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Abstract

Modern models of relation extraction for tasks like
ACE are based on supervised learning of relations
from small hand-labeled corpora. We investigate an
alternative paradigm that does not require labeled
corpora, avoiding the domain dependence of ACE-
style algorithms, and allowing the use of corpora
of any size. Our experiments use Freebase, a large
semantic database of several thousand relations, to
provide distant supervision. For each pair of enti-
ties that appears in some Freebase relation, we find
all sentences containing those entities in a large un-
labeled corpus and extract textual features to train
a relation classifier. Our algorithm combines the
advantages of supervised IE (combining 400,000
noisy pattern features in a probabilistic classifier)
and unsupervised IE (extracting large numbers of
relations from large corpora of any domain). Our
model is able to extract 10,000 instances of 102 re-
lations at a precision of 67.6%. We also analyze
feature performance, showing that syntactic parse
features are particularly helpful for relations that are
ambiguous or lexically distant in their expression.

1 Introduction

At least three learning paradigms have been ap-

plied to the task of extracting relational facts from

text (for example, learning that a person is em-

ployed by a particular organization, or that a ge-

ographic entity is located in a particular region).

In supervised approaches, sentences in a cor-

pus are first hand-labeled for the presence of en-

tities and the relations between them. The NIST

Automatic Content Extraction (ACE) RDC 2003

and 2004 corpora, for example, include over 1,000

documents in which pairs of entities have been la-

beled with 5 to 7 major relation types and 23 to

24 subrelations, totaling 16,771 relation instances.

ACE systems then extract a wide variety of lexi-

cal, syntactic, and semantic features, and use su-

pervised classifiers to label the relation mention
holding between a given pair of entities in a test

set sentence, optionally combining relation men-

tions (Zhou et al., 2005; Zhou et al., 2007; Sur-

deanu and Ciaramita, 2007).

Supervised relation extraction suffers from a

number of problems, however. Labeled training

data is expensive to produce and thus limited in

quantity. Also, because the relations are labeled

on a particular corpus, the resulting classifiers tend

to be biased toward that text domain.

An alternative approach, purely unsupervised

information extraction, extracts strings of words

between entities in large amounts of text, and

clusters and simplifies these word strings to pro-

duce relation-strings (Shinyama and Sekine, 2006;

Banko et al., 2007). Unsupervised approaches can

use very large amounts of data and extract very

large numbers of relations, but the resulting rela-

tions may not be easy to map to relations needed

for a particular knowledge base.

A third approach has been to use a very small

number of seed instances or patterns to do boot-

strap learning (Brin, 1998; Riloff and Jones, 1999;

Agichtein and Gravano, 2000; Ravichandran and

Hovy, 2002; Etzioni et al., 2005; Pennacchiotti

and Pantel, 2006; Bunescu and Mooney, 2007;

Rozenfeld and Feldman, 2008). These seeds are

used with a large corpus to extract a new set of

patterns, which are used to extract more instances,

which are used to extract more patterns, in an it-

erative fashion. The resulting patterns often suffer

from low precision and semantic drift.

We propose an alternative paradigm, distant su-
pervision, that combines some of the advantages

of each of these approaches. Distant supervision

is an extension of the paradigm used by Snow et

al. (2005) for exploiting WordNet to extract hyper-
nym (is-a) relations between entities, and is simi-

lar to the use of weakly labeled data in bioinfor-

matics (Craven and Kumlien, 1999; Morgan et al.,



Relation name New instance

/location/location/contains Paris, Montmartre
/location/location/contains Ontario, Fort Erie
/music/artist/origin Mighty Wagon, Cincinnati
/people/deceased person/place of death Fyodor Kamensky, Clearwater
/people/person/nationality Marianne Yvonne Heemskerk, Netherlands
/people/person/place of birth Wavell Wayne Hinds, Kingston
/book/author/works written Upton Sinclair, Lanny Budd
/business/company/founders WWE, Vince McMahon
/people/person/profession Thomas Mellon, judge

Table 1: Ten relation instances extracted by our system that did not appear in Freebase.

2004). Our algorithm uses Freebase (Bollacker et

al., 2008), a large semantic database, to provide

distant supervision for relation extraction. Free-

base contains 116 million instances of 7,300 rela-

tions between 9 million entities. The intuition of

distant supervision is that any sentence that con-

tains a pair of entities that participate in a known

Freebase relation is likely to express that relation

in some way. Since there may be many sentences

containing a given entity pair, we can extract very

large numbers of (potentially noisy) features that

are combined in a logistic regression classifier.

