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Abstract—While deep neural network (DNN) models are often
trained on GPUs, many companies and research institutes build
GPU clusters that are shared by different groups. On such
GPU cluster, DNN training jobs also require CPU cores to
run pre-processing, gradient synchronization. Our investigation
shows that the number of cores allocated to a training job
significantly impact its performance. To this end, we characterize
representative deep learning models on their requirement for
CPU cores under different GPU resource configurations, and
study the sensitivity of these models to other CPU-side shared
resources. Based on the characterization, we propose CODA,
a scheduling system that is comprised of an adaptive CPU
allocator, a real-time contention eliminator, and a multi-array job
scheduler. Experimental results show that CODA improves GPU
utilization by 20.8% on average without increasing the queuing
time of CPU jobs.

I. INTRODUCTION

The training of a deep learning (DL) model is a notori-
ously difficult and time-consuming process. To address such
a challenge, a large number of enterprises build their own
private GPU clusters and share them between different groups
to amortize the cost. This leads to the emergence of multi-
tenant GPU cluster that runs both CPU Jobs and GPU jobs.
For example, model training often requires enormous and
expensive GPU resources, companies such as Facebook choose
to run the model inference job on the CPU [1]. This multi-
tenant GPU cluster represents a new paradigm of private Cloud
and requires a dedicated study on its workload characteristics,
resource utilization efficiency and optimization.

Training a DL model is a complex process that has frequent
CPU-GPU interactions. The model training with multiple GPU
nodes can be divided into four steps. 1) The GPUs use the data
in their global memory for training, and the CPU-side worker
simultaneously prepares the next batch of data. 2) Each GPU
sends the calculated gradient to the parameter server (PS) on
CPU and waits for the synchronization. 3) The PS gathers
all the gradients, calculates the new gradients, and sends the
updated DL models to all GPUs. 4) each GPU starts the next
computation step with the new gradients. In this process, the
data prefetch and the gradient update of the PS run on CPU,
and can be affected by CPU-side jobs.

There are some prior works on characterizing or man-
aging the GPU clusters for DNN training jobs, such as
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Microsoft’s [2] and Google’s [3]. Jeon et. al [2] pay more
attention to task locality, error, and queuing time. The work
directly splits all the CPUs and memory to all GPUs, and
lead to underutilization of CPU resources. Kelp [3] shows
that 16% of the nodes in Google’s production TPU cluster
experience peak bandwidth higher than 70% of the available
bandwidth, and proposes to optimize the allocation of memory
bandwidth. Although they consider bandwidth contention, they
ignore the DL model’s requirement on the CPU resources
that significantly impact the performance of the training. This
causes the low GPU utilization and low throughput of the
cluster. Worse, since GPU could do more data transformation
than TPU, Kelp’s performance will be further diminished.

In this work, we perform a detailed analysis of the
GPU job’s demands and contention for CPU resources on a
production-scale multi-tenant GPU cluster shared by several
artificial intelligence startup companies and research institu-
tions. The analysis reveals two key findings. As for the first
finding, For more than 10,000 GPU jobs in the cluster, a GPU
job often applies cores in a stable mode. A large number of
GPU jobs apply for one core or two cores, and a considerable
number of GPU jobs apply for over ten cores. Despite the
stable application mode, our investigation shows that GPU
jobs have different requirements for the cores to achieve the
best performance. The CPU resource assigned to a DNN
training job significantly impacts the job’s performance (to be
discussed in detail in Section IV). As for the second finding,
adopting the widely-used FIFO or DRF job scheduling, the
GPU cluster suffers from low GPU utilization, while both CPU
and GPU jobs suffer from long queuing time on the contrary.

The two findings motivate us to propose CODA, a resource
and job scheduling system that improves resource utilization
while maximizing the performance of the DNN training jobs
in multi-tenant GPU clusters. There are three challenges that
have to be resolved in CODA. 1) The optimal number of
CPU cores needed by DNN training jobs vary. CODA has to
identify the optimal one at runtime. 2) the CPU-side work of
DNN training jobs contend for the shared resources (e.g., last
level cache and memory bandwidth), and the contention may
result in severe performance degradation. CODA has to be able
to monitor the contention on shared resources and schedule
the DNN jobs accordingly to avoid serious shared resource
contention on all the nodes. 3) GPU resource fragmentation



exists with FIFO and DRF scheduling. CODA has to be able to
minimize the GPU resource fragmentation to improve system-
wide performance.

To be more specific, CODA is comprised of an adaptive
CPU allocator, a real-time contention eliminator, and a multi-
array job scheduler. The adaptive CPU allocator finds the
optimal CPU cores for a DNN training job. Based on the
model type information, the allocator finds the optimal CPU
number in less than four attempts. The contention eliminator
monitors the memory bandwidth used by each CPU job in
real-time. When the bandwidth of one CPU job exceeds the
specified threshold, the eliminator throttles its bandwidth usage
to avoid performance impact on GPU jobs. The multi-array
scheduling module classifies CPU jobs and DNN training jobs,
and schedule them differently. In the model, each array is pre-
allocated a part of the CPU resources, jobs in different queues
can initially only use resources in this own array. When a large
number of CPU jobs are queued and the GPU task queue is
idle, the CPU job array can preempt some CPU resources from
GPU job array accordingly, and vice versa.

This paper makes the following main contributions:
• Comprehensive analysis of CPU-side resource require-

ment of DNN training jobs. The in-depth analysis
enables the design of the CODA for maximizing the
performance of DNN training jobs.

