeline (User) and composing posts
(Post). We deploy SocialNetwork with docker swarm [13] on a
local server cluster. We present detailed hardware specifications
in Section 5. We write Python programs to automatically access
user requests via a manager node. By analyzing the request-
tracing data with Jaeger [9], we can obtain the response delay
of each microservice. We repeat our experiment for 1000 times
and report the average results in Figure 4.

Observation 1: Microservices are differently sensitive
to power budget variations. Figure 4-(a) shows the average
response time of the evaluated microservices. It is evident that
the performance of some microservice such as uid can be more

sensitive to power capping and frequency scaling.
Observation 2: Microservices’ performance sensitivity

to power budget relates to request types. We evaluate how
different request types (i.e. Home, User, Post) may affect the
responsiveness of microservice storage. In Figure 4-(b), it is
clear that the delay of storage is more sensitive to frequency
change when serving the User request type.

Observation 3: Microservice’s performance/power corre-
lation is tied to load levels. In Figure 4-(c), the slope indicates
the performance-power correlation under different number of
concurrent requests (Low: ∼10, Medium: ∼200, High: ∼500).
As we can see, a higher degree of request concurrency usually
leads to more performance sensitivity to power capping.

Importantly, the above observations are made in a highly
granular task execution environment. In addition, each mi-
croservice may have different impact on the SLO of the
entire application. In the following we show the challenges of
designing an IAV-aware power management framework.

B. Challenges: Cross-Layer Control Latency

1) Overview of the Challenge: From the viewpoint of power
management, microservice presents a treasure (IAV) not easy
to attain. The reduction in service execution time has outpaced
the improvement of power control speed. Although a processor
can use on-chip voltage regulators (VRs) to change the voltage
to a new level with tens of nanoseconds [44], the system-level
power management can be several orders of magnitude slower.
Figure 5 shows the major sources of power management latency
in today’s power-constrained datacenter.

Macro Control Latency (Tens of seconds): At the datacen-
ter level, global power management aims to coordinate power
demand across a large number of servers or applications. It
spends a long time on collecting power consumption data,
monitoring server utilization, and determining the optimal
power allocated to each node [36], [61], [72]. It involves
many control loops at multiple levels of the datacenter power
management hierarchy. This iterative decision-making process
may waste over 10 seconds [20], [72].

Micro Control Latency (10-31 milliseconds): Most of the
available interfaces or policies of performance scaling are
purely software-enabled [14], [15]. Once local servers receive
the power operation commands, it takes over 10 milliseconds
for the operating system to resume the runtime conditions
of active cores [14], [15]. After that, it could waste tens of
microseconds on conveying the commands by switching from
user mode to kernel mode and calling the associated drivers
(for voltage/frequency scaling) [19], [47], [69].

2) The Need for µs-Scale Control : To substantiate that
existing power management schemes are not prepared for
microservice, we compare the service time of a representative
Memcached microservice [11] and the control latency of power
management tools integrated in servers. We measure the DVFS
transition time as well as response time of the Memcached
microservice on a 40-core server (Intel Xeon Silver 4114)
running Ubuntu 16.04. By setting the power management mode
as OS Demand Based Power Management and turning off

(a) Service type. (b) Request type. (c) Request number.

Figure 4: The Intra-Application Variability of SocialNetwork Application in DeathStarBench Benchmark.

Time

Macro Control Latency
(Facility Level)

Micro Control Latency
(System Level)

Scaling Delay
(Chip Level)

Command received
by local server

V/F
changes

Processor adjusts
the V/F settings

Searching for the
desired power budget

10-30 ms about 17 us

Mode SwitchSoftware Delay

Over 10 s 10-31 ms 10 ns

Figure 5: Timeline showing the main latency sources in
conventional power management.

turboboost technology, we can change the frequency of each
cores via cpuinfo_max_freq. We deploy Memcached service
on the server with container. We write a C program to access
the Memcached service and change the server’s frequency. The
program also record the frequency transition delay and count
the completed request number of Memcached.

In Figure 6-(a), we decrease the frequency from 2.2GHz in
a step of 0.2GHz. Figure 6-(a) shows that the transition time
is between 10-30 milliseconds. Figure 6-(b) further shows that
the difference between the average transition (scaling up and
scaling down) time of DVFS and Memcached’s execution time
can be several orders of magnitude. (13 milliseconds for DVFS
v.s. 17 microseconds for Memcached).

C. Summary of Design Consideration

Today’s datacenter power management approaches are being
left behind while the upper-layer applications start to reap the
versatility benefits of microservices. A well-managed cloud
infrastructure needs to abstract away enough of the underlying
power control complexities to easily adapt to the microservice
environment. Specifically, two questions must be addressed: 1)
How to effectively allocate power and fully utilize the energy-
saving opportunities brought by IAV; 2) How to get rid of the
power control overhead and tackle the challenge of µs-scale
management to fit to users’ fleeting requests.

IV. THE ANT-MAN FRAMEWORK

To address the above issues, we propose ANT-Man, an Auto,
Native and Transparent Management framework that is built
to be cloud-native. Figure 7 gives an overview of ANT-Man.
It highlights three function modueles detailed below:

1) Auto-Power Budgeting (APB): Our design starts by ex-
ploiting the optimization opportunities at the application

(a) Transition delay of decreasing
Vdd at various levels.

Memcached
𝑽𝒅𝒅-Down 𝑽𝒅𝒅-Up

(b) Vdd transition delay vs.
memchached execution time.

Figure 6: Analysis of DVFS transition delay.

layer. The APB module aims to quickly capture the
IAV by analyzing the performance-power features and
the target SLO. Meanwhile, it proactively determines
differentiated power budget for each microservice rather
than iteratively compares the power usage with the total
budget to mitigate the macro control latency.

2) Native Performance Scaling (NPS): The main purpose of
the NPS scheme is to eliminate the power management
latency at the bottom execution environment (micro
control latency). It implements a daemon process to
directly regulate on-chip VRs through bypassing the OS-
associated management. It defines key model-specific
registers to facilitate fast on-chip voltage transition.

3) Transparent Mapping: ANT-Man coordinates APB and
NPS through a user-transparent interaction mechanism. It
implements a software tag (s-tag) for tracking the varying
characteristics of microservice. Meanwhile, it deploys a
hardware tag (h-tag) for per-microservice power control.
Eventually, it allows a datacenter to oversee microservices
and fast manage their power for better design tradeoff.