Thus whereas the supervised training paradigm

uses a small labeled corpus of only 17,000 rela-

tion instances as training data, our algorithm can

use much larger amounts of data: more text, more

relations, and more instances. We use 1.2 million

Wikipedia articles and 1.8 million instances of 102

relations connecting 940,000 entities. In addition,

combining vast numbers of features in a large clas-

sifier helps obviate problems with bad features.

Because our algorithm is supervised by a

database, rather than by labeled text, it does

not suffer from the problems of overfitting and

domain-dependence that plague supervised sys-

tems. Supervision by a database also means that,

unlike in unsupervised approaches, the output of

our classifier uses canonical names for relations.

Our paradigm offers a natural way of integrating

data from multiple sentences to decide if a relation

holds between two entities. Because our algorithm

can use large amounts of unlabeled data, a pair of

entities may occur multiple times in the test set.

For each pair of entities, we aggregate the features

from the many different sentences in which that

pair appeared into a single feature vector, allowing

us to provide our classifier with more information,

resulting in more accurate labels.

Table 1 shows examples of relation instances

extracted by our system. We also use this system

to investigate the value of syntactic versus lexi-

cal (word sequence) features in relation extraction.

While syntactic features are known to improve the

performance of supervised IE, at least using clean

hand-labeled ACE data (Zhou et al., 2007; Zhou

et al., 2005), we do not know whether syntactic

features can improve the performance of unsuper-

vised or distantly supervised IE. Most previous

research in bootstrapping or unsupervised IE has

used only simple lexical features, thereby avoid-

ing the computational expense of parsing (Brin,

1998; Agichtein and Gravano, 2000; Etzioni et al.,

2005), and the few systems that have used unsu-

pervised IE have not compared the performance

of these two types of feature.

2 Previous work

Except for the unsupervised algorithms discussed

above, previous supervised or bootstrapping ap-

proaches to relation extraction have typically re-

lied on relatively small datasets, or on only a small

number of distinct relations. Approaches based on

WordNet have often only looked at the hypernym

(is-a) or meronym (part-of) relation (Girju et al.,

2003; Snow et al., 2005), while those based on the

ACE program (Doddington et al., 2004) have been

restricted in their evaluation to a small number of

relation instances and corpora of less than a mil-

lion words.

Many early algorithms for relation extraction

used little or no syntactic information. For ex-

ample, the DIPRE algorithm by Brin (1998) used

string-based regular expressions in order to rec-

ognize relations such as author-book, while the

SNOWBALL algorithm by Agichtein and Gravano

(2000) learned similar regular expression patterns

over words and named entity tags. Hearst (1992)

used a small number of regular expressions over

words and part-of-speech tags to find examples of

the hypernym relation. The use of these patterns

has been widely replicated in successful systems,

for example by Etzioni et al. (2005). Other work



Relation name Size Example

/people/person/nationality 281,107 John Dugard, South Africa
/location/location/contains 253,223 Belgium, Nijlen
/people/person/profession 208,888 Dusa McDuff, Mathematician
/people/person/place of birth 105,799 Edwin Hubble, Marshfield
/dining/restaurant/cuisine 86,213 MacAyo’s Mexican Kitchen, Mexican
/business/business chain/location 66,529 Apple Inc., Apple Inc., South Park, NC
/biology/organism classification rank 42,806 Scorpaeniformes, Order
/film/film/genre 40,658 Where the Sidewalk Ends, Film noir
/film/film/language 31,103 Enter the Phoenix, Cantonese
/biology/organism higher classification 30,052 Calopteryx, Calopterygidae
/film/film/country 27,217 Turtle Diary, United States
/film/writer/film 23,856 Irving Shulman, Rebel Without a Cause
/film/director/film 23,539 Michael Mann, Collateral
/film/producer/film 22,079 Diane Eskenazi, Aladdin
/people/deceased person/place of death 18,814 John W. Kern, Asheville
/music/artist/origin 18,619 The Octopus Project, Austin
/people/person/religion 17,582 Joseph Chartrand, Catholicism
/book/author/works written 17,278 Paul Auster, Travels in the Scriptorium
/soccer/football position/players 17,244 Midfielder, Chen Tao
/people/deceased person/cause of death 16,709 Richard Daintree, Tuberculosis
/book/book/genre 16,431 Pony Soldiers, Science fiction
/film/film/music 14,070 Stavisky, Stephen Sondheim
/business/company/industry 13,805 ATS Medical, Health care

Table 2: The 23 largest Freebase relations we use, with their size and an instance of each relation.

such as Ravichandran and Hovy (2002) and Pan-

tel and Pennacchiotti (2006) use the same formal-

ism of learning regular expressions over words and

part-of-speech tags to discover patterns indicating

a variety of relations.

