
SJTU-SE346, Spring 2019 

Chao Li, PhD. 

李超 博士 

计 算 机 体 系 结 构 

Computer Architecture 

Lecture 10. Data-Level Parallelism and GPGPU 

第十讲、数据级并行化与GPGPU 



2 

 

Review 

• Thread, Multithreading, SMT 

• CMP and multicore 

• Benefits of multicore 

• Multicore system architecture 

• Heterogeneous multicore system 

• Heterogeneous-ISA CMP 

• Multicore and manycore 

• Design challenges 
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Outlines 

• DLP Overview 

 

• Vector Processor 

 

• GPGPU 
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Throughput Workloads 

• Interested in how many jobs can be completed 

– Finance, social media, gaming, etc. 

 

• CPUs with multiple cores are considered suitable 

 

• Recent years we observe a quick adoption of GPU 
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Data-Level Parallelism 

• DLP: Parallelism comes from simultaneous operations 

across large data sets, rather than from multiple threads 

 

• Particularly useful for large scientific/engineering tasks 

 

SISD SIMD 

Inst. Data Inst. Data 

Results Results 
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Outlines 

• DLP Overview 

 

• Vector Processor 

 

• GPGPU 
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Vector Operation 

•  Can we extend processors with vector “data type” ? 

 

• The idea of vector operations: 

– Read a set of data elements 

– Operate on the element array 

 

1 3 6 8 4 6 2 9 

2 6 7 0 3 6 5 2 
vectors  

A vector is just a linear array of numbers, or scalars 

scalars  
1 

2 
8 

6 
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Vector Instructions 

A vector instruction operates on a sequence of data items 

 

A few key advantages: 

 

• Reduced instruction fetch bandwidth 

– A single vector instruction specifies a great deal of work 

• Less data hazard checking hardware 

– Independent operation between elements in the same vector 

• Memory access latency is amortized 

– Vector instructions have a known memory access pattern 
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Vector Architecture 

Two primary styles of vector architecture: 

 

• memory-memory vector processors  

– All vector operations are memory to memory 

– CDC STAR-100 (faster than the CDC 7600) 

 

• vector-register processors  

– Vector equivalent of load-store architectures 

– Cray, Convex, Fujitsu, Hitachi, NEC in 1980s 
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Key Components 

• A vector processor typically consists of vector units and 

the ordinary pipelined scalar units 

 

• Vector register: 

– fixed-size bank holding a single vector 

– typically holding 64~128 FP elements 

– determines the maximum vector length (MVL) 

 

• Vector register file:  

– 8~32 vector registers 
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Early Design: Cray-1 

Cray-1 

• Released in 1975 

• 115 KW, 5.5 Tons  

• 160 MFLOPS  

 

• Eight 64-entry vector registers 

– 64-bit register 

– 4096 bits in each register 

– 4KB for vector RF 

 

•  Special vector instructions: 

– Vector + Vector, Vector + Scalar 

– Each instruction specifies 64 operations 
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Case Study: VMIPS 

• Vector registers 

– 64-element register 

– Register file has 16 read 

ports and 8 write ports 

 

• Vector functional units 

– 5 fully pipelined FUs 

– Hazards detection 

 

• Vector load-store unit 

– Loads/stores a vector 

– 1 word per clock cycle 
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Case Study: VMIPS 

• Add two vectors 

 

 

• Add vector to scalar 

 

 

• Load vector 

 

 

• Store vector 

 

ADDVV.D   V1, V2, V3    // add elements of V2 and V3, then put each result in V1 

ADDVS.D   V1, V2, F0   // add F0 to each elements of V2 , then put each result in V1 

LV    V1, R1      // Load vector register V1 from memory starting at address R1 

SV    V1, R1      // Store vector register V1 from memory starting at address R1 
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Vectorized Code 

Consider a DAXPY loop: “Double-precision a × X plus Y” (Y= a × X + Y). 
Assume the starting addresses of X and Y are in Rx ad Ry, respectively 

VMIPS code for DAXPY： 

MIPS code for DAXPY： 

~ 600 instructions; 

6 instructions; 