Note that ANT-Man’s agile power management approach is
not limited to only the microservice programming style. It can
be applied to multi-threaded or massage-passing applications.
Adjustments will need to be made, such as re-defining appro-
priate software tags in that particular computing environment.

A. Auto-Power Budgeting

The APB scheme splits traditional power budgeting into
two sub-tasks: 1) Fast Model Generation, which quickly
builds the model for expressing intra-application variability; 2)
Differentiated Power Allocation, which automates the power
budget allocation for influential microservices.

…Container
𝜇Service 1

Container
𝜇Service n

Container Orchestrator

APB…MasterDeployment

NPSKernel Device drivers …

Off-Chip VR

Core Core Core

Core
VR

Core
VR

Core
VR

VR VR VR

Hardware

Fast Model Generation

Differentiated Power Allocation

On-chip Voltage Regulators

Native Performance Scaling

User Level
Kernel

… Native
Daemon

…

Microservice Processes
Tags

Decider Allocator

Constructor CalibratorTransparent Tagging
.s-tag: {𝑚𝑠!",𝑝𝑟𝑖𝑜, ∇𝑝𝑜𝑤𝑒𝑟}
.h-tag: NPS-MSR

Auto-Power Budgeting

Figure 7: An overview of ANT-Man’s key components.

L LM M MH H
5.0
2.5
0.0
2.5
5.0

pe
rf

.-p
w

r.
 c

or
r.

de

la
y/

po
w

er

(a) Dist. of perf./pwr. patterns
under five load levels.

… …

Similarity<5%

Training Data

Test Data

1

2

3

(b) Decision tree based
model construction.

Figure 8: Automated model generation.

Fast Model Generation: Establishing a set of performance-
power models in a highly dynamic environment with massive
microservices can be challenging. It is impractical to specify a
unique model for each service and maintain an exhaustive list
of models covering all their states. Nevertheless, we observe
that the load level of a microservice can be an effective
indicator for its performance-power correlation. According to
the Central Limit Theorem [6], we find that the performance-
power correlation of a microservice at different ranges of users’
load can achieve a confidence level of 95%. As shown in
Figure 8-(a), we measure the performance-power correlations
under different load levels using web service statistics [63] and
present the distribution of the slope of the performance-power
curves. We can note that the performance-power correlation
patterns under given input load level are highly similar, where
the input loads only have five levels. Therefore, we assume
that the performance-power correlation of a microservice can
be expressed as a piecewise function of users’ load state. By
constructing the model with finer-grained load levels, one can
approximate the performance-power correlation with acceptable
or very high accuracy in a fast and efficient manner.

We leverage a widely used learning-based technique,
namely decision tree algorithm [45] to automate the model
construction process as shown in Figure 8-(b). We ex-
tract training data and test data from real-world running
logs. The log file consists of time series of data pairs

Power reduction: ∆𝒑𝒂 < ∆𝒑𝒃 < ∆𝒑𝒄 , Impact on Delay: ∆𝒅𝒂 > ∆𝒅𝒄 > ∆𝒅𝒄

Pattern A
Pattern B
Pattern C

Tier 1 (highly critical)

Tier 2 (critical)

Tier 3 (less critical) Layer ID Reduction Container ID

S-tag S-tag S-taga1
a2
a3

𝒅𝒂𝟑𝒅𝑩𝑨𝑺𝑬𝒅)𝟐𝒅𝑩𝑨𝑺𝑬
Delay Delay0

Min

Max

0

Min

Max

Delay0

Min

Max

𝒅𝑩𝑨𝑺𝑬 𝒅𝒂𝟏

∆𝒑𝒄
∆𝒅𝒂

a3
Pattern B Pattern CPower Power

a1
Pattern APower

∆𝒑𝒂 ∆𝒑𝒃
a2

∆𝒅𝒃 ∆𝒅𝒄

Figure 9: The mechanism for ranking microservices.

〈response_time, frequency, user_load〉. It shows the re-
sponse time of requests under different voltage/frequency
settings and various user loads. The training data is first fed
into a module¶ running the algorithm; then the algorithm
interactively divides· the training data into two branches until
the target curves on the two leaf nodes become close, namely,
the difference (expressed as the mean error) between them
is less than 5%. After that, the test data is used to verify¸
the model. We choose a decision tree algorithm for several
reasons. First, it does not require prior knowledge about the
dependencies between target profiles and load quantity, making
it applicable for services where load changes frequently. Second,
the decision tree has been shown to be especially effective in
classifications. Third, it supports fast model calibration.

Our model constructor is designed to self-optimize itself over
the lifetime. To be specific, a calibrator continuously compares
the estimated values with the actual execution data. If the error
exceeds a given margin (e.g., 5% [6]), it will rebuild the leaf
node. Once a service changes greatly or a completely new
service comes, it will progressively update its model in the
following iterations. The above process only introduces minor
overhead. For updating a leaf node, the program complexity is
O(1) since it maintains an up-to-date log for reconstruction.
The algorithm complexity for rebuild a model (adding a new
tree) is O(n) [26] as it involves data acquisition and processing.
However, the latter process rarely happen in a real cloud.

Differentiated Power Allocation: ANT-Man adopts a dif-
ferentiated power allocation scheme, as depicted in Figure 9.
The process of power budget allocation is mainly driven by
the power/performance characteristics as well as the target
SLO (e.g., d_BASE in the figure). The slope of a line indicates
the performance-power correlation, and the endpoint on the
x-axis is the worst-case execution time of the microservice
running at the lowest speed. In other words, a diagonal dashed
line actually represents the case that the response delay of
microservice changes from 0 to the maximum allowable value
(the power demand declines from the most to the least). It is
a critical boundary that one can achieve the most aggressive
power reduction without violating the SLO. In both Pattern A
and Pattern B, it ultimately worsens the SLO after aggressive
power reduction. In contrast, it is safe to reduce the power of
services with Pattern C since they never exceed the worst delay.
Compared with Pattern B, the slope in Pattern A is less than

the critical baseline, which means microservices with Pattern
A are more sensitive to power reduction. Overall, microservices
with Pattern A is more critical than Patterns B and C.

We determine the power assignment among massive mi-
croservices based on their patterns. As shown in Figure 9,
when a power violation occurs, ANT-Man will first de-allocate
services from a lower-influence (less critical) queue. Meanwhile,
we analyze the influence within the same queue by comparing
their power reduction potential factor which is calculated as
the slope multiplying their absolute power usage. To sum up,
if there is a power peak, ANT-Man will reclaim the power
from the lowest-influence services.