• The design of a feedback-based adaptive CPU alloca-
tion algorithm. It identifies the optimal number of CPU
cores that should be allocated to a DNN training job.

• The design of a multi-array job scheduling policy.
Based on the core requirements of DNN jobs and the
shared resource contention, multi-array scheduling re-
duces the GPU fragmentation and improves system-wide
performance.

Experimental results based on real-system job trace show
that CODA improves the GPU utilization by 20.8% without
degrading the queuing performance of low priority CPU jobs.

II. RELATED WORK

In this section, we describe previous works on resource
management in a datacenter. Previous work mainly focuses
on three aspects, which is the design of the scheduling
algorithm, the scheduling systems for specific scenarios, and
the performance analysis of the cluster and jobs.

A. Scheduling algorithm

Previous researches have proposed different scheduling al-
gorithms to solve the job scheduling problem on clusters.
DRF [4], a generalization of max-min fairness to multiple
resource types, addresses the problem of fair allocation of
multiple types of resources to users with different demands.
Mainstream job scheduling framework such as Yarn [5] and
Mesos [6] all adopt it as one option of their scheduling choice.
Choosy [7] is an extension to max-min fairness, which solves
the problem of max-min fairness in the presence of constraints.
Delay scheduling [8] is a simple strategy that when the job
that should be scheduled cannot launch a local task, it waits

for a small amount of time, letting other jobs launch tasks
instead. This strategy is also used and adapted to many job
scheduling frameworks for better throughput. These works are
orthogonal to our work, because our work is mainly for the
design of the scheduling system on the GPU cluster, rather
than the optimization of the scheduling algorithm.

B. Scheduling system

Many researches [9]–[15] aim to solve the scheduling
problem in specific scenarios. Gandiva [11] analyzes the
characteristics of the application by investigating the training
characteristics of the application and finds the best hyper-
parameter setting in the scenario of Auto-ML. And kelp [3]
attempts to control the memory bandwidth allocation on the
CPU side, thereby reducing the corresponding interference
and improving the scheduling efficiency of the TPU cluster.
Optimus [12] uses online performance models to find relative
resource configuration to reduce training time. Baymax [13]
and Prophet [14] adopt multitasking to improve the cluster
utilization for the pure GPU workloads. Slaq [15] collects the
quality improvement for resource usage and schedule concur-
rent machine learning jobs for average quality improvement.
Since they are proposed for specific application scenarios, they
do not work in the Multi-Tenant GPU cluster, which has also
prompted us to conduct new research.

C. Analysis of cloud applications

One paper of Google [16] focuses on memory access
analysis for specific applications of traditional CPU clusters
while another Google paper [17] keeps an eye on distribu-
tion characteristics of jobs and the relationship between jobs
and microstructures through more holistic cluster analysis.
Recently, there have been some papers that focus on job
analysis on GPU clusters. One research of MSRA [2] focuses
on the topology of jobs and queuing time issues, and the
reasons for the job error. Another research of Facebook [1]
analyzes the distribution and characteristics of deep learning
jobs on existing clusters and optimizes job management. These
researches are instructive for the workload analysis under the
GPU cluster. However, these papers are still complete enough,
and they do not propose a system to solve the new problems
in the GPU cluster.

III. MOTIVATION FOR CPU RESOURCE MANAGEMENT

In this section, we analyze the resource usage on a
production-scale multi-tenant GPU cluster built for training
DL models. The conventional wisdom is that GPU is the
most critical resource for DL training. However, our analysis
shows that CPU also plays a vital role in DL training.
Naively allocating too few CPUs to the training job limits the
training performance while allocating too many CPUs leads
to significant queuing delay because CPU now becomes the
scarce resource.



Fig. 1: The CPU and GPU utilization trend of the cluster through one week.

A. Real-world GPU Cluster Investigation

We conduct our investigation on a real-world multi-tenant
GPU cluster1. The cluster comprises of about 80 PCIe-based
multi-GPU (mostly GTX 1080Ti) servers. Each server has two
sockets where the CPU is mostly Intel Xeon Gold 6132 with
14 cores. This cluster is shared by four AI startup companies
and one AI research institution. Those companies work in
the area of automatic speech recognition, natural language
processing, and computer vision. The cluster has a centralized
job management system SLURM [18] that uses FIFO to
schedule jobs from different parties. Each job can request a
certain number of CPU and GPU separately.

The cluster tenants include several artificial intelligence
startup companies and research institutions, which frequently
perform DL model training. We collect the cluster’s CPU/GPU
usage characteristics and job information through a week,
which leads to a contradictory observation. The training jobs
do not fully utilize the cluster’s GPU resources, but many
jobs take long queueing time to get submitted.

1) Resource Usage: We first analyze the resource (i.e., CPU
and GPU) usage in the cluster, which we evaluate through
the active rate and utilization rate. Equation (1) illustrates
the active CPU rate, which is the ratio between actively used
CPUs and the total number of CPUs. For an active CPU, the
utilization rate indicates its time spent in the actual work and
is collected via the operating system. We calculate the cluster’s
CPU utilization rate as the average across all active CPUs. The
GPU related metrics are calculated similarly.

Active CPU Rate = Number of Active CPUs/Total CPUs (1)

We collect the cluster’s CPU and GPU usage through a
week. As Fig. 1 shows, the GPU utilization is consistently
higher than the CPU, which can be explained by the high
computation requirement of training jobs. However, we also
observe that the GPU exhibits a relatively stable active rate
while the CPU exhibits the diurnal pattern. We dive into the
job characteristics to search for its root cause.