(the vector operation 
work on 64 elements) 
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Multiple Lanes 

• Element n of vector register A is “hardwired” to 

element n of vector register B 

• Using multiple parallel pipelines ( or lanes) to 

produce more than one results per cycle 

 

ADDV    C, A, B 

lanes 
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Vector Instruction Execution 

• Vector execution time mainly depends on: 

– The length of the operand vectors 

– Structural hazards 

– Data dependences 

 

• Start-up time: pipeline latency (depth of the FU pipeline) 

 

• VMIPS’s FU consumes one element per cycle 

– Execution time is about the vector length 

 

• Pipelined multi-lane vector execution 

T vector  = T scalar + (vector length / lane number) - 1 

 



17 

 

Vector Chaining 

• Chaining is the vector version of register bypassing 

– Allows a vector operation to start as soon as the individual 

elements of its vector source operand become available  

LV     v1 

MULV  v3, v1, v2 

ADDV v5, v3, v4 

Mem 

Load Unit 

V1 V2 V3 V5 V4 

MUL ADD 

• Convoy: Vector instructions that may execute together 

– No structural hazards in a convoy 

– No data hazards (or managed via chaining) in a convoy 
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Vector Length Register 

• Vector length register (VLR)  

– Controls the length of any vector operation 

– The value is no greater than the maximum vector length (MVL)  

 

• Use strip mining for vectors over maximum length 

– The first loop do short segment (n mod MVL); 

– All the subsequent segments use VL = MVL 

 

 

 

For ( i=0; i<n; i++) 

 Y[i] = a * X[i] + Y[i] 

vector size depends on n ： 

What to do when vector length is not exactly 64?  
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Vector Mask Register 

• Vector–mask control 

– Provide conditional execution of each element 

– Based on a Boolean vector  (vector mask register) 

– Instruction operates only on vector elements whose 

corresponding entries in the mask register are 1 

For ( i=0; i<64; i++) 

    if (X[i] != 0)  

        X[i] = X[i] + Y[i] 

IF statement in the loop ： 

The IF statement cannot normally be vectorized  
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Outlines 

• DLP Overview 

 

• Vector Processor 

 

• GPGPU 

– Graph Workloads 

– GPU Memory 

– Scheduling 
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General Purpose GPU 

• Graphics processing unit (GPU) emerged in 1999 

 

• GPU is basically a massively parallel architecture 

 

• GPGPU: general-purpose computation on GPU 

– Leverage available GPU execution units for acceleration  

– Became practical and popular after about 2001 

– CPU codes runs on the host, GPU code runs on the device 

 

• GPGPU exposes the massively multi-threaded 

hardware via a high level programming interface 

– NVIDIA’s CUDA and AMD’s CTM 

 

 



22 

 

Graphics Pipeline 

Kayvon Fatahalian, CMU 2011 

Vertices 

Primitives 

Fragments 

Pixels 

Modern GPUs structure their graphics computation in a 
similar organization called the graphics pipeline 
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Graphics Workloads 

Identical, independent, streaming 
computation on pixels 
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Data Parallel Workloads 

operation 

operation 

operation 

operation 

Identical, independent computation on multiple data inputs 
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Processing Data Parallel Workloads 

CPU0 

CPU1 

CPU2 

CPU3 

Program 1 

Program 2 

Program 3 

Program 4 

Split independent tasks over multiple CPUs 

Multiprocessor Approach (MIMD) 
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Processing Data Parallel Workloads 

CPU0 

CPU1 

CPU2 

CPU3 

Split identical, independent task over multiple CPUs 

SPMD Approach (Single Program Multiple Data) 

Program 

Program 

Program 

Program 
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Processing Data Parallel Workloads 

CPU0 

 

 

 

 

 

 

Program 

Split identical, independent task over multiple execution units 

SIMD/Vector Approach – eliminate redundant units 

IF ID 

EX 

EX 

EX 

EX 

WB 

WB 

WB 

WB 

ME 

ME 

ME 

ME 
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Processing Data Parallel Workloads 

CPU0 

 

 

 

 

 

 