It is worth mentioning that ANT-Man can work together
with microservice scheduling schemes. For example, by smartly
co-locating microservices with similar priority to certain CPU
core, one can improve the effectiveness of differentiated power
allocation. We leave this question for our future research.

B. Native Performance Scaling

The goal of the native performance scaling (NPS) module is
to quickly change the performance state of the actual running
process after budgeting the total power for each microservice.
It contains an NPS daemon process and a system call in the
kernel to activate the on-chip Voltage Regulators (VRs). It
also defines an NPS_MSR (NPS model-specific register) to
facilitate the call of the NPS daemon process.

NPS Service Console: As shown in Figure 11, systems
have implemented several power management governors such
as userspace [75] in the kernel layer. The mechanism behind
these governors leverages the acpi-CPUFreq interface [75] to
control the on-chip VRs via specific power management MSRs
(PM_MSR) such as Intel IA32_PERF_STATUS_MSR [2]. Then
the on-chip VRs change the frequency of the processor. With
reduced frequency, the voltage can be decreased, leading to a
cubic drop in power. Existing techniques often incur over 10
milliseconds long period of resuming runtime information [14],
[15]. Instead, NPS directly controls the on-chip VRs without
the above complex procedures. It implements the NPS_MSR
to facilitate V/F (voltage/frequency) scaling.

Customized MSR: We devise NPS_MSR. It is defined per
hardware thread, aiming to associate each microservice with
high-speed on-chip VR transition. As shown in Figure 10, it
is a hardware register with 4 bits. The last bit is a dirty bit
that reflects whether we need to update current V/F setting.
A dirty bit of 1 means current V/F state needs to update.
The NPS_MSR register uses the remaining bits to convey the
desired V/F setting. It leverages only 3 bits to inform the
target V/F setting since the processor only supports a few
discrete V/F configurations. As the OS or VM orchestrator
swaps the thread of a microservice onto a core, it will check the
microservice’s requirement on V/F setting. It writes the dirty bit
with 1 if this microservice requires different V/F settings, and
the target V/F setting is loaded into bit[4:1]. Figure 10 shows
the implementation of NPS_MRS on Intel microprocessor. We
can use the reserved bits of IA32PQR_ASSOC_MSR in its
Cache Allocation Technology [8] to define the NPS_MSR.

𝑝 ! 𝑝 " 𝑝 #…

Hardware Tag：NPS_MSR (64-bit)

1 0
DirtyV-F Setting

34
Reserved

Figure 10: The hardware structure of NPS_MSR.

Daemon Process: The NPS module runs a daemon process,
namely a background process on the local server side. This
process starts at the boot time of the system and stops when
the system terminates. It keeps inquiring the dirty bit of
NPS_MSRs. If the dirty bit is 0, it keeps listening. Otherwise, it
will call the sys_nps_pm to execute the V/F transition operation.
As shown in Figure 10, the sys_nps_pm writes the target V/F
setting (bit[4:1] of NPS_MSR) into the PM_MSRs. After that,
the underlying hardware transfers the clock and changes voltage
to the target. Comparing to existing implementations such as
Xen power manager [14], [15], NPS can bypass the micro
execution latency through fast V/F transition.

C. Transparent Mapping Mechanism

The transparent mapping mechanism is the key to build the
cross-layer power management abstraction of ANT-Man. It
gracefully coordinates the function of APB and NPS modules
by placing and capturing special identifying tags.

Tagging Mechanism: Every on-the-fly microservice in our
design is associated with a light-weight software tag (s-tag)
and a hardware tag (h-tag). The h-tag is implemented with the
NPS_MSR depicted in Section 3.4. Its main purpose is to speed
up the per-microservice V/F transition. ANT-Man leverages
s-tag to track the execution status as well as power assignment
of massive microservices. Compared with h-tag, implementing
s-tag is a little bit more tricky. A microservice is running as a
container and then these containers run on a cluster of hosts.
Due to the huge quantity of containers, cluster operators always
leverage an orchestration system to configure their execution
and obtain the information of these containers. Thus, one can
implement s-tag based on the existing container orchestration
system used like docker swarm [13] and Kubernetes [10]. It
only requires minor software modification. Taking Google’s
kubernetes as an example, we can assign a unique s-tag to a
container by describing a specific deployment in the YAML file
and monitor its load variance through adding extra observing
properties with kubectl get pods.

In detail, in order to distinguish different microservices, a
unique s-tag is assigned to each microservice by the centralized
container manager like kubernetes [10] when it starts execution.
In other words, an s-tag is always bounded to a specific
microservice. It has been written into the docker’s data region
when initiating the associated docker. The s-tag travels along
with the microservice during its whole lifetime. Once a
microservice completes its execution and exits, part of the s-tags
are freed to minimize space. Some s-tags need to be preserved
to take advantage of the temporal locality to accelerate control.

User Application

Voltage
Regulator

Clock fwk Core Chiplet

PM_MSR

… …Transition
Target

Existing Power Management (PM)

Runtime
ResumeGovernor

PM QoS (Over 10 ms)NPS Service
Console

OS Kernel

Hardware

ACPI-
CPUFreq

NPS_MSR

DPLL

CPMs
Adjust Freq.

Figure 11: The main components of NPS.

S-tag Frequency
st1 freq1

… …
st2 freq2

OS Kernelh-tag1: NPS_MSR
h-tag2: NPS_MSR
h-tag3: NPS_MSR
h-tag4: NPS_MSR NPS

1

5

2
3 4

1
23

4

st1
Stack S-tag Frequency

freq1

… … …
s2 st2 freq2
s1

Process Stack Address
S-tag Layer Power

st1 L1 pwr1

… … …
st2 L2 pwr2

Microservice Priority

Desired
Frequency

APB

Figure 12: The data flow and invocation path of NPS.

For example, once a influential microservice restarts after last
termination, it will be assigned with the same s-tag to avoid
repeating the same performance-power modeling process.

Control Flow: Figure 12 illustrates the control flow in the
ANT-Man framework. Before each microservice starts running,
ANT-Man has computed a power allocation table through the
input of a influence table¬. Each row in the table is associated
with a microservice by attaching with the s-tag. ANT-Man
transfers the power table into a frequency table­ with the
model offered by the APB module. The frequency table is sent
to the operating system® to make scheduling decisions. OS
writes the frequency into the stack space of each microservice
in accordance with their s-tag¯ when scheduling it onto the
CPU. Thus, OS associates each microservice with their logic
thread through s-tag. Before a microservice starts execution,
OS kernel assigns¶ a hardware thread to it and triggers· the
V/F transition of this hardware thread through NPS_MSR. As
NPS keeps inquiring the NPS_MSRs, it captures the changes
and re-configures¸ the V/F of the core running the hardware
thread to desired setting. Once changing the V/F setting, the
NPS exits¹ intermediately. Eventually, the stack space of
target microservice is calledº onto OS. Thus, the microservice
eventually executes under the desired frequency.