More recent approaches have used deeper syn-

tactic information derived from parses of the input

sentences, including work exploiting syntactic de-

pendencies by Lin and Pantel (2001) and Snow et

al. (2005), and work in the ACE paradigm such

as Zhou et al. (2005) and Zhou et al. (2007).

Perhaps most similar to our distant supervision

algorithm is the effective method of Wu and Weld

(2007) who extract relations from a Wikipedia

page by using supervision from the page’s infobox.

Unlike their corpus-specific method, which is spe-

cific to a (single) Wikipedia page, our algorithm

allows us to extract evidence for a relation from

many different documents, and from any genre.

3 Freebase

Following the literature, we use the term ‘rela-

tion’ to refer to an ordered, binary relation be-

tween entities. We refer to individual ordered pairs

in this relation as ‘relation instances’. For ex-

ample, the person-nationality relation holds be-

tween the entities named ‘John Steinbeck’ and

‘United States’, so it has 〈John Steinbeck,

United States〉 as an instance.

We use relations and relation instances from

Freebase, a freely available online database of

structured semantic data. Data in Freebase is

collected from a variety of sources. One major

source is text boxes and other tabular data from

Wikipedia. Data is also taken from NNDB (bio-

graphical information), MusicBrainz (music), the

SEC (financial and corporate data), as well as di-

rect, wiki-style user editing. After some basic

processing of the July 2008 link export to con-

vert Freebase’s data representation into binary re-

lations, we have 116 million instances of 7,300

relations between 9 million entities. We next fil-

ter out nameless and uninteresting entities such as

user profiles and music tracks. Freebase also con-

tains the reverses of many of its relations (book-

author v. author-book), and these are merged. Fil-

tering and removing all but the largest relations

leaves us with 1.8 million instances of 102 rela-

tions connecting 940,000 entities. Examples are

shown in Table 2.

4 Architecture

The intuition of our distant supervision approach

is to use Freebase to give us a training set of rela-

tions and entity pairs that participate in those rela-

tions. In the training step, all entities are identified



in sentences using a named entity tagger that la-

bels persons, organizations and locations. If a sen-

tence contains two entities and those entities are an

instance of one of our Freebase relations, features

are extracted from that sentence and are added to

the feature vector for the relation.

The distant supervision assumption is that if two

entities participate in a relation, any sentence that

contain those two entities might express that rela-

tion. Because any individual sentence may give

an incorrect cue, our algorithm trains a multiclass

logistic regression classifier, learning weights for

each noisy feature. In training, the features for

identical tuples (relation, entity1, entity2) from

different sentences are combined, creating a richer

feature vector.

In the testing step, entities are again identified

using the named entity tagger. This time, every

pair of entities appearing together in a sentence is

considered a potential relation instance, and when-

ever those entities appear together, features are ex-

tracted on the sentence and added to a feature vec-

tor for that entity pair. For example, if a pair of

entities occurs in 10 sentences in the test set, and

each sentence has 3 features extracted from it, the

entity pair will have 30 associated features. Each

entity pair in each sentence in the test corpus is run

through feature extraction, and the regression clas-

sifier predicts a relation name for each entity pair

based on the features from all of the sentences in

which it appeared.

Consider the location-contains relation, imag-

ining that in Freebase we had two instances of

this relation: 〈Virginia, Richmond〉 and

〈France, Nantes〉. As we encountered sen-

tences like ‘Richmond, the capital of Virginia’ and

‘Henry’s Edict of Nantes helped the Protestants of

France’ we would extract features from these sen-

tences. Some features would be very useful, such

as the features from the Richmond sentence, and

some would be less useful, like those from the

Nantes sentence. In testing, if we came across

a sentence like ‘Vienna, the capital of Austria’,

one or more of its features would match those of

the Richmond sentence, providing evidence that

〈Austria, Vienna〉 belongs to the location-
contains relation.