Split identical, independent task over multiple execution units 

SIMD/Vector Approach: 1 heavy thread + data parallel ops 
(single PC, single register file)  

EX 

EX 

EX 

EX 

WB 

WB 

WB 

WB 

ME 

ME 

ME 

ME 

Program 
IF ID 
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Processing Data Parallel Workloads 

CPU0 

 

 

 

 

 

 

Split identical, independent task over multiple lockstep threads 

SIMT Approach:  
multiple threads + scalar ops (single PC, multiple register file)  

EX 

EX 

EX 

EX 

WB 

WB 

WB 

WB 

ME 

ME 

ME 

ME 

Program 
IF ID 
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Execution Model 

 Vertex processors 

– Running vertex shader programs 

– Operates on point, line, and triangle primitives 

 Fragment processors 

– Running pixel shader programs 

– Operates on rasterizer output to fill up the primitives 

• Programmer provides a serial task (“shader program”) 
that defines pipeline logic for certain stages 

• Program GPGPUs with CUDA or OpenCL 

– A minimal extension of C/C++ 

– Executes shader programs across many data elements 
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CUDA Parallel Computing Model 

• Stands for Compute Unified Device Architecture (CUDA) 

 

• CUDA  is the HW/SW architecture that enables NVIDIA 

GPUs to execute programs written with C, C++, etc. 

 

• The GPU instantiates a kernel program which executes in 

parallel by a large number of CUDA threads 

 

CUDA threads are different from POSIX threads 
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CUDA Parallel Computing Model 

• Grid: an array of thread blocks 

that execute the same kernel 

– Read/write from global memory 

– Sync between dependent calls 

• A thread block is an array of 

cooperative thread 

– 1~512 concurrent threads 

– Each thread has a unique ID 
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Hardware Execution 

• The GPU hardware contains a collection of multithreaded 

SIMD processors the executes a grid of thread blocks 

 

 

 

 

 

 

 

• The SIMD processor must have parallel function units 

– SIMD Lanes ( # of lanes per SIMD varies across GPUs) 

 

 

 Thread Block Scheduler 

– Assigns thread blocks to multithreaded SIMD processors 

 

 SIMD Thread Scheduler 

– Schedules when threads of SIMD instructions should run 
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Case Study: Tesla GPU Architecture 

• The primary design objective for Tesla was to execute 

vertex and pixel-fragment shader programs on the same 

unified processor architecture 

Host memory 
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Case Study: Tesla GPU Architecture 

• 8 texture/processor clusters (TPCs) 

• 2 streaming multiprocessors (SM) per TPC 

• 8 streaming processor (SP) cores per SM 
 

Geometry 
Controller 

SM SM 

SMC 

Texture Unit 

SM 

SP SP 

SP SP 

SP SP 

SP SP 

I-cache 

MT Issue 

D-cache 

SFU SFU 

Shared Mem 

• SM is a unified graphics 

and computing engine 

– SM executes thread blocks 

 

• Streaming processor (SP) 

– Scalar ALU for a single 

CUDA thread 

– SP core is a SIMD lane 

 

TPC 
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Case Study: Fermi GF100 Architectural Overview 

• Each GPC contains four streaming multiprocessors (SMs) 

 

SM SM SM SM 

Graphics Processor Clusters (GPC)  

SM SM SM SM 

Graphics Processor Clusters (GPC)  

SM SM SM SM 

Graphics Processor Clusters (GPC)  

SM SM SM SM 

Graphics Processor Clusters (GPC)  

L2 Cache 

M
C

 
M

C
 

M
C

 
M

C
 

M
C

 
M

C
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Case Study: Fermi GF100 Architectural Overview 

Streaming Multiprocessor (SM) 

SF
U

 

I-Cache 

Warp Scheduler 

Core Core Core Core 
LD/ST 

LD/ST 

Core Core Core Core 
LD/ST 

LD/ST 

Warp Scheduler 

Dispatch Unit Dispatch Unit 

Register File 

…
 

…
 

…
 

…
 

…
 

…
 

FP unit INT unit 

Operand collector 

Results queue 

Dispatch port 

CUDA core 

Interconnect Network 

Shared memory / L1 Cache 

Texture Cache 

•  A single SM contains 
32 CUDA cores 

• Dual warp scheduler 
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Warps：Schedule Threads in Batches 