2) Job Characteristics: We first categorize the jobs into
GPU jobs and CPU-only jobs. Fig. 2a shows the job type
breakdown. The AI research lab contributes to the most to the
GPU jobs while the AI companies contribute most to the CPU
jobs. The difference can be explained by the different parties’
emphasis on the DL model training/inference. The research
lab emphasizes the model training which heavily relies on the
GPU while the AI companies emphasize the model inference,

1A GPU cluster from AISpeech Co., Ltd.

TABLE I: Representative DNN models.

Neural model Scenario Type Dataset
Alexnet [19] CV CNN ImageNet [20]
VGG16 [21] CV CNN ImageNet

InceptionV3 [22] CV CNN ImageNet
Resnet-50 [23] CV CNN ImageNet

Bi-att-Flow (BAT) [24] NLP RNN SQUAD [25]
Transformer [26] NLP - WMT16 [27]

Wavenet [28] Speech CNN VCTK [29]
DeepSpeech [30] Speech RNN Common Voice [31]

which typically uses the CPU [1]. Since the AI companies
are user-facing and user requests are usually bursty, it also
explains the diurnal pattern of CPU’s active rate.

3) Queueing Delay: We now analyze the job queueing
delay in Fig. 2c. We observe that the GPU jobs experience
significantly more delay than the CPU jobs. About 48.1%
GPU jobs waiting for at least 3 minutes and 41.3% GPU jobs
waiting for more than 10 minutes. However, as Fig. 1 shows,
the GPU’s active rate is rarely more than 90%. In contrast, the
CPU’s active rate can reach 100% in the peak times.

We next study the requested CPU-GPU ratio for GPUs to
understand the long queueing delay of GPU jobs. Fig. 2d
shows that 15.3% of GPU jobs request more than 10 CPU
cores. This leads to the insufficient CPU cores of these servers,
and these servers cannot accommodate the incoming GPU
jobs, which means the waste of CPU resources and GPU
resources. Besides, 76.1% of jobs are requesting 1 CPU or
2 CPUs. Theoretically, the insufficient CPU will cause the
slowdown of programs, which in turn lead to lower GPU
utilization. As such, we can conclude that the CPU is the
critical resource in the cluster as it is the root cause for the
long queueing delay of GPU jobs.

B. DNN Training CPU Usage Analysis

After recognizing the CPU as the important resource in the
cluster, we now study how the CPU core number affects the
DL model training performance. We conduct the study using
a set of representative DL models from various domains. Our
results show that the impact of CPU core number on the model
training performance is highly model- and domain-specific.
Allocating too few cores limit the single-model training per-
formance while allocating too many cores limit the other jobs’
performance. As such, in order to balance the single-model
performance and the overall cluster utilization, we need an
automatic and intelligent CPU core allocation strategy.

Tbl. I shows the set of representative DNN models. We
select state-of-the-art DL models including DeepSpeech [30],
Transformer [26], BAT [24], and Wavenet [28] that target
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Fig. 2: Information of CPU-only and GPU-based DNN training jobs.

Fig. 3: The GPU utilization when the training job uses different
numbers of CPU cores.

speech recognition, machine translation, question answering,
and speech synthesis.

Fig. 3 shows the training speed and GPU utilization of
various models with two training configurations (1N1G and
1N4G) when the core number increases. We have two obser-
vations from Fig. 3. The first is that the GPU also achieves
the highest utilization at the maximal training speed. This
observation matches our intuition as GPU computation is the
major step in the training process. The second one is that most
of the models do not gain the best performance with 2-CPU
configuration except Transformer with 1N1G configuration.
The performance gap is in the range of 10% to over 5X. The
requirements of the benchmarks for CPU cores are different.
The existing CPU allocation strategies result in the poor
performance of the DNN training jobs.

IV. ANALYSIS OF CPU REQUIREMENT

In this section, we analyze the CPU-side resource require-
ments of mainstream models. We seek to answer three ques-
tions. (1) What is the best-fit CPU number for different deep
learning GPU models? (2) What are the factors that determine
the CPU demands of one model and how the factors determine

Training

1. Read

2. Pre-process

3. Data transfer

4. Model training

5. Weights update

Epoch 1 Epoch 2
Stage 1 Stage 2 Stage 3

Training

Fig. 4: The CPU-GPU collaborative process.

its demand? (3) Is there any other CPU-side resource that the
performance of GPU jobs is sensitive?

A. CPU-GPU Collaborative Process

Fig. 4 shows the collaborative process of CPU and GPU
when training a DNN model using a single GPU. (1) Read
data from disk into memory. (2) Pre-process raw data to proper
format that can be used by model training. (3) Transfer data
from CPU memory to GPU memory. (4) Compute gradients
using GPU. (5) Update model weights. If multiple GPUs are
used, global synchronization between the GPUs is required
after stage 4. Besides run the five steps in serial, programmers
can parallelize stage 1, or pipeline stage 1 and stage 2 to
further improve the performance.

The specific process steps of training models in different
fields are slightly different. The second step of CV models con-
verts the raw image into the pixel matrix used for training. The
SPEECH models need to do interception and transformation
of audio snippets at the same step, and it takes a longer time
in transformation for a more complex operation. As for NLP
models, since the mainstream datasets are relatively small,
mainstream implementation of NLP models choose to read
the entire dataset into memory which avoid the first step of
the collaborative process. However, NLP jobs also need to do
conversion work on the CPU side, such as converting one word
to a one-hot vector.

