
SJTU-SE346, Spring 2019

Chao Li, PhD.

李超 博士

计 算 机 体 系 结 构

Computer Architecture

Lecture 10. Data-Level Parallelism and GPGPU

第十讲、数据级并行化与GPGPU

2

Review

• Thread, Multithreading, SMT

• CMP and multicore

• Benefits of multicore

• Multicore system architecture

• Heterogeneous multicore system

• Heterogeneous-ISA CMP

• Multicore and manycore

• Design challenges

3

Outlines

• DLP Overview

• Vector Processor

• GPGPU

4

Throughput Workloads

• Interested in how many jobs can be completed

– Finance, social media, gaming, etc.

• CPUs with multiple cores are considered suitable

• Recent years we observe a quick adoption of GPU

5

Data-Level Parallelism

• DLP: Parallelism comes from simultaneous operations

across large data sets, rather than from multiple threads

• Particularly useful for large scientific/engineering tasks

SISD SIMD

Inst. Data Inst. Data

Results Results

6

Outlines

• DLP Overview

• Vector Processor

• GPGPU

7

Vector Operation

• Can we extend processors with vector “data type” ?

• The idea of vector operations:

– Read a set of data elements

– Operate on the element array

1 3 6 8 4 6 2 9

2 6 7 0 3 6 5 2
vectors

A vector is just a linear array of numbers, or scalars

scalars
1

2
8

6

8

Vector Instructions

A vector instruction operates on a sequence of data items

A few key advantages:

• Reduced instruction fetch bandwidth

– A single vector instruction specifies a great deal of work

• Less data hazard checking hardware

– Independent operation between elements in the same vector

• Memory access latency is amortized

– Vector instructions have a known memory access pattern

9

Vector Architecture

Two primary styles of vector architecture:

• memory-memory vector processors

– All vector operations are memory to memory

– CDC STAR-100 (faster than the CDC 7600)

• vector-register processors

– Vector equivalent of load-store architectures

– Cray, Convex, Fujitsu, Hitachi, NEC in 1980s

10

Key Components

• A vector processor typically consists of vector units and

the ordinary pipelined scalar units

• Vector register:

– fixed-size bank holding a single vector

– typically holding 64~128 FP elements

– determines the maximum vector length (MVL)

• Vector register file:

– 8~32 vector registers

11

Early Design: Cray-1

Cray-1

• Released in 1975

• 115 KW, 5.5 Tons

• 160 MFLOPS

• Eight 64-entry vector registers

– 64-bit register

– 4096 bits in each register

– 4KB for vector RF

• Special vector instructions:

– Vector + Vector, Vector + Scalar

– Each instruction specifies 64 operations

12

Case Study: VMIPS

• Vector registers

– 64-element register

– Register file has 16 read

ports and 8 write ports

• Vector functional units

– 5 fully pipelined FUs

– Hazards detection

• Vector load-store unit

– Loads/stores a vector

– 1 word per clock cycle

13

Case Study: VMIPS

• Add two vectors

• Add vector to scalar

• Load vector

• Store vector

ADDVV.D V1, V2, V3 // add elements of V2 and V3, then put each result in V1

ADDVS.D V1, V2, F0 // add F0 to each elements of V2 , then put each result in V1

LV V1, R1 // Load vector register V1 from memory starting at address R1

SV V1, R1 // Store vector register V1 from memory starting at address R1

14

Vectorized Code

Consider a DAXPY loop: “Double-precision a × X plus Y” (Y= a × X + Y).
Assume the starting addresses of X and Y are in Rx ad Ry, respectively

VMIPS code for DAXPY：

MIPS code for DAXPY：

~ 600 instructions;

6 instructions;

(the vector operation
work on 64 elements)

15

Multiple Lanes

• Element n of vector register A is “hardwired” to

element n of vector register B

• Using multiple parallel pipelines (or lanes) to

produce more than one results per cycle

ADDV C, A, B

lanes

16

Vector Instruction Execution

• Vector execution time mainly depends on:

– The length of the operand vectors

– Structural hazards

– Data dependences

• Start-up time: pipeline latency (depth of the FU pipeline)

• VMIPS’s FU consumes one element per cycle

– Execution time is about the vector length

• Pipelined multi-lane vector execution

T vector = T scalar + (vector length / lane number) - 1

17

Vector Chaining

• Chaining is the vector version of register bypassing

– Allows a vector operation to start as soon as the individual

elements of its vector source operand become available

LV v1

MULV v3, v1, v2

ADDV v5, v3, v4

Mem

Load Unit

V1 V2 V3 V5 V4

MUL ADD

• Convoy: Vector instructions that may execute together

– No structural hazards in a convoy

– No data hazards (or managed via chaining) in a convoy

18

Vector Length Register

• Vector length register (VLR)

– Controls the length of any vector operation

– The value is no greater than the maximum vector length (MVL)

• Use strip mining for vectors over maximum length

– The first loop do short segment (n mod MVL);

– All the subsequent segments use VL = MVL

For (i=0; i<n; i++)

 Y[i] = a * X[i] + Y[i]

vector size depends on n ：

What to do when vector length is not exactly 64?