Note that one of the main advantages of our

architecture is its ability to combine informa-

tion from many different mentions of the same

relation. Consider the entity pair 〈Steven

Spielberg, Saving Private Ryan〉
from the following two sentences, as evidence for

the film-director relation.

[Steven Spielberg]’s film [Saving Private
Ryan] is loosely based on the brothers’ story.

Allison co-produced the Academy Award-
winning [Saving Private Ryan], directed by
[Steven Spielberg]...

The first sentence, while providing evidence for

film-director, could instead be evidence for film-
writer or film-producer. The second sentence does

not mention that Saving Private Ryan is a film, and

so could instead be evidence for the CEO relation

(consider ‘Robert Mueller directed the FBI’). In

isolation, neither of these features is conclusive,

but in combination, they are.

5 Features

Our features are based on standard lexical and syn-

tactic features from the literature. Each feature

describes how two entities are related in a sen-

tence, using either syntactic or non-syntactic in-

formation.

5.1 Lexical features
Our lexical features describe specific words be-

tween and surrounding the two entities in the sen-

tence in which they appear:

• The sequence of words between the two entities

• The part-of-speech tags of these words

• A flag indicating which entity came first in the sentence

• A window of k words to the left of Entity 1 and their
part-of-speech tags

• A window of k words to the right of Entity 2 and their
part-of-speech tags

Each lexical feature consists of the conjunction of

all these components. We generate a conjunctive

feature for each k ∈ {0, 1, 2}. Thus each lexical
row in Table 3 represents a single lexical feature.

Part-of-speech tags were assigned by a max-

imum entropy tagger trained on the Penn Tree-

bank, and then simplified into seven categories:

nouns, verbs, adverbs, adjectives, numbers, for-

eign words, and everything else.

In an attempt to approximate syntactic features,

we also tested variations on our lexical features:

(1) omitting all words that are not verbs and (2)

omitting all function words. In combination with

the other lexical features, they gave a small boost

to precision, but not large enough to justify the in-

creased demand on our computational resources.



Feature type Left window NE1 Middle NE2 Right window

Lexical [] PER [was/VERB born/VERB in/CLOSED] LOC []
Lexical [Astronomer] PER [was/VERB born/VERB in/CLOSED] LOC [,]
Lexical [#PAD#, Astronomer] PER [was/VERB born/VERB in/CLOSED] LOC [, Missouri]

Syntactic [] PER [⇑s was ⇓pred born ⇓mod in ⇓pcomp−n] LOC []
Syntactic [Edwin Hubble ⇓lex−mod] PER [⇑s was ⇓pred born ⇓mod in ⇓pcomp−n] LOC []
Syntactic [Astronomer ⇓lex−mod] PER [⇑s was ⇓pred born ⇓mod in ⇓pcomp−n] LOC []
Syntactic [] PER [⇑s was ⇓pred born ⇓mod in ⇓pcomp−n] LOC [⇓lex−mod ,]
Syntactic [Edwin Hubble ⇓lex−mod] PER [⇑s was ⇓pred born ⇓mod in ⇓pcomp−n] LOC [⇓lex−mod ,]
Syntactic [Astronomer ⇓lex−mod] PER [⇑s was ⇓pred born ⇓mod in ⇓pcomp−n] LOC [⇓lex−mod ,]
Syntactic [] PER [⇑s was ⇓pred born ⇓mod in ⇓pcomp−n] LOC [⇓inside Missouri]
Syntactic [Edwin Hubble ⇓lex−mod] PER [⇑s was ⇓pred born ⇓mod in ⇓pcomp−n] LOC [⇓inside Missouri]
Syntactic [Astronomer ⇓lex−mod] PER [⇑s was ⇓pred born ⇓mod in ⇓pcomp−n] LOC [⇓inside Missouri]

Table 3: Features for ‘Astronomer Edwin Hubble was born in Marshfield, Missouri’.

Astronomer Edwin Hubble was born in Marshfield , Missouri

lex-mod s pred mod pcomp-n lex-mod

inside

Figure 1: Dependency parse with dependency path from ‘Edwin Hubble’ to ‘Marshfield’ highlighted in

boldface.