V. EXPERIMENTAL METHODOLOGIES

We build a proof-of-concept system and implement a
prototype of ANT-Man on real machines. Specifically, we
realize our NPS scheme on a Dell PowerEdge R730 server.
The server has a 6-core CPU (Intel Xeon E5-2620, 2.4GHz)
with Ubuntu 14.04 installed as the operating system. The
processor of the server supports per-core DVFS with operating
frequencies from 1.2GHz to 2.4 GHz at the interval of 0.1GHz.

Table I: Testbed configuration in our experiment.

Node Role Running MS Description

Swarm manager Zipkin/Jaeger Providing web interface for observing.

Power worker Observed MS Observing MS at various V/F settings.

Normal workers Other MS Excluding other influence factors.

Cluster’s Server Configurations

Cluster 4 worker nodes (total 24 cores) + 1 manager node.

Server Dell R730 6-core, 2.4 GHz Intel Xeon CPU E5-2620 v3.

Host OS Ubuntu 14.04.31-generic kernel, docker 18.06.1-ce.

Table II: The evaluated power management schemes.

Scheme Brief Description

ANT-Man Our proposal.

PC Application-specific mgmt. considering power

TC Application-specific mgmt. considering performance (SLO)

CFP Application-specific mgmt. considering power-perf behavior

CAP Application-unaware power management.

With Linux tool turbostat, we can read the dynamic power
of every server. We pin the container running the observed
microservice to a specific core. Meanwhile, we leverage the
reserved bits in the IA32_PQR_ASSOC_MSR [8] as our
NPS_MSR. With library function daemon(), we implement the
NPS daemon process in the kernel. We also add the sys_nps_pm
into the reserved system call table. For comparison, we also
use the userspace governor, which presents the conventional
power management deployed in Linux.

We test an industrial microservice application named
TrainTicket [79] and an academic microservice benchmark
named DeathStarBench [31]. To establish the performance-
power model, we respectively run them on a cluster as shown
in Table I with docker swarm. The cluster contains 1 manager
node and 4 worker nodes (in Table I) with 100 watts nameplate
power per server. All the servers are connected to a FAST
FSG116 network switcher to ensure high-speed network among
microservices. The manager node provides web interfaces for
gathering timing data of each microservice. We write several
Python programs to respectively send requests accessing the
Advanced Search service in TrainTicket and compose-post
service in SocialNetwork. We leverage the time-tracing tools
like Zipkin and Jaeger to collect each microservice’s response
delay. For power and frequency collection, we use turbostat.

We compare our design with other four kinds of the
present power management schemes as summarized in Table
II. Among those, Capping (CAP) is a representative peak
power management technique similar to prior work [57], which
only scales down the overall servers’ active power to shave
peak power. Power-driven Capping (PC) represents a group
of application-aware schemes that only allocates power in
accordance with individual power consumption [67]. Instead,
Time-driven Capping (TC) is an approach based on the response
delay or tail latency of each application [74]. Both PC and

1.2

1.6

2

2.4

0%
20%
40%
60%
80%
100%

L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H
basic config order order2 price route seat station ticketinfo train travel travel2

Fr
eq

ue
nc

y(
G

H
z)

Fr
eq

. D
is

tr
ib

ut
io

n 1.2GHz 1.4GHz 1.6GHz 1.8GHz 2.0GHz 2.2GHz 2.4GHz mean

Figure 13: The frequency distribution of different microservices under L(Low), M(Medium) and H(High) traffics.

Figure 14: The influence of load levels.

Self-calibration

Figure 15: The self-calibration process of ANT-Man.

TC overlook the association between power variance and
performance. Few existing methods like CFP also consider the
profile of performance and power, but they neglect the dynamic
changes of application execution states. All these mechanisms
are too coarse-grained to manage power at microsecond scale.

VI. EVALUATION RESULTS

A. Evaluating the Auto-Power Budgeting

Effectiveness Analysis: It is highly desirable if ANT-Man
could assign flexible V/F for different microservices at different
load levels. In Figure 13, we present the frequency distribution
of 12 microservices associated with Advanced Search at low
(L), medium (M) and high (H) load levels. In the figure, the
stacked bar plot presents the distribution of different execution
frequency and the line plot depicts the average execution
frequency of different microservices. The result shows that
travel microservice always executes with higher frequency due
to its higher priority compared to the others. In contrast, station

0

10

20

30

ba
si

c
co

nf
ig

or
de

r
or

de
r2

pr
ic

e
ro

ut
e

ro
ut

e2
se

at
st

at
io

n
tic

ke
t

tr
ai

n
tr

av
el

tr
av

el
2

A
vr

ag
e

Er
ro

r(
%

) mae_power mae_delay

(a) TrainTicket.

0

10

20

30

co
m

p
m

ed
ia

po
st

gr
ap

h
te

xt ui
d ur
l

us
er

m
en

t
us

er
t

ho
m

eA
ve

ra
ge

 E
rr

or
(%

) mae_delay mae-power

(b) SocialNetwork.

Figure 16: The results of accuracy analysis.

frequently runs at the lowest frequency. Most of the time, the
average executing frequency changes as load level varies.

Note that load levels can have a great impact on microservice
power demand. To illustrate this, we show detailed running
statistics of config, train and basic in Figure 14. We choose
these three microservices since their priority value reversely
changes with load variation. We can see that the way power
demand changes in train is different from config and basic.
As the priority value decreases (a result from load increase),
train incurs more execution delay due to performance scaling.
However, its power demand increases instead as shown in
the figure. It is mainly because the impact of load increase
outperforms the impact of performance scaling for train. In our
design, ANT-Man can automatically identify the optimal power
allocation strategy based on the priority of each microservice.