B. CPU demands for GPU jobs

In this section, we use the notation of aNbG to represent the
training configuration of using a servers and b GPUs. Fig. 5
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Fig. 5: The optimal CPU core number for different benchmarks with different batch size.

shows the optimal core number for the studied models with
different configurations and batch size(BS).

1) Single-GPU CASE: Observed from Fig. 5, all models
except Alexnet have the same CPU demands in the default
BS configuration and the maximum BS configuration. This is
because the increased BS increases both the data preparation
time and the GPU computing time. When the GPU computing
time is relatively long compared to the data preparation time,
changes in the BS do not affect the computing requirements
of the job for data processing.

For CV jobs, the simpler the network, the more CPUs are
required. While the models with the same BS have the same
data preparation time, more complex networks have longer
GPU computing time. With pipeline optimization, more com-
plex models require fewer CPUs to speed up data preparation
time. For NLP jobs, although they do not need to read the
data into memory, it needs to prepare the vectors required
for training before each iteration. For example, BAT needs to
prepare the context vector and query vector needed for the next
iteration and Transformer needs data preprocessing, batching,
and shuffling. For SPEECH jobs, the data preparation phase
is similar to CV jobs, which require data reading and format
conversion. Besides, Wavenet needs to re-cut the audio during
the data preparation stage, and Deepspeech does not. So
Wavenet needs more CPU cores than Deepspeech.

In single-GPU case, 1) CPU demands of most models are
independent of BS. 2) The CPU demands of the CV models are
mainly related to the model complexity. The higher the model
complexity, the less CPU is required. 3) The CPU demands of
the NLP models are mainly related to the data preprocessing
between iterations. The more related vector calculations, the
more CPU is required. 4) The CPU demands of the SPEECH
models are mainly related to the design of the model. Whether
additional audio processing is required determines the demand
for the CPU.

2) Multi-GPU CASE: In the single-node multi-GPU config-
uration, the model’s CPU demands have a linear relationship
with the number of GPUs it requires. This is because its CPU-
GPU interaction process is similar to the single-node single-
GPU configuration. The impact of local communication on the
overall process is small. The GPU number increase only af-
fects the amount of computation in the data preparation stage,
which results in a linear relationship between the model’s CPU
demands and the number of GPUs in the configuration. For
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Fig. 6: The memory bandwidth demand for different bench-
marks with optimal CPU number.

different models, due to the different computing requirements
between iterations, the growth slope of the CPU demands of
different models is different.

Under the multi-node multi-GPU configuration, the exper-
imental configuration is a 10Gb/s Infiniband network inter-
connection. First, it can be seen that the CPU requirements
of all models are no more than two cores. According to
our observations, all models have 25% -30% performance
degradation compared to 1N4G configuration. This is because
the network communication in a multi-node configuration
cannot be optimized. The decreased performance also leads
to jobs consuming more time to prepare the data.

In multi-GPU case, 1) the model’s CPU demand is still
independent of the batch size. The reason is the same as the
single-node single-GPU configuration. 2) if the GPUs are on
the same node, the model’s CPU demand is linearly related
to the GPU number, and the relevant slope is determined by
its data preprocessing requirement. 3) if the GPUs are on
different nodes, the CPU demand of the model is reduced due
to the impact of network communication. The CPU demand
reduction is determined by the model weights and the network
communication speed.

C. Analysis for CPU-side resource contention

The bandwidth usage here refers to the maximum memory
bandwidth used during model training. The corresponding
results are shown in the Fig. 6.

1) Memory bandwidth demand of GPU jobs: First, it is
easy to find that memory bandwidth demand of CV models
have an anti-correlation with its model complexity, which is
consistent with the CV models’ CPU demands. In general,
when a model has lower complexity, it needs more CPU to
complete the data preparation, which also means more need
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for bandwidth. Note that, when the model adopts a larger
BS, its bandwidth demand increases slightly. Second, For the
NLP model, we can find that the bandwidth requirements of
both NLP models are very small. There are two reasons for
that. One is the small dataset. NLP models choose to read
all the datasets into the memory, avoiding massive memory
access operations between iterations. The other is the NLP
models’ input is pretty small such as the one-hot vector.
Third, for the SPEECH models, we find that its bandwidth
demand is also different due to its different data pre-process
operations. With the BS increasing, the bandwidth requirement
of Wavenet increase accordingly for its need for audio re-cut,
while Deepspeech’s demand does not change. Besides, when
the configuration is increased, the bandwidth requirements of
different models increase linearly, which is consistent with CV
models. For the multi-GPU configuration, as the GPU number
increases, the CV models and SPEECH models’ memory
bandwidth demand increases linearly.

2) Memory bandwidth contention of GPU jobs: To inves-
tigate the sensitivity of a DNN training job on the memory
bandwidth contention, we have chosen a memory-intensive
benchmark HEAT to inflict bandwidth pressure. By adjusting
the thread number of the program, different levels of LLC or
bandwidth pressure is applied to models on the same node.
We only show the experimental results of the 1N1G models
in Figure 7 due to space limitations.

Observed from Fig. 7, all the models are not sensitive to the
LLC contention. Meanwhile, for CV models, only Alexnet is
affected by the memory bandwidth contention, while Vgg16,
Inception3, and Resnet50 are insensitive to the bandwidth
contention. Since these models require less memory bandwidth
and they have longer running time for every iteration, they are
insensitive to the memory bandwidth contention. NLP models
are more sensitive to the memory bandwidth contention. There
have been at least a 50% performance drop, which is consistent
with the analysis of previous sections. While NLP models
all need complex data preprocessing between iterations, they
are sensitive to the resources contention, including memory
bandwidth contention and other contention like bus introduced
by bandwidth contention. For SPEECH models, Deepspeech
is more sensitive than Wavenet, for it needs fewer data
preprocessing between iterations.