5.2 Syntactic features

In addition to lexical features we extract a num-

ber of features based on syntax. In order to gener-

ate these features we parse each sentence with the

broad-coverage dependency parser MINIPAR (Lin,

1998).

A dependency parse consists of a set of words

and chunks (e.g. ‘Edwin Hubble’, ‘Missouri’,

‘born’), linked by directional dependencies (e.g.

‘pred’, ‘lex-mod’), as in Figure 1. For each

sentence we extract a dependency path between

each pair of entities. A dependency path con-

sists of a series of dependencies, directions and

words/chunks representing a traversal of the parse.

Part-of-speech tags are not included in the depen-

dency path.

Our syntactic features are similar to those used

in Snow et al. (2005). They consist of the conjunc-

tion of:

• A dependency path between the two entities

• For each entity, one ‘window’ node that is not part of
the dependency path

A window node is a node connected to one of the

two entities and not part of the dependency path.

We generate one conjunctive feature for each pair

of left and right window nodes, as well as features

which omit one or both of them. Thus each syn-
tactic row in Table 3 represents a single syntactic

feature.

5.3 Named entity tag features
Every feature contains, in addition to the content

described above, named entity tags for the two en-

tities. We perform named entity tagging using the

Stanford four-class named entity tagger (Finkel et

al., 2005). The tagger provides each word with a

label from {person, location, organization, miscel-

laneous, none}.

5.4 Feature conjunction
Rather than use each of the above features in the

classifier independently, we use only conjunctive

features. Each feature consists of the conjunc-

tion of several attributes of the sentence, plus the

named entity tags. For two features to match,

all of their conjuncts must match exactly. This

yields low-recall but high-precision features. With

a small amount of data, this approach would be

problematic, since most features would only be

seen once, rendering them useless to the classifier.

Since we use large amounts of data, even complex

features appear multiple times, allowing our high-

precision features to work as intended. Features

for a sample sentence are shown in Table 3.

6 Implementation

6.1 Text
For unstructured text we use the Freebase

Wikipedia Extraction, a dump of the full text of all

Wikipedia articles (not including discussion and



Relation Feature type Left window NE1 Middle NE2 Right window

/architecture/structure/architect LEX� ORG , the designer of the PER
SYN designed ⇑s ORG ⇑s designed ⇓by−subj by ⇓pcn PER ⇑s designed

/book/author/works written LEX PER s novel ORG
SYN PER ⇑pcn by ⇑mod story ⇑pred is ⇓s ORG

/book/book edition/author editor LEX� ORG s novel PER
SYN PER ⇑nn series ⇓gen PER

/business/company/founders LEX ORG co - founder PER
SYN ORG ⇑nn owner ⇓person PER

/business/company/place founded LEX� ORG - based LOC
SYN ORG ⇑s founded ⇓mod in ⇓pcn LOC

/film/film/country LEX PER , released in LOC
SYN opened ⇑s ORG ⇑s opened ⇓mod in ⇓pcn LOC ⇑s opened

/geography/river/mouth LEX LOC , which flows into the LOC
SYN the ⇓det LOC ⇑s is ⇓pred tributary ⇓mod of ⇓pcn LOC ⇓det the

/government/political party/country LEX� ORG politician of the LOC
SYN candidate ⇑nn ORG ⇑nn candidate ⇓mod for ⇓pcn LOC ⇑nn candidate

/influence/influence node/influenced LEX� PER , a student of PER
SYN of ⇑pcn PER ⇑pcn of ⇑mod student ⇑appo PER ⇑pcn of

/language/human language/region LEX LOC - speaking areas of LOC
SYN LOC ⇑lex−mod speaking areas ⇓mod of ⇓pcn LOC

/music/artist/origin LEX� ORG based band LOC
SYN is ⇑s ORG ⇑s is ⇓pred band ⇓mod from ⇓pcn LOC ⇑s is

/people/deceased person/place of death LEX PER died in LOC
SYN hanged ⇑s PER ⇑s hanged ⇓mod in ⇓pcn LOC ⇑s hanged

/people/person/nationality LEX PER is a citizen of LOC
SYN PER ⇓mod from ⇓pcn LOC

/people/person/parents LEX PER , son of PER
SYN father ⇑gen PER ⇑gen father ⇓person PER ⇑gen father