Accuracy Analysis: It is critical to examine whether our
model constructor can calibrate itself with time-varying load
levels. In Figure 15, we demonstrate a piece of self-calibration
process in our framework. Taking config as an example, we
compare the response delay of obtained from the performance-
power model and a real running log. We feed ANT-Man with
an initial performance-power model when it starts. Therefore, at
the beginning of the experiment, the response delay computed
with performance-model is always equal to the actual monitored
value. When the first load surge comes at the 61st second, our
system detects the difference between the actual delay and
the computed delay. Consequently, it takes a few seconds to
rebuild the performance-power model (self-calibration). The
reconstruction also happens at the 121st second. Remarkably, in
the following timestamps when the average traffic drops at the
181st second and the 241st second, no calibration is performed.
This is because our system has already built a decision tree
with necessary leaf nodes associated with different load levels.

ANT-Man maintains a fairly accurate performance-power

Figure 17: The comparison between NPS and userspace governor.

0
0.2
0.4
0.6
0.8

1

PB HPB MPB LPB

N
or

. P
ow

er

Saving Consumption

(a) TrainTicket.

0
0.2
0.4
0.6
0.8

1

PB HPB MPB LPB

N
or

. P
ow

er

Saving Consumption

(b) SocialNetwork.

Figure 18: The results of energy saving.

model to instruct microservice-level power assignment. Figure
16 shows our investigation of model generation accuracy. We
compute the mean absolute error (MAE) [21] between the
predicted value and the measured value. We normalize our
results to the measured value. We observe that the MAE
with respect to power demand is always less than 2%. The
MAE regarding to response delay is roughly around 10%. We
do see inaccurate predictions (e.g., the result of media and
usert exceeds 20%). The reason for this inaccuracy is that
it is difficult for us to collect the short response delay. One
may leverage other micro-architectural metrics such as Million
instruction per second (MIPS) to improve accuracy.

B. Testing the Native Performance Scaling

Fast power regulation of each microservice is important.
This part examines the impact of DVFS speed on ANT-Man
at the server level. We compare our NPS module with the
userspace governor [75] in the existing kernel. We trigger
frequent V/F adjustment through changing the load every 30
seconds. Figure 17 shows our results. The solid lines present
the actual variation and the dotted lines plot the overall trend. It
is evident that NPS can always transfer voltage and frequency
fast. However, by comparing NPS with userspace governor,
we can see that there is a obvious transition delay of userspace
governor (as highlighted by the circle in the second and forth
columns). The transition latency is about 20 milliseconds long.
As shown in the figure, such transition delay can result in
unexpected peak power or prolongs the response delay. The
peak power might increase the risk of datacenter overload

15

20

25

30

ANT PC TC CAP CFP

D
el
ay
(m
s)

Low Normal High

20

22

24

26

ANT PC TC CAP CFP

D
el
ay
(m
s)

mean 90th 95th 99th

(a) TrainTicket.

0

2

4

6

ANT PC TC CAP CFP

D
ea
ly
(m
s)

Low Normal High

4.6
4.8
5

5.2
5.4

ANT PC TC CAP CFP

D
el
ay
(m
s)

mean 90th 95th 99th

(b) SocialNetwork.

Figure 19: Variation of response delay with load level data.
similar to power attack [38]. In addition, the long response
delay might compromise the effectiveness of ANT-Man.

C. The Extra Energy Saving of ANT-Man

We further investigate how much energy ANT-Man can
save under different power over-subscription scenarios as well
as load levels. In the experiment, we consider five power
provisioning scenarios, namely 100% (PB), 90% (HPB), 85%
(MPB) and 80% (LPB) of the nameplate power. In Figure
18, ANT-Man can save power for up to 40% in the PB
scenario. It is significant since conventional power management
approaches can hardly reduce power without any degradation
on performance of the OLDI applications. Even when power
budget decreases, ANT-Man can still achieve about 20% more
power savings for TrainTicket and 10% for SocialNetwork.

D. Comparison with the Present Schemes

Both mean response delay and tail latency are important
metrics for meeting the SLOs of applications. In Figure 19,
we evaluate ANT-Man using these two metrics under different
load levels. The mean response delay of ANT-Man (marked
with ANT in the figures) is shorter than the others. Note that
the delay of PC is similar to ANT if the load level is low.

0

200

400

600

ANT PC CFP CAP TC

ED
P(
K
J*
s)

L N H

(a) TrainTicket.

0

10

20

ANT PC CFP CAP TC

ED
P(
K
J*
s)

L N H

(b) SocialNetwork.

Figure 20: The EDP of different schemes.

This is because PC slashes the power of the same group of
microservices to reclaim the power budget. Nevertheless, with
higher loading, the delay of traditional power management
schemes increase rapidly since they allocate power without the
awareness of IAV. They cannot take advantage of microservices
whose execution is less sensitive to power reduction. In the
rightmost figure, we compare the mean response delay and
tail latency under different schemes at high load. It shows that
TC has the worst SLOs while ANT-Man yields the best. For
example, the 95th tail latency of requests under ANT-Man
is 9.7%-12.5% less than baseline TC. We also evaluate the
energy delay production (EDP) of our design. EDP offers equal
"weight" to either energy or performance degradation. In Figure
20, ANT-Man has the best performance-power trade-off while
TC has the worst. Our results show that ANT-Man has 2%-
40.1% of EDP lower than the others. Summarily, as compared
to the conventional power management designs, ANT-Man
makes better use of the limited power resources.

VII. RELATED WORKS

A. Power Management in Datacenters

In the last decades, datacenter power management has been
examined to some depth [25], [35], [36], [38], [40], [49], [57],
[58], [72]. Broadly, we classify existing techniques into three
categories: aggressive off-peak provision, energy-proportional
design, and user-specific optimization. Aggressive off-peak
provision assumes that power demand surge does not occur
very often [29], [36]. Thus datacenters could over-subscribe
the power infrastructure and use power peak shaving in emer-
gency [35], [36], [38], [49]. Energy-proportional design aims at
improving server efficiency at low and moderate utilization [18],
[54]. It is often possible to achieve higher energy proportionality
by tuning various power modes [54], [55] or consolidating
servers [53], [70]. Since many workloads are sensitive to the
latency of power-saving mode [18], [27], user-specific power
optimization frameworks have been proposed. These proposals
incorporate end-to-end metrics and SLO targets from OLDI
applications into power-saving decisions [38], [40], [54].

All the above designs could save considerable power, but they
also introduce millisecond or second level control latency. In
Table III, we categorize the state-of-the-art proposals into four
classes based on control delay. Most of the power management
frameworks on production systems such as Dynamo [72],
battCapping [36] and multi-level shaving [61] have a relatively
high latency of over 10 seconds. They focus more on optimizing

Table III: The state-of-the-art power control techniques.