In summary, DNN models have different sensitivity to
memory bandwidth contention.
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Fig. 8: Design overview of CODA.

3) PCIe bandwidth contention: Our experiment shows that
all models do not consume more than half of the bandwidth of
PCIe 3.0, which is 16GB/s (detailed data is omitted due to the
limited space). In other words, the co-running of two models
do not exceed the total available PCIe bandwidth. As such, it
is safe to co-locate two 1N1G training jobs in a single node
as it does not cause performance degradation for training. As
for the 1N2G case, the noticeable performance drop exists
only when one of the co-located training jobs is Alexnet or
Resnet50. Their maximum PCIe bandwidth consumption is
12 GB/s, with the averaged value of 8 GB/s. In contrast, NLP
and speech models only consume less than 1 GB/s of the PCIe
bandwidth. The difference in the PCIe bandwidth consumption
explains why the CV models can cause large performance
drops when co-located with other models.

Therefore, the selected models in this paper require little
PCIe bandwidth. Unless the complexity of the model is small,
it will demand a considerable amount of PCIe bandwidth.
Based on the contention experimental results, it can be seen
that the co-running of two low demand models does not affect
each other. When co-running with a higher PCIe demand
model, there will be 5%-10% performance degradation.

V. METHODOLOGY OF CODA

In this section, we present CODA, a scheduling system that
improves resource utilization of multi-tenant GPU clusters by
slimming and co-locating DNN training jobs and CPU jobs.

A. Overview

Fig. 8 shows the design overview of CODA that schedules
both CPU jobs and DNN training jobs on a GPU cluster. As
shown in the figure, CODA is comprised of an adaptive CPU
allocator, a real-time contention eliminator, and a multi-array
job scheduler. The CPU allocator identifies the optimal CPU
number for a DNN training job at runtime. The contention
eliminator watches the shared resource contention on each
node. It ensures that the performance of a DNN training job
would not be severely degraded by the contention on CPU-
side shared resources. Based on the data provided by the
CPU allocator, the job scheduler allocates CPU and GPU
resources aiming for high performance. Besides the above
three parts, CODA periodically updates the job information
from all users and array-level job information in the backend.
The information is useful for the CPU allocator and job
scheduler to act efficiently.



Specifically, CODA schedules a newly received job J as
follows. 1) If J is a DNN training job, the CPU allocator
searches the best CPU number for J based on its category
(Speech, CV, or NLP) and the owner’s historical job informa-
tion recorded in the log. 2) Job J is pushed into either the CPU
job array or GPU job array based on its resource requirement.
3) The job scheduler assigns J the required resources based
on the status of all the nodes in the cluster. 4) The contention
eliminator on each node keeps monitor the memory bandwidth
usage of each job and throttles the memory bandwidth of a
CPU job if it consumes high memory bandwidth. 5) When
J completes, its resource usage, scheduling information, and
owner information are recorded in a log for future use.

Note that, in our current design, the contention eliminator
of CODA only throttles the memory bandwidth usage of CPU
jobs. The main reason for this design is that DNN training jobs
have higher priority than all CPU jobs on GPU clusters except
the user-facing inference jobs. Besides, the DNN training jobs
themselves on the same node would not contend for memory
bandwidth severely, as we showed in Section IV-C.

B. Adaptive CPU allocation

For the DNN training job J , the adaptive CPU allocator
identifies its optimal core number based on two findings in
Sec. III. First, a DNN training job’s GPU utilization rate and
running speed change in a similar trend, and they reach the
optimal value at the same CPU number. Second, there is a
linear relationship between the GPU utilization and the CPU
number allocated to the job.

As shown in Fig. 3, for job J , if the number of its
cores exceeds the optimal number, the corresponding GPU
utilization of J drops slightly. To identify the optimal core
number for J , the CPU allocator first finds a reasonable core
number as the start point Nstart to perform the search. The
start point is determined based on the core number information
of the owner’s historical jobs and the category of J (Speech,
CV, or NLP). The allocator then increases or decreases the
number of cores allocated to J to check whether more or
fewer cores would result in a higher performance of J .

1) Determining Nstart: The CPU allocator determines the
start point to perform the search according to the CPU-GPU
interaction principle. According to the discussion in Sec. IV-A,
the models of the same category have similar CPU-GPU
processing modes. We assume that the tenants provided at least
the categories of their models, and may provide the following
three types of information: the number of model weights,
whether to use pipeline optimization, and data processing
complexity between iterations.

In general, a user tends to submit similar training jobs.
Based on this assumption, Nstart for job J is determined based
on the numbers of cores allocated to its owner’s historical job
in the same category of J . In more detail, we choose the largest
core number to be Nstart. If J is the first job submitted by a
tenant, we choose 3 for CV models, 5 for NLP models, and
5 for SPEECH models empirically based on our investigation
in Sec. IV-B. In the worst case that the owner of J does not
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Fig. 9: The design of the multi-array job scheduling.

even provide the category of J , it is also sufficient to find
a reasonable Nstart based only on the owner’s historical job
execution information.

If the owner of J provides extra information, the Nstart can
be further optimized based on the investigation in Sec. IV-B.
To be more specific, if J is implemented using pipeline
optimization, the corresponding Nstart is reduced by 1. If J
has a large number of job weights, Nstart is reduced by 1.
If the processing complexity between iterations of J is high,
Nstart is increased by 1.