/people/person/place of birth LEX� PER is the birthplace of PER
SYN PER ⇑s born ⇓mod in ⇓pcn LOC

/people/person/religion LEX PER embraced LOC
SYN convert ⇓appo PER ⇓appo convert ⇓mod to ⇓pcn LOC ⇓appo convert

Table 4: Examples of high-weight features for several relations. Key: SYN = syntactic feature; LEX =

lexical feature; � = reversed; NE# = named entity tag of entity.

user pages) which has been sentence-tokenized by

Metaweb Technologies, the developers of Free-

base (Metaweb, 2008). This dump consists of

approximately 1.8 million articles, with an av-

erage of 14.3 sentences per article. The total

number of words (counting punctuation marks) is

601,600,703. For our experiments we use about

half of the articles: 800,000 for training and

400,000 for testing.

We use Wikipedia because it is relatively up-

to-date, and because its sentences tend to make

explicit many facts that might be omitted in

newswire. Much of the information in Freebase is

derived from tabular data from Wikipedia, mean-

ing that Freebase relations are more likely to ap-

pear in sentences in Wikipedia.

6.2 Parsing and chunking

Each sentence of this unstructured text is depen-

dency parsed by MINIPAR to produce a depen-

dency graph.

In preprocessing, consecutive words with the

same named entity tag are ‘chunked’, so that

Edwin/PERSON Hubble/PERSON becomes

[Edwin Hubble]/PERSON. This chunking is

restricted by the dependency parse of the sentence,

however, in that chunks must be contiguous in

the parse (i.e., no chunks across subtrees). This

ensures that parse tree structure is preserved, since

the parses must be updated to reflect the chunking.

6.3 Training and testing

For held-out evaluation experiments (see section

7.1), half of the instances of each relation are not

used in training, and are later used to compare

against newly discovered instances. This means

that 900,000 Freebase relation instances are used

in training, and 900,000 are held out. These ex-

periments used 800,000 Wikipedia articles in the

training phase and 400,000 different articles in the

testing phase.

For human evaluation experiments, all 1.8 mil-

lion relation instances are used in training. Again,

we use 800,000 Wikipedia articles in the training

phase and 400,000 different articles in the testing

phase.

For all our experiments, we only extract relation

instances that do not appear in our training data,

i.e., instances that are not already in Freebase.

Our system needs negative training data for the

purposes of constructing the classifier. Towards

this end, we build a feature vector in the train-

ing phase for an ‘unrelated’ relation by randomly

selecting entity pairs that do not appear in any

Freebase relation and extracting features for them.

While it is possible that some of these entity pairs
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Figure 2: Automatic evaluation with 50% of Freebase relation data held out and 50% used in training

on the 102 largest relations we use. Precision for three different feature sets (lexical features, syntactic

features, and both) is reported at recall levels from 10 to 100,000. At the 100,000 recall level, we classify

most of the instances into three relations: 60% as location-contains, 13% as person-place-of-birth, and

10% as person-nationality.

are in fact related but are wrongly omitted from

the Freebase data, we expect that on average these

false negatives will have a small effect on the per-

formance of the classifier. For performance rea-

sons, we randomly sample 1% of such entity pairs

for use as negative training examples. By contrast,

in the actual test data, 98.7% of the entity pairs we

extract do not possess any of the top 102 relations

we consider in Freebase.

We use a multi-class logistic classifier opti-

mized using L-BFGS with Gaussian regulariza-

tion. Our classifier takes as input an entity pair

and a feature vector, and returns a relation name

and a confidence score based on the probability of

the entity pair belonging to that relation. Once all

of the entity pairs discovered during testing have

been classified, they can be ranked by confidence

score and used to generate a list of the n most

likely new relation instances.

Table 4 shows some high-weight features

learned by our system. We discuss the results in

the next section.

7 Evaluation

We evaluate labels in two ways: automatically,

by holding out part of the Freebase relation data

during training, and comparing newly discovered

relation instances against this held-out data, and

manually, having humans who look at each posi-

tively labeled entity pair and mark whether the re-

lation indeed holds between the participants. Both

evaluations allow us to calculate the precision of

the system for the best N instances.

7.1 Held-out evaluation

Figure 2 shows the performance of our classifier

on held-out Freebase relation data. While held-out

evaluation suffers from false negatives, it gives a

rough measure of precision without requiring ex-

pensive human evaluation, making it useful for pa-

rameter setting.