Name Delay
Service

Specific
Hardware Source

Fastest Adrenaline [40] ≥10 ns 4 Extra Circuit UMich

Faster

Adrenaline [40] us∼ms 4 DVFS UMich

µDPM [25] 1ms 4 Sleep State UCR

Caloree [59] 2 ms 8 big.LITTLE Chicago

PowerNap [57] 1-10 ms 8 Sleep State UMich

EEFL [37] Few ms 4 Duty Cycle Rutgers

Fast

Rubik [43] 500 ms 4 DVFS MIT

Pegasus [54] 5 s 4 DVFS Stanford

Dynamo [72] 10 s 8 DVFS Facebook

BattCap [36] ≥10.56s 8 Battery Microsoft

Slow
Multi-level

Shaving [61]
Few min 8 P-state HP

the overall utilization of datacenters with less awareness of per-
user or per-application requirements. Some application-specific
optimizations like Rubik [54] still incur inactive-to-active delay
caused by changing power-saving modes. Adrenaline [40] is
one of the very-low-latency techniques which could pinpoint
and boost certain tail queries at submicrosecond level. However,
it requires hardware additions and it also needs several
milliseconds to execute frequency transition.

There have been another line of work on managing renewable
energy in green datacenters. For example, Blink [66] proposes
to leverage fast power state transition to track renewable power
variation. It is still coarse-grained power adaptation. Many
prior studies use mechanical power switch [33], [48], [50] to
select between different datacenter power supplies. The transfer
time is short (typically at the microsecond level). However,
these schemes are not suitable for management microservice
energy consumption. Frequently switching workloads can also
cause device ware-out issue. In addition, there are prior works
focusing on the output speed of power supply [41], [52]. It
may take several seconds to ramp power up as load changes.
Since most renewable energy-powered datacenters use energy
storage devices to handle power emergency [51], there is no
need to perform super-fast load power tracking when renewable
power supply changes. Although one can predict application
characteristics to improve efficiency [34], it cannot provide
highly granular power management in the microservice era.

B. System Researches on Microservices

Microservice is gaining popularity in cloud datacenters [3],
[28], [42]. Most prior works emphasize on designing mi-
croservice applications [31], [79], or enhancing the robustness
of this software architecture itself [28], [31], [49], [68]. A
few proposals have focused on improving the performance
of microservices [16], [30]. For example, Yu et al. focused
on predicting QoS violations among massive microservices
[30], [77]. Wenisch et al. conducted a series of researches on
optimizing microsecond-scale services [69]. Neverthelees, very
few works consider the power management of microservices.

Chou et al. [25] used prediction to bypass the OS-related
transition delay. The proposed scheme named µDPM simply
prolongs the execution of microservices without the consider-
ation of their performance-power correlation. Meanwhile, it
overlooks the macro control latency at the datacenter level.
Microservice scheduling optimization might further facilitate
power management and we will explore this in our future work.

Prior works have recognized the need for power control at
a finer granularity. On the local server side, proposals [24],
[56], [60] like Power Container [67] could assign the power
to each running tasks on multi-cores. However, they mainly
focus on how to model power for different tasks. Additionally,
fine-grained power control techniques [44], [73], [76] have
been proposed. on the datacenter side, per-application [38],
[54] or per-request [40] power management may guarantee the
SLO of OLDI workloads. For example, CFP [38] implements
per-application power assignment in accordance with user
preference. PoDD [78] is a hierarchical and distributed power
management system for coupled workloads in the super-
computing domain. Still, these works are not agile enough
for microservices no matter at the global level or local level.

VIII. CONCLUSIONS

The microservice architecture is redefining the cloud environ-
ment today. For datacenter architects, it opens up a new door
for pushing the limit of system efficiency. In this paper, we
show that such a great opportunity cannot be exploited unless
the power management scheme takes into account microservice
characteristics and becomes cloud-native. We propose ANT-
Man, a novel framework that provides the necessary abstraction
and optimization for highly efficient power management in
the microservice environment. We show that such a agile,
coordinated power management solution can yield a better
power/performance trade-off. ANT-Man is applicable to many
large-scale systems that requires granular power management
under emerging applications. We expect that our work will
provide valuable insights for both academics and practitioners
in the design of the next-generation cloud infrastructure.

ACKNOWLEDGMENT

We thank all the reviewers for their valuable comments and
feedbacks. This work is sponsored by the National Natural
Science Foundation of China (NSFC No. 61972247). This work
is also supported in part by NSF grants CCF 1822985 and
CCF 1943490 (CAREER). Corresponding author is Chao Li
from Shanghai Jiao Tong University.

REFERENCES

[1] “Cloud native computing.” [Online]. Available: https://www.cncf.io/
[2] “Intel 64 and ia-32 architectures software developer’s manual,”

Intel, 2006. [Online]. Available: https://www.intel.com/content/dam/
www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-instruction-set-reference-manual-325383.pdf

[3] “Introduction to microservices,” Inc. Chris Richardson of Eventuate,
2015. [Online]. Available: https://www.nginx.com/blog/introduction-to-
microservices/

[4] “Introduction to dubbo,” Baeldung, 2018. [Online]. Available:
https://www.baeldung.com/dubbo

[5] “Alibaba cluster data,” 2019. [Online]. Available: https://github.com/
alibaba/clusterdata

[6] “Central limit theorem,” 2019. [Online]. Available: https://en.wikipedia.
org/wiki/Central_limit_theorem

[7] “Grpc: A high performance open-source universal rpc framework,” 2019.
[Online]. Available: https://grpc.io/

[8] “Introduction to cache allocation technology in the intel xeon processor
e5 v4 family,” 2019. [Online]. Available: https://software.intel.com/en-
us/articles/introduction-to-cache-allocation-technology

[9] “Jaeger,” 2019. [Online]. Available: https://www.jaegertracing.io/
[10] “Kubernetes,” 2019. [Online]. Available: https://kubernetes.io/
[11] “Memchached,” 2019. [Online]. Available: https://hub.docker.com/_/

memcached
[12] “Microservices on aws,” Amazon Web Services, 2019. [Online].

Available: https://docs.aws.amazon.com/aws-technical-content/latest/
microservices-on-aws/microservices-on-aws.pdf

[13] “Swarm: A docker-native clustering system,” 2019. [Online]. Available:
https://github.com/docker/swarm

[14] “Xen credit scheduler,” 2019. [Online]. Available: https://wiki.xen.org/
wiki/Credit_Scheduler

[15] “Xen power management,” 2019. [Online]. Available: https://wiki.
xenproject.org/wiki/Xen_power_management

[16] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder,
“Performance evaluation of microservices architectures using containers,”
in Proceedings of the 14th IEEE International Symposium on Network
Computing and Applications (NCA), 2015.