2) Tuning the core number: Starting from Nstart, CODA
tries both larger and smaller core number allocated to J
(denoted by Nopt), and checks whether they speedup J . The
CPU allocator first evaluates the smaller core number for
J . Three cases may happen here. 1) If the GPU utilization
improves, the allocator reduces Nopt until the GPU utilization
does not improve. 2) Otherwise, if the smaller core number
does not improve the GPU utilization, the allocator increases
Nopt in the opposite direction. If larger Nopt improves the
GPU utilization, the allocator keeps increases Nopt until the
GPU utilization does not improve. 3) If the GPU utilization is
not improved with both fewer or more cores, the most suitable
number of cores for J is found. We analyze the effectiveness
and related overhead of the tuning in Sec. VI-F.

C. Multi-array job scheduling

FIFO that gives the highest system-wide throughput and
DRF that enforces fairness between the tenants are the two
most widely-used scheduling algorithms in multi-tenant clus-
ters. However, they result in three critical problems on a GPU
cluster. First, FIFO and DRF may leave GPU jobs pending
when a large number of CPU jobs are in the array. Second,
a tenant that uses GPUs reaches a large weight with DRF,
because GPU in the cluster is more scarce than CPU. The
large weight makes it impossible for the tenant to submit CPU
jobs in a fair time. Third, GPU jobs cannot be submitted if
there are many GPU jobs that apply for one or two GPUs in
the job array. In other words, the cluster has encountered GPU



fragmentation caused by CPU jobs and GPU jobs, and there
are corresponding fairness issues at the same time.

As shown in Figure 9, the multi-array job scheduler resolves
the three problems by dividing all resources into CPU resource
array and GPU resource array. The GPU resource array
reserves some CPU resources for GPU jobs in this array.
This part of the computing resources is derived from historical
statistical information. For CPU job array, DRF scheduling is
used to schedule the CPU jobs based on the usage of CPU.
For GPU jobs in the GPU job arrays, DRF scheduling is used
to schedule them according to the usage of GPU, and their
CPU numbers are designated by the adaptive CPU allocator.

If CPU jobs burst and the GPU resource array is relatively
idle, the multi-array scheduler allows CPU jobs to preempt
the reserved cores in the GPU resource array (Figure 9).
When a GPU job arrives and needs the preempted CPU cores,
CODA aborts the running CPU job and releases the preempted
CPU cores. The suspended CPU job re-enters the array head,
waiting to be rescheduled again. Benefit from containerization
and virtualization, similar to Container and Kata, job migration
is easy to achieve here.

The GPU job array is further divided into a 4-GPU sub-
array and a 1-GPU sub-array. The 4-GPU sub-array is for jobs
that apply for 4 GPUs or more, while the 1-GPU array serves
jobs that demand less than 4 GPUs. The division of the corre-
sponding array is also determined by the statistical information
of the historical jobs. The maximum GPU number required
by 4-GPU jobs in the historical statistics is designated as the
corresponding initial resource division. When the resources in
the 4-GPU array are all used, the GPU job in the array will
be allocated to the nodes that meet the requirements in the
1-GPU array. If no suitable node is found, the job queues for
scheduling later. Similarly, if all the resources in the 1-GPU
array are used, the job tries to preempt resources from the 4-
GPU job array. When 4-GPU jobs need to use corresponding
resources again, job migration is performed.

The multi-array design eliminates the problems of GPU
fragmentation and the unfair resource usage of the users.

D. Real-time contention elimination

Based on the analysis in Sec. IV-C, DNN training jobs are
sensitive to the contention on memory bandwidth.

In order to guarantee the performance of the high prior-
ity DNN training jobs, CODA monitors the total memory
bandwidth usage of each node and the memory bandwidth
of each CPU job on the node using Intel Memory Bandwidth
Monitoring (MBM) technique. If the total memory bandwidth
usage of the node reaches a pre-defined threshold (75% by
default according to the analysis in Section IV-C) and the
GPU utilization of the DNN training jobs on the node drops,
the performance of the DNN training jobs is degraded due to
the memory bandwidth contention.

In this scenario, the contention eliminator uses the Memory
Bandwidth Allocation (MBA) technique to throttle the mem-
ory bandwidth of CPU jobs. If the node does not support
the MBA technique that only works on the latest CPU, the

contention eliminator reduces the number of cores allocated
to the CPU jobs by half. This method reduces the memory
bandwidth usage of the CPU job and eliminates the perfor-
mance degradation of the DNN training job due to the memory
bandwidth contention. For the released CPU cores, CODA
tries to schedule new CPU jobs and uses the same method
to ensure that the utilization of GPU is not affected.

VI. EVALUATION OF CODA

In this section, we evaluate the performance of CODA in
improving the resource utilization of GPU clusters.

A. Reducing queuing time

We collected the task trajectory information for one month
from the real reproduction cluster. There are 100, 000 jobs are
submitted during the one month, in which 75,000 jobs are CPU
jobs, and 25,000 jobs are DNN training jobs. Most of the GPU
jobs are training NLP and SPEECH models, and there are also
a large number of CPU jobs to complete some auxiliary tasks
and other tasks. The specific experimental configuration has
been explained in the Sec. III, which has 80 nodes and 400
NVIDIA 1080Ti GPUs.