At most recall levels, the combination of syn-

tactic and lexical features offers a substantial im-

provement in precision over either of these feature

sets on its own.

7.2 Human evaluation

Human evaluation was performed by evaluators on

Amazon’s Mechanical Turk service, shown to be

effective for natural language annotation in Snow

et al. (2008). We ran three experiments: one us-

ing only syntactic features; one using only lexical

features; and one using both syntactic and lexical

features. For each of the 10 relations that appeared

most frequently in our test data (according to our

classifier), we took samples from the first 100 and

1000 instances of this relation generated in each

experiment, and sent these to Mechanical Turk for



Relation name
100 instances 1000 instances

Syn Lex Both Syn Lex Both

/film/director/film 0.49 0.43 0.44 0.49 0.41 0.46
/film/writer/film 0.70 0.60 0.65 0.71 0.61 0.69

/geography/river/basin countries 0.65 0.64 0.67 0.73 0.71 0.64
/location/country/administrative divisions 0.68 0.59 0.70 0.72 0.68 0.72

/location/location/contains 0.81 0.89 0.84 0.85 0.83 0.84
/location/us county/county seat 0.51 0.51 0.53 0.47 0.57 0.42

/music/artist/origin 0.64 0.66 0.71 0.61 0.63 0.60
/people/deceased person/place of death 0.80 0.79 0.81 0.80 0.81 0.78

/people/person/nationality 0.61 0.70 0.72 0.56 0.61 0.63
/people/person/place of birth 0.78 0.77 0.78 0.88 0.85 0.91

Average 0.67 0.66 0.69 0.68 0.67 0.67

Table 5: Estimated precision on human-evaluation experiments of the highest-ranked 100 and 1000

results per relation, using stratified samples. ‘Average’ gives the mean precision of the 10 relations. Key:

Syn = syntactic features only. Lex = lexical features only. We use stratified samples because of the

overabundance of location-contains instances among our high-confidence results.

human evaluation. Our sample size was 100.

Each predicted relation instance was labeled as

true or false by between 1 and 3 labelers on Me-

chanical Turk. We assigned the truth or falsehood

of each relation according to the majority vote of

the labels; in the case of a tie (one vote each way)

we assigned the relation as true or false with equal

probability. The evaluation of the syntactic, lexi-

cal, and combination of features at a recall of 100

and 1000 instances is presented in Table 5.

At a recall of 100 instances, the combination of

lexical and syntactic features has the best perfor-

mance for a majority of the relations, while at a re-

call level of 1000 instances the results are mixed.

No feature set strongly outperforms any of the oth-

ers across all relations.

8 Discussion

Our results show that the distant supervision algo-

rithm is able to extract high-precision patterns for

a reasonably large number of relations.

The held-out results in Figure 2 suggest that the

combination of syntactic and lexical features pro-

vides better performance than either feature set on

its own. In order to understand the role of syntactic

features, we examine Table 5, the human evalua-

tion of the most frequent 10 relations. For the top-

ranking 100 instances of each relation, most of the

best results use syntactic features, either alone or

in combination with lexical features. For the top-

ranking 1000 instances of each relation, the results

are more mixed, but syntactic features still helped

in most classifications.

We then examine those relations for which syn-

tactic features seem to help. For example, syn-

tactic features consistently outperform lexical fea-

tures for the director-film and writer-film relations.

As discussed in section 4, these two relations are

particularly ambiguous, suggesting that syntactic

features may help tease apart difficult relations.

Perhaps more telling, we noticed many examples

with a long string of words between the director

and the film:

Back Street is a 1932 film made by Univer-
sal Pictures, directed by John M. Stahl, and
produced by Carl Laemmle Jr.

Sentences like this have very long (and thus rare)

lexical features, but relatively short dependency

paths. Syntactic features can more easily abstract

from the syntactic modifiers that comprise the ex-

traneous parts of these strings.

Our results thus suggest that syntactic features

are indeed useful in distantly supervised informa-

tion extraction, and that the benefit of syntax oc-

curs in cases where the individual patterns are par-

ticularly ambiguous, and where they are nearby in

the dependency structure but distant in terms of

words. It remains for future work to see whether

simpler, chunk-based syntactic features might be

able to capture enough of this gain without the

overhead of full parsing, and whether coreference

resolution could improve performance.
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