[17] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the
killer microseconds,” in ACM Communication, 2017.

[18] L. Barrosoet, U. Hölzle, and P. Ranganathan, “The datacenter as a
computer: An introduction to the design of warehouse-scale machines,”
in Synthesis Lectures on Computer Architecture, 2018.

[19] M. Becker and S. Chakraborty, “Measuring software performance on
linux,” in ArXiv, 2018.

[20] A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, and S. Sankar, “The
need for speed and stability in data center power capping,” in Proceedings
of the International Green Computing Conference (IGCC), 2012.

[21] A. Botchkarev, “Performance metrics (error measures) in machine
learning regression, forecasting and prognostics: Properties and typology,”
in ArXiv, 2018.

[22] J. Brutlag, H. Hutchinson, and M. Stone, “User preference and search
engine latency,” 2008.

[23] A. Buck, “Microservices architecture style,” 2019. [Online].
Available: https://docs.microsoft.com/en-us/azure/architecture/guide/
architecture-styles/microservices

[24] I. Canturk and M. Margaret, “Phase characterization for power: Evaluating
control-flow-based and event-counter-based techniques,” in Proceedings
of the 12th IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2006.

[25] C. Chou, L. Bhuyan, and D. Wong, “µdpm: Dynamic power management
for the microsecond era,” in Proceedings of the 25th IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2019.

[26] T. Cormen, “Introduction to algorithms,” in MIT Press, 2009.
[27] J. Dean and L. Barroso, “The tail at scale,” in ACM Communication,

2013.
[28] D. Escobar, D. Cardenas, R. Amarillo, E. Castro, K. Garcés, C. Parra,

and R. Casallas, “Towards the understanding and evolution of monolithic
applications as microservices,” in Proceedings of the 42th XLII Latin
American Computing Conference (CLEI), 2016.

[29] X. Fan, W. Weber, and L. Barroso, “Power provisioning for a warehouse-
sized computer,” in Proceedings of the 34th ACM/IEEE Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2007.

[30] Y. Gan, M. Pancholi, D. Cheng, S. Hu, Y. He, and C. Delimitrou, “Seer:
Leveraging big data to navigate the complexity of cloud debugging,” in
Proceedings of the 10th USENIX Conference on Hot Topics in Cloud
Computing (HotCloud), 2018.

[31] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, and K. Hu,
“An open-source benchmark suite for microservices and their hardware-
software implications for cloud & edge systems,” in Proceedings of the
24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[32] J. Garrison and K. Nova, “Cloud native infrastructure: Patterns for
scalable infrastructure and applications in a dynamic environment,” in
O’Reilly Media, 2017.

https://www.cncf.io/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/
https://www.baeldung.com/dubbo
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem
https://grpc.io/
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://www.jaegertracing.io/
https://kubernetes.io/
https://hub.docker.com/_/memcached
https://hub.docker.com/_/memcached
https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/microservices-on-aws.pdf
https://docs.aws.amazon.com/aws-technical-content/latest/microservices-on-aws/microservices-on-aws.pdf
https://github.com/docker/swarm
https://wiki.xen.org/wiki/Credit_Scheduler
https://wiki.xen.org/wiki/Credit_Scheduler
https://wiki.xenproject.org/wiki/Xen_power_management
https://wiki.xenproject.org/wiki/Xen_power_management
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

[33] I. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Parasol and
greenswitch: Managing datacenters powered by renewable energy,” in
Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’13, 2013.

[34] I. Goiri, K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen, J. Guitart,
J. Torres, and R. Bianchini, “Greenslot: Scheduling energy consumption
in green datacenters,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’11, 2011.

[35] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar, “Benefits and
limitations of tapping into stored energy for datacenters,” in Proceedings
of the 38th ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA), 2011.

[36] S. Govindan, D. Wang, A. Sivasubramaniam, and B. Urgaonkar, “Lever-
aging stored energy for handling power emergencies in aggressively
provisioned datacenters,” in Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[37] M. Haque, Y. He, S. Elnikety, T. Nguyen, R. Bianchini, and K. McKinley,
“Exploiting heterogeneity for tail latency and energy efficiency,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2017.

[38] X. Hou, L. Hao, C. Li, Q. Chen, W. Zheng, and M. Guo, “Power grab in
aggressively provisioned data centers: What is the risk and what can be
done about it,” in Proceedings of the 36th IEEE International Conference
on Computer Design (ICCD), 2018.

[39] X. Hou, J. Liu, C. Li, and M. Guo, “Unleashing the scalability potential
of power-constrained data center in the microservice era,” in Proceedings
of the 48th International Conference on Parallel Processing (ICPP),
2019.

[40] C. Hsu, Y. Zhang, M. Laurenzano, D. Meisner, T. Wenisch, J. Mars, and
R. Dreslinski, “Adrenaline: Pinpointing and reining in tail queries with
quick voltage boosting,” in Proceedings of the 21st IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2015.

[41] Y. Hua, C. Li, W. Tang, L. Jiang, and X. Liang, “Building fuel powered
supercomputing data center at low cost,” in Proceedings of the 29th ACM
on International Conference on Supercomputing, ser. ICS ’15, 2015, p.
241–250.

[42] G. Kakivaya, L. Xun, R. Hasha, S. Ahsan, T. Pfleiger, R. Sinha,
and M. Mohsin, “Service fabric: A distributed platform for building
microservices in the cloud,” in Proceedings of the 13th EuroSys
Conference (EuroSys), 2018.

[43] H. Kasture, D. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in
Proceedings of the 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015.

[44] W. Kim, M. Gupta, G. Wei, and D. Brooks, “System level analysis of
fast, per-core dvfs using on-chip switching regulators,” in Proceedings of
the 14th IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2008.

[45] R. O. L. Breiman, J.H. Friedman and C. Stone, “Classification and
regression t rees (monterey, ca: Wadsworth,” in BreimanClassification
and Regression Trees, 1984.

[46] J. Lewis and M. Fowler, “Microservices a definition of this new
architectural term,” 2014. [Online]. Available: https://martinfowler.com/
articles/microservices.html

[47] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Experimental Computer Science, 2007.

[48] C. Li, Y. Hu, J. Gu, J. Yuan, and T. Li, “Oasis: Scaling out datacenter
sustainably and economically,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 7, pp. 1960–1973, 2017.

