
10

Bandwidth and Locality Aware Task-stealing for Manycore
Architectures with Bandwidth-Asymmetric Memory

HAN ZHAO, QUAN CHEN, and YUXIAN QIU, Shanghai Jiao Tong University, China
MING WU,Microsoft Research Asia, China
YAO SHEN, JINGWEN LENG, CHAO LI, and MINYI GUO, Shanghai Jiao Tong University, China

Parallel computers now start to adopt Bandwidth-Asymmetric Memory architecture that consists of traditional
DRAM memory and new High Bandwidth Memory (HBM) for high memory bandwidth. However, existing
task schedulers su�er from low bandwidth usage and poor data locality problems in bandwidth-asymmetric
memory architectures. To solve the two problems, we propose BATS, a task scheduling system that consists of
an HBM-aware data allocator, a bandwidth-aware tra�c balancer, and a hierarchical task-stealing scheduler.
Leveraging compile-time code transformation and run-time data distribution, the data allocator enables HBM
usage automatically without user interference. According to data access hotness, the tra�c balancer migrates
data to balance memory tra�c across memory nodes proportional to their bandwidth. The hierarchical
scheduler improves data locality at runtime without priori program knowledge. Experiments on an Intel
Knights Landing server that adopts bandwidth-asymmetric memory show that BATS reduces the execution
time of memory-bound programs up to 83.5% compared with traditional task-stealing schedulers.

CCS Concepts: • General and reference → Performance; • Computing methodologies → Parallel pro-
gramming languages;

Additional Key Words and Phrases: Task-Stealing, Bandwidth, Data Locality, Runtime Scheduling

ACM Reference Format:
Han Zhao, Quan Chen, Yuxian Qiu, Ming Wu, Yao Shen, Jingwen Leng, Chao Li, and Minyi Guo. 2018.
Bandwidth and Locality Aware Task-stealing for Manycore Architectures with Bandwidth-Asymmetric
Memory.ACMTrans. Arch. Code Optim. 1, 1, Article 10 (October 2018), 25 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
In the multicore and manycore era, hardware manufacturers integrate more and more cores into a
single computer for ful�lling the ever-growing demands on computational capacity. The increased
core number raises a daunting challenge in satisfying memory bandwidth requirement, because
all the cores need to access data from main memory concurrently. To this end, recent manycore
computers (such as Intel Knights Landing [18], aka. KNL) start to integrate Multi-Channel DRAM
(MCDRAM) or Hybird Memory Cube (HMC) that provides higher bandwidth than traditional DRAM

Authors’ addresses: Han Zhao; Quan Chen; Yuxian Qiu, Shanghai Jiao Tong University, Department of Com-
puter Science and Engineering, Shanghai Institute for Advanced Communication and Data Science, Shang-
hai, 200240, China; Ming Wu, Microsoft Research Asia, Beijing, China; Yao Shen; Jingwen Leng; Chao Li;
Minyi Guo, Shanghai Jiao Tong University, Department of Computer Science and Engineering, Shanghai, China,
200240, zhaohan_miven@sjtu.edu.cn;chen-quan@cs.sjtu.edu.cn;qiuyuxian@sjtu.edu.cn,miw@microsoft.com;yshen@cs.
sjtu.edu.cn;leng-jw@cs.sjtu.edu.cn;lichao@cs.sjtu.edu.cn;guo-my@cs.sjtu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/10-ART10 $15.00
https://doi.org/0000001.0000001

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:2 H. Zhao et al.

HBM0 HBM1

c

D
R

A
M

0

D
R

A
M

1Socket S0 Socket S1

… …

HBM0 HBM1

c

D
R

A
M

0

D
R

A
M

1

Hot data Data access

Socket S0 Socket S1

Cold data

… …

(a) Cache mode (b) Flat mode

Caching Caching

A new level of cache

TSV TSV

Fig. 1. Two configuration modes of bandwidth-asymmetric memory in manycore architectures.

memory, by stacking multiple DRAM dies on top of CPU chips with through-silicon vias (TSV). For
easing of description, both MCDRAM and HMC are referred as High Bandwidth Memory (HBM).
Due to the limitations in industrial manufacture (e.g., thermal dissipation), the capacity of the

stacked HBM is often smaller than 16GB. HBM cannot directly replace traditional DRAM (hundreds
of gigabytes) due to the small capacity. Emerging manycore computers, such as KNL, use HBM along
with traditional DRAM to leverage both the high bandwidth of HBM and the large capacity of DRAM
memory (this memory architecture is referred as Bandwidth-Asymmetric Memory architecture).
Note that, unlike non-volatile memory (NVM) that has more than 2X/10X longer read/write latency
than traditional DRAM, the access latency of HBM is only 10%-15% longer than the latency of
DRAM. Bene�t from e�cient data prefetching, the slightly longer access latency of HBM does not
degrade the performance of an application (proved in Section 3 and prior work [35]).
As shown in Figure 1, bandwidth-asymmetric memory can be con�gured in two modes: cache

mode and �at mode. In cache mode, HBM dies (called HBM nodes) stacked on all the CPUs as a
whole is managed as a new level of cache. Intuitively, in cache mode, the bandwidth of DRAM
nodes is wasted because the cores do not directly read/write data from them. In addition, it is
possible that a core’s data is cached into a remote HBM node. For instance, the data used by a core
c in S1 may be cached in HBM0. In this case, c has to read data from the remote HBM0 with much
longer latency due to the Non-Uniform Memory Access (NUMA) e�ect. On the other hand, HBM
nodes are addressable in �at mode. A parallel program is able to explicitly access data from HBM
nodes and DRAM nodes simultaneously. In this case, if the program is memory-bound and the data
is distributed properly, it can use higher memory bandwidth in �at mode than in cache mode.
From software aspect, parallel programs are often scheduled with dynamic scheduling policies

that can automatically balance its workload across a large number of cores inmanycore architectures.
In dynamic scheduling policies, the execution of a parallel program is divided into a large amount
of �ne-grained tasks and is expressed by a task graph (aka. Directed Acyclic Graph or DAG). Each
node in a DAG represents a task (i.e., a set of instructions) that must be executed sequentially
without preemption. Task-