19

Vector Mask Register

• Vector–mask control

– Provide conditional execution of each element

– Based on a Boolean vector (vector mask register)

– Instruction operates only on vector elements whose

corresponding entries in the mask register are 1

For (i=0; i<64; i++)

 if (X[i] != 0)

 X[i] = X[i] + Y[i]

IF statement in the loop ：

The IF statement cannot normally be vectorized

20

Outlines

• DLP Overview

• Vector Processor

• GPGPU

– Graph Workloads

– GPU Memory

– Scheduling

21

General Purpose GPU

• Graphics processing unit (GPU) emerged in 1999

• GPU is basically a massively parallel architecture

• GPGPU: general-purpose computation on GPU

– Leverage available GPU execution units for acceleration

– Became practical and popular after about 2001

– CPU codes runs on the host, GPU code runs on the device

• GPGPU exposes the massively multi-threaded

hardware via a high level programming interface

– NVIDIA’s CUDA and AMD’s CTM

22

Graphics Pipeline

Kayvon Fatahalian, CMU 2011

Vertices

Primitives

Fragments

Pixels

Modern GPUs structure their graphics computation in a
similar organization called the graphics pipeline

23

Graphics Workloads

Identical, independent, streaming
computation on pixels

24

Data Parallel Workloads

operation

operation

operation

operation

Identical, independent computation on multiple data inputs

25

Processing Data Parallel Workloads

CPU0

CPU1

CPU2

CPU3

Program 1

Program 2

Program 3

Program 4

Split independent tasks over multiple CPUs

Multiprocessor Approach (MIMD)

26

Processing Data Parallel Workloads

CPU0

CPU1

CPU2

CPU3

Split identical, independent task over multiple CPUs

SPMD Approach (Single Program Multiple Data)

Program

Program

Program

Program

27

Processing Data Parallel Workloads

CPU0

Program

Split identical, independent task over multiple execution units

SIMD/Vector Approach – eliminate redundant units

IF ID

EX

EX

EX

EX

WB

WB

WB

WB

ME

ME

ME

ME

28

Processing Data Parallel Workloads

CPU0

Split identical, independent task over multiple execution units

SIMD/Vector Approach: 1 heavy thread + data parallel ops
(single PC, single register file)

EX

EX

EX

EX

WB

WB

WB

WB

ME

ME

ME

ME

Program
IF ID

29

Processing Data Parallel Workloads

CPU0

Split identical, independent task over multiple lockstep threads

SIMT Approach:
multiple threads + scalar ops (single PC, multiple register file)

EX

EX

EX

EX

WB

WB

WB

WB

ME

ME

ME

ME

Program
IF ID

30

Execution Model

 Vertex processors

– Running vertex shader programs

– Operates on point, line, and triangle primitives

 Fragment processors

– Running pixel shader programs

– Operates on rasterizer output to fill up the primitives

• Programmer provides a serial task (“shader program”)
that defines pipeline logic for certain stages

• Program GPGPUs with CUDA or OpenCL

– A minimal extension of C/C++

– Executes shader programs across many data elements

31

CUDA Parallel Computing Model

• Stands for Compute Unified Device Architecture (CUDA)

• CUDA is the HW/SW architecture that enables NVIDIA

GPUs to execute programs written with C, C++, etc.

• The GPU instantiates a kernel program which executes in

parallel by a large number of CUDA threads

CUDA threads are different from POSIX threads

32

CUDA Parallel Computing Model

• Grid: an array of thread blocks

that execute the same kernel

– Read/write from global memory

– Sync between dependent calls

• A thread block is an array of

cooperative thread

– 1~512 concurrent threads

– Each thread has a unique ID

33

Hardware Execution

• The GPU hardware contains a collection of multithreaded

SIMD processors the executes a grid of thread blocks

• The SIMD processor must have parallel function units

– SIMD Lanes (# of lanes per SIMD varies across GPUs)

 Thread Block Scheduler

– Assigns thread blocks to multithreaded SIMD processors

 SIMD Thread Scheduler

– Schedules when threads of SIMD instructions should run

34

Case Study: Tesla GPU Architecture

• The primary design objective for Tesla was to execute

vertex and pixel-fragment shader programs on the same

unified processor architecture

Host memory

35

Case Study: Tesla GPU Architecture

• 8 texture/processor clusters (TPCs)

• 2 streaming multiprocessors (SM) per TPC

• 8 streaming processor (SP) cores per SM

Geometry
Controller

SM SM

SMC

Texture Unit

SM

SP SP

SP SP

SP SP

SP SP

I-cache

MT Issue

D-cache

SFU SFU

Shared Mem

• SM is a unified graphics

and computing engine

– SM executes thread blocks

• Streaming processor (SP)

– Scalar ALU for a single

CUDA thread

– SP core is a SIMD lane

TPC

36

Case Study: Fermi GF100 Architectural Overview

• Each GPC contains four streaming multiprocessors (SMs)

SM SM SM SM

Graphics Processor Clusters (GPC)