[49] C. Li, Z. Wang, X. Hou, H. Chen, X. Liang, and M. Guo, “Power
attack defense: Securing battery-backed data centers,” in Proceedings
of the 43rd ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA), 2016.

[50] C. Li, A. Qouneh, and T. Li, “Iswitch: Coordinating and optimizing
renewable energy powered server clusters,” in Proceedings of the 39th
Annual International Symposium on Computer Architecture, ser. ISCA
’12, 2012.

[51] C. Li, R. Wang, D. Qian, and T. Li, “Managing server clusters on
renewable energy mix,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 11, no. 1, 2016.

[52] C. Li, R. Zhou, and T. Li, “Enabling distributed generation powered
sustainable high-performance data center,” in Proceedings of the 2013
IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), ser. HPCA ’13, 2013, p. 35–46.

[53] M. Lin, A. Wierman, L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” in IEEE/ACM Transactions
on Networking (TON), 2013.

[54] D. Lo, L. Cheng, R. Govindaraju, L. Barroso, and C. Kozyrakis, “Towards
energy proportionality for large-scale latency-critical workloads,” in
Proceedings of the 41st ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), 2014.

[55] D. Lo and C. Kozyrakis, “Dynamic management of turbomode in
modern multi-core chips,” in Proceedings of the 20th IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2014.

[56] J. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. Sno-
eren, and R. Gupta, “Evaluating the effectiveness of model-based power
characterization,” in Proceedings of the USENIX Conference on USENIX
Annual Technical Conference (ATC), 2011.

[57] D. Meisner, B. Gold, and T. Wenisch, “Powernap: eliminating server
idle power,” in Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2009.

[58] D. Meisner, C. Sadler, L. Barroso, W. Weber, and T. Wenisch, “Power
management of online data-intensive services,” in Proceedings of the 38th
ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), 2011.

[59] N. Mishra, C. Imes, J. Lafferty, and H. Hoffmann, “Caloree: Learning
control for predictable latency and low energy,” in Proceedings of the
23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2018.

[60] R. Monfort, M. González, X. Martorell, N. Navarro, and E. Ayguadé,
“Decomposable and responsive power models for multicore processors us-
ing performance counters,” in Proceedings of the 24th ACM International
Conference on Supercomputing (ICS), 2010.

[61] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,
“No "power" struggles: Coordinated multi-level power management for
the data center,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2008.

[62] M. Richards, “Microservice vs service-oriented architecture,” in O’Reilly
Media, 2015.

[63] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. Snoeren, “Inside the social
network’s (datacenter) network,” in Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication(SIGCOMM), 2015.

[64] V. Sakalkar, V. Kontorinis, D. Landhuis, S. Li, D. De Ronde, T. Blooming,
A. Ramesh, J. Kennedy, C. Malone, J. Clidaras, and P. Ranganathan, “Data
center power oversubscription with a medium voltage power plane and
priority-aware capping,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’20, New York, NY, USA, 2020, p.
497–511.

[65] S.Frey, C. Lüthje, R. Teckelmann, and C. Reich, “Adaptable service
level objective agreement (a-slo-a) for cloud services,” in Proceeding of
the International Conference on Cloud Computing and Services Science
(CLOSER), 2013.

[66] N. Sharma, S. Barker, D. Irwin, and P. Shenoy, “Blink: Managing
server clusters on intermittent power,” in Proceedings of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVI. New York, NY,
USA: Association for Computing Machinery, 2011.

[67] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen, “Power
containers: An os facility for fine-grained power and energy management
on multicore servers,” in Proceedings of the 18th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2013.

[68] A. Sriraman and T. Wenisch, “µsuite: A benchmark suite for microser-
vices,” in Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), 2018.

[69] A. Sriraman and T. Wenisch, “µtune: Auto-tuned threading for oldi
microservices,” in Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

[70] D. Wong and M. Annavaram, “Knightshift: Scaling the energy propor-
tionality wall through server-level heterogeneity,” in Proceedings of the

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2012.

[71] M. Wu, “Taking the cloud-native approach with microservices,”
2017. [Online]. Available: https://cloud.google.com/files/Cloud-native-
approach-with-microservices.pdf

[72] Q. Wu, Q. Deng, L. Ganesh, C. Hsu, Y. Jin, S. Kumar, and Y. Song,
“Dynamo: Facebook’s data center-wide power management system,” in
Proceedings of the 43rd ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), 2016.

[73] G. Yan, Y. Li, Y. Han, X. Li, M. Guo, and X. Liang, “Agileregulator:
A hybrid voltage regulator scheme redeeming dark silicon for power
efficiency in a multicore architecture,” in Proceedings of the 18th IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2012.

[74] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars, “Powerchief:
Intelligent power allocation for multi-stage applications to improve
responsiveness on power constrained cmp,” in Proceedings of the 44th
ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), 2017.

[75] H. Ye, “Using cpufreq on linux servers to manage power consumption,”
in Lenove Press, 2018.

[76] G. Yu and C. Delimitrou, “Power management of datacenter workloads
using per-core power gating,” in IEEE Computer Architecture Letters
(CAL), 2009.

[77] G. Yu and C. Delimitrou, “The architectural implications of cloud
microservices,” in IEEE Computer Architecture Letters (CAL), 2018.

[78] H. Zhang and H. Hoffmann, “Podd: power-capping dependent distributed
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2019.

[79] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, “Poster:
Benchmarking microservice systems for software engineering research,”
in Proceedings of the IEEE/ACM 40th International Conference on
Software Engineering: Companion (ICSE-Companion), 2018.

https://cloud.google.com/files/Cloud-native-approach-with-microservices.pdf
https://cloud.google.com/files/Cloud-native-approach-with-microservices.pdf

	Introduction
	Backgrounds
	Microservice Architecture
	Cloud Power Management

	Opportunities and Challenges
	Opportunities: IAV-Aware Power Management
	Overview of the Opportunity
	Analyzing the Inter-Application Variability

	Challenges: Cross-Layer Control Latency
	Overview of the Challenge
	The Need for s-Scale Control

	Summary of Design Consideration

	The ANT-Man Framework
	Auto-Power Budgeting
	Native Performance Scaling
	Transparent Mapping Mechanism

	Experimental Methodologies
	Evaluation Results
	Evaluating the Auto-Power Budgeting
	Testing the Native Performance Scaling
	The Extra Energy Saving of ANT-Man
	Comparison with the Present Schemes

	Related Works
	Power Management in Datacenters
	System Researches on Microservices

	Conclusions
	References