Based on the above real-system traces, we compare CODA
with two widely-used job scheduling algorithms for large-scale
clusters: FIFO (First In First Out) scheduling policy, and DRF
(Dominant Resource Fairness) scheduling policy. With FIFO,
the CPU and GPU jobs are scheduled in the FIFO manner.
With DRF, we consider GPU as the dominant resource and
enforce that the tenants fairly share the dominant resource.

B. Improving resource utilization

Fig. 10 shows the GPU active rate and the GPU utilization
with FIFO, DRF, and CODA. GPU active rate is the percentage
of the overall GPUs that are used, and GPU utilization is
the average resource utilization of each GPU. Higher GPU
active rate means that more GPUs are utilized (shorter queuing
time and lighter fragmentation). Higher GPU utilization means
that each GPU is better utilized in training (higher training
performance).

Observed from Fig. 10, CODA significantly improves the
GPU utilization compared with FIFO and DRF. The GPU
utilization of the cluster with FIFO, DRF, and CODA are
45.4%, 44.7%, and 62.1%, respectively. CODA improves the
GPU utilization of the GPU cluster by 62.1%-45.4%=16.7%.
At the same time, when the jobs queue up for the resource
allocation, the GPU active rates of the cluster with FIFO, DRF,
and CODA are 83.5%, 83.3%, and 91.2%, respectively. This
shows that CODA improves overall GPU utilization.

The improved GPU utilization originates from the adaptive
CPU allocation and real-time contention elimination in CODA.
The adaptive CPU allocator in CODA selects the best-fit CPU
number for each job. It not only avoids the unreasonable CPU
requirement and its induced fragmentation but also optimizes
the performance of the DNN training jobs.

By comparing the GPU active rate curve of CODA with
the GPU active rate curve of FIFO in Fig. 10, we can find



Fig. 10: The GPU active rate and GPU utilization of the multi-tenant GPU cluster with CODA, FIFO, and RDF.
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Fig. 12: The 99%-ile queuing time of each user with FIFO, DRF, and CODA.

that CODA reacts to the job change in advance. CODA first
reduces GPU fragmentation to ensure GPU active rate and
reduce task queuing time. Secondly, CODA further reduces
the task queuing time by optimizing the task’s running time,
which also improves the throughput of the cluster.

C. Eliminating GPU fragmentation

GPU fragmentation happens in two cases. In the first case,
GPUs are not used because there is not sufficient CPU for the
DNN training job on the node. In the second case, a node is
not able to host GPU jobs that require four GPUs or more
if other GPUs on the node have already been allocated. We
mainly discuss GPU fragmentation due to insufficient CPU
here, while the second case is solved by the multi-array job
scheduler in CODA.

According to our experimental results, the average fragmen-
tation rate of CODA is less than 1%, while the fragmentation
rate of FIFO and DRF is 14.3% and 14.6%. For FIFO and
DRF, a large number of GPU jobs queue up for scheduling,
while more than 14% of the GPUs are not used.

The advantages of CODA come from two aspects, On the
one hand, it solves the problem of queuing and GPU frag-
mentation caused by tasks that apply for excessive CPU. On
the other hand, the multi-array scheduling module ensures that
GPU tasks are not affected by CPU tasks. Based on these two
advantages, CODA significantly reduces GPU fragmentation
on existing clusters.

Fig. 11 and Fig. 12 show the CDF of the job queuing time
of all the jobs, and the 99%-ile job queuing time of each user
with FIFO, DRF, and CODA. With FIFO and DRF, 43.1%
and 28.9%of GPU jobs suffer from queuing time more than

ten minutes, 27.8% and 14.3% of GPU jobs queue up for more
than an hour. Besides, 87.4% and 87.8% of the CPU jobs can
get resource allocation within 10 seconds. With CODA, 92.1%
of GPU jobs can get resource allocation without queuing, and
94.5% of CPU jobs can be scheduled to the cluster within 3
minutes.

The short queuing time of CODA comes from its CPU
allocation optimization and multi-array scheduling. First, The
CPU allocation optimization solves the problem of excessive
CPU application from GPU jobs, thereby reducing GPU
fragmentation. Second, through the multi-array design, CODA
minimizes the impact of bursty CPU jobs.

Observed from Fig. 12, the queuing time with FIFO for
most users is longer than that with DRF. The root cause is that
DRF aims for fairness, and FIFO aims for higher throughput.
When a small number of users submit a large number of jobs,
FIFO does not take into account the fairness of the users. The
decision causes a large number of users to queue up and have
a longer queuing time. DRF provides better fairness, users
who submit a large number of jobs have longer queuing time,
waiting for tasks of users applied for fewer resources. For
CODA, the queuing time for all users is much shorter than
FIFO and DRF. As described earlier, CODA reduces GPU
fragmentation and improves task performance, which improves
system throughput and optimizes task queuing time. Besides,
CODA also guarantees fairness among users since the DRF
algorithm is used for scheduling inside each array. As can
be seen from the figure, users that submit more tasks have a
longer queuing time.

Note that, when the users that only submit CPU tasks
(id: 15-20) try to submit a large number of CPU tasks, the



Fig. 13: The end-to-end latencies of representative GPU jobs with FIFO and CODA.
Fig. 14: Tuning the number of
cores allocated to GPU jobs.

corresponding queuing time increase. This is because part of
the CPU resources is reserved for the GPU task array, which
results in a slightly longer queue time for these users. However,
the corresponding queuing time is still not much different from
the DRF, which means it is tolerable.