SM SM SM SM

Graphics Processor Clusters (GPC)

SM SM SM SM

Graphics Processor Clusters (GPC)

SM SM SM SM

Graphics Processor Clusters (GPC)

L2 Cache

M
C

M

C

M
C

M

C

M
C

M

C

37

Case Study: Fermi GF100 Architectural Overview

Streaming Multiprocessor (SM)

SF
U

I-Cache

Warp Scheduler

Core Core Core Core
LD/ST

LD/ST

Core Core Core Core
LD/ST

LD/ST

Warp Scheduler

Dispatch Unit Dispatch Unit

Register File

…

…

…

…

…

…

FP unit INT unit

Operand collector

Results queue

Dispatch port

CUDA core

Interconnect Network

Shared memory / L1 Cache

Texture Cache

• A single SM contains
32 CUDA cores

• Dual warp scheduler

38

Warps：Schedule Threads in Batches

• GPUs rely on massive hardware multithreading to keep

arithmetic units occupied

• SM executes a pool of threads organized into groups

– It is called a “warp” by NVIDIA

– It is called a “wavefront” by AMD

• Warp: 32 parallel CUDA threads of the same type

– Start together at the same program address

– All the threads in a warp use a common PC

– Warps are scheduling units in SM

39

Fermi’s Dual Warp Scheduler

 Simultaneously schedules and dispatches instructions
from two independent warps

40

Warp Scheduling

• Thread scheduling happens at the granularity of warps

• Scheduler selects a warp from a pool for execution

– Considers instruction type and fairness, etc.

• It is preferable that all the SIMD lanes are occupied

– All 32 threads of a warp take the same execution path

• Latency-hiding capability of GPGPU

– Fast context-switching

– Large number of warps

– Warps can be out-of-order

41

Warp Scheduling (Cont’d)

• Potential factors that can delay a warp’s execution
– Scheduling policies

– Instruction/Data cache miss

– Structural/Control/Data hazard

– Synchronization primitives

L1
 In

st
. C

ac
h

e

Fetch
Unit

Warp 0 Inst.
Decoder Warp 1

Warp 2

Warp n-1

Warp
Scheduler

Warp Pool

…

Scoreboard

…

…

Inst.
Buffers

Reg.
Buffers

SIMD Lanes (adder)

SIMD Lanes (mult.) …

L1 Data Cache

Streaming Multiprocessor

Streaming Multiprocessor
Streaming Multiprocessor

42

Branch Divergence

• Normally, all threads of a warp execute in the same way

• What if the threads of warp diverge due to control flow?

• Warp divergence: Branch instructions may cause some

threads to jump, while others fall through in a warp

• Diverged warps possess inactive thread lanes

– Diverging paths execute serially

43

Stack Based Re-Convergence

• Re-convergence stack is used

to merge back thread

– Saves re-convergence PC, an

active mask and an execution PC

If (IDx.x < 5) {

my_data[IDx.x] += a

}

else {

my_data[IDx.x] *= b

}

0 1 2 3 4 5 6 7
• Divergent Branch

Mask: 11111000

Mask: 00000111

Mask: 11111111

Idx.x:

What is the
worst case?

44

Dynamic Warp Formation

• Form new warps from a pool of ready threads by combining

threads whose PC values are the same

45

Resource Limits

• The maximum parallelism in GPUs is often limited by the

register file capacity

– Applications with high TLP triggers more active warps

• Register file is a large SRAM structure

– Fastest memory block available to the processor

– Store intermediate results from units such as ALU

– Power hungry structure

46

GPU Register File

• The size of RF is often greater than the L2/L1 $

• Its size keeps increasing

47

Design Considerations

• Large register file capacity

– Pros:

• Can accommodate more active threads

• Enable frequent context switching with low overhead

• Allows GPUs to fully utilize its memory bandwidth

– Cons:

• High power consumption, large silicon area, etc.

• Optimization approaches

– Shrink register file size?

– Use new memory technology?

48

Summary

• Throughput computing and data-level parallelism

• Vector processor and vector instruction

• VMPIS, vector registers, DAXPY, execution latency

• SIMD lanes, chaining, vector length register

• GPGPU, SIMT, CUDA programming model

• TPC, SM, SP, warp and warp scheduling

• Branch divergence

• GPU register file

49

References

• 课本内容：J. Hennessy, D. Patterson. Computer

Architecture, Fifth Edition: A Quantitative Approach.

– Chapters: 4.1, 4.2, 4.4

• 参考阅读：

– [1] E. Lindholm et al. NVIDIA Tesla: A Unified Graphics and

Computing Architecture. IEEE Micro Magazine, 2008.

– [2] C. Wittenbrink et al. Fermi GF100 GPU Architecture. IEEE

Micro Magazine, 2011.

– [3] W. Fung et al. Dynamic Warp Formation and Scheduling for

Efficient GPU Control Flow, MICRO 2007

50

Exercises

• What is the difference between SIMD and SIMT

• What are the advantages of dynamic warp formation?

• Think about vectors vs superscalar vs. VLIW architecture

• How do you compare CPU and GPU