• GPUs rely on massive hardware multithreading to keep 

arithmetic units occupied 

 

• SM executes a pool of threads organized into groups 

– It is called a “warp” by NVIDIA  

– It is called a “wavefront” by AMD 

 

• Warp: 32 parallel CUDA threads of the same type 

– Start together at the same program address 

– All the threads in a warp use a common PC 

– Warps are scheduling units in SM 
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Fermi’s Dual Warp Scheduler 

 Simultaneously schedules and dispatches instructions 
from two independent warps 
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Warp Scheduling 

• Thread scheduling happens at the granularity of warps 

 

• Scheduler selects a warp from a pool for execution 

– Considers instruction type and fairness, etc. 

 

• It is preferable that all the SIMD lanes are occupied 

– All 32 threads of a warp take the same execution path 

 

• Latency-hiding capability of GPGPU 

– Fast context-switching  

– Large number of warps 

– Warps can be out-of-order  
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Warp Scheduling (Cont’d) 

• Potential factors that can delay a warp’s execution 
– Scheduling policies 

– Instruction/Data cache miss 

– Structural/Control/Data hazard  

– Synchronization primitives 

 

L1
 In

st
. C
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h

e
 

Fetch 
Unit 

Warp 0 Inst. 
Decoder Warp 1 

Warp 2 

Warp n-1 

Warp 
Scheduler 

Warp Pool 

…
 

Scoreboard 

…
 

…
 

Inst. 
Buffers 

Reg. 
Buffers 

SIMD Lanes (adder) 

SIMD Lanes (mult.) …
 

L1 Data Cache 

Streaming Multiprocessor 

Streaming Multiprocessor 
Streaming Multiprocessor 
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Branch Divergence 

• Normally, all threads of a warp execute in the same way 

 

• What if the threads of warp diverge due to control flow? 

 

• Warp divergence: Branch instructions may cause some 

threads to jump, while others fall through in a warp 

 

• Diverged warps possess inactive thread lanes 

– Diverging paths execute serially 
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Stack Based Re-Convergence 

• Re-convergence stack is used 

to merge back thread 

– Saves re-convergence PC, an 

active mask and an execution PC 

If (IDx.x < 5) {   

my_data[IDx.x] += a 

} 

else {   

my_data[IDx.x] *= b 

} 

0 1  2  3  4  5  6  7   
• Divergent Branch 

Mask: 11111000 

Mask: 00000111 

Mask: 11111111 

Idx.x: 

What is the 
worst case? 
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Dynamic Warp Formation 

• Form new warps from a pool of ready threads by combining 

threads whose PC values are the same  



45 

 

Resource Limits 

• The maximum parallelism in GPUs is often limited by the 

register file capacity 

– Applications with high TLP triggers more active warps 

 

• Register file is a large SRAM structure 

– Fastest memory block available to the processor 

– Store intermediate results from units such as ALU 

– Power hungry structure 
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GPU Register File 

• The size of RF is often greater than the L2/L1 $ 

• Its size keeps increasing 
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Design Considerations 

• Large register file capacity 

– Pros: 

• Can accommodate more active threads 

• Enable frequent context switching with low overhead 

• Allows GPUs to fully utilize its memory bandwidth 

 

– Cons:  

• High power consumption, large silicon area, etc. 

 

• Optimization approaches 

– Shrink register file size? 

– Use new memory technology? 
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Summary 

• Throughput computing and data-level parallelism 

• Vector processor and vector instruction 

• VMPIS, vector registers, DAXPY, execution latency 

• SIMD lanes, chaining, vector length register 

• GPGPU, SIMT, CUDA programming model 

• TPC, SM, SP, warp and warp scheduling 

• Branch divergence 

• GPU register file 
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Exercises 

• What is the difference between SIMD and SIMT 

• What are the advantages of dynamic warp formation? 

• Think about vectors vs superscalar vs. VLIW architecture 

• How do you compare CPU and GPU 