D. Effectiveness of tuning CPU allocation

Fig. 14 presents the tuning of the core number allocated to
each DNN training job with CODA. As shown in the figure,
57.1% of the GPU jobs are allocated 1-5 more cores, and
33.6% of the GPU jobs are allocated 1-20 fewer cores compare
with the number of cores applied by the job owner. This
is consistent with the investigation in Sec. III: many DNN
training jobs apply for one or two cores for each GPU, and
a considerable percentage of the DNN training jobs request
excessive CPU cores.

Fig. 13 shows the end-to-end latency of representative GPU
jobs (including queuing time and processing time). For each
job, the left bar and right bar represent its queuing time
and processing time with FIFO and CODA, respectively.
Observed from the figure, CODA reduces the queuing time
and processing time of most jobs simultaneously. The queuing
time reduction originates from the improvement of the overall
cluster throughput, and the processing time reduction origi-
nates from the CPU adjustment of the adaptive CPU allocator.
CODA does not reduce or even slightly increase the processing
time of a small number of GPU jobs. This is because when
the processing time is very short, the corresponding benefits
that the adaptive CPU allocation brings is not enough to cover
up the overhead incurred by the module. Since CODA reduces
the corresponding queuing time, the overall end-to-end latency
of the GPU jobs still reduces.

In summary, the adaptive CPU allocation in CODA success-
fully tunes the core number for most DNN training jobs.

E. Effectiveness of eliminating CPU-side contention

The contention eliminator monitors the memory bandwidth
usage of each node in real-time. Each bandwidth-intensive
program was detected, and its bandwidth usage was restricted
accordingly. In order to evaluate the effectiveness of the
contention eliminator in CODA, we disable the eliminator
in CODA and test the performance again. Our experimental
results show that the average GPU utilization decreased by
2.3% when tasks are queuing, if the contention eliminator is
disabled. Meanwhile, the overall number of queueing tasks
doubles.

TABLE II: Overhead of identifying the optimal core number.

Neural model Profiling steps Training iterations
Alexnet [19] 4 about 260
VGG16 [21] 4 about 70

InceptionV3 [22] 3 about 180
Resnet-50 [23] 3 about 150

Bi-att-Flow [24] 4 about 35
Transformer [26] 3 about 260

Wavenet [28] 3 about 28
DeepSpeech [30] 3 about 45

The above performance data is reported in the scenario
that only 0.5% of CPU tasks have high memory bandwidth
requirements. If more CPU jobs on the cluster have higher
memory bandwidth requirements, the performance is worse
without the contention eliminator.

Memory bandwidth-intensive CPU jobs degrade the perfor-
mance of DNN training jobs, without the contention elimina-
tor. First, it affects the GPU utilization on the current node
and the performance of the tasks running on the node. With
the corresponding tasks’ performance degrades, the number of
queueing tasks in the cluster increases. Besides, because the
memory bandwidth contention only affects the performance of
GPU jobs on the current node, It does not affect the overall
scheduling decision, so the corresponding cluster fragmenta-
tion rate does not change.

F. Overhead of identifying the appropriate core number

When identifying the appropriate core number for a DNN
training job, CODA profiles the performance of the job with
different core numbers. During the profiling, we sample the
GPU utilization for each profiling step that lasts 90 seconds.
As shown in Tbl. II, CODA identifies the optimal core number
for all the DNN training jobs in 4 profiling steps, that last for 6
minutes. The table also lists the number of iterations that each
model has been trained during the profiling step. Each model
is trained for 28-260 iterations, which means that it is enough
to discover the CPU requirements of jobs. Besides, we analyze
the runtime distribution of GPU tasks in a week, and find that
39.6% of the DNN training jobs run for more than 2 hours
and 68.5% of the training jobs run for more than an hour. It
is worthwhile to spend about six minutes of exploration time
to find the optimal core number.

G. Generailty

Some larger private clusters maybe composed of both GPU
nodes and CPU nodes. For these more complex clusters,
FIFO scheduling still results in low GPU utilization and GPU



fragmentation. In addition to these problems, DRF faces new
problems. When GPU resources are more scarce compared to
CPU resources, a tenant that submits both CPU jobs and GPU
jobs can easily reach a large weight. Then its CPU jobs would
no longer be scheduled. This situation conveys unfairness
among users. When GPU resources are sufficient relative
to CPU resources, the weight of GPU becomes irrelevant.
However, the multi-array scheduling in CODA ensures that
the scheduling of GPU and CPU jobs is not affected by each
other.

As for the clusters that have different workload characteris-
tics, CODA also has excellent performance. The current main-
stream private cloud is often adopted to do model training,
which takes more than one hour or two hours. Although this
paper does not cover all the models, GPU utilization represents
the running speed of jobs theoretically. Therefore, CODA
could find the best-fit CPU number of GPU jobs and ensure
that GPU jobs all have the best performance. Further, CODA
improves the throughput and utilization of the cluster, which
means that CODA has good generality.

VII. CONCLUSION AND FUTURE WORK

A multi-tenant GPU cluster hosts both DNN training jobs
and traditional CPU jobs. We first characterize the CPU-side
resource demand and contention of training DNN models in
Speech, CV, and NLP field. Based on the analysis, we propose
CODA, a scheduling system that improves the resource utiliza-
tion of GPU clusters. CODA adopts a feedback-based method
to find the just-enough core number for a DNN training job.
Based on the analysis on the impact of contention on CPU-side
resource on the performance of DNN training jobs, CODA
eliminates the interference which ensures the performance
gains of jobs. A multi-array job scheduler in CODA eliminates
the GPU fragmentation. Experimental results show that CODA
improves the GPU utilization by more than 20.8% without
degrading the performance of GPU jobs.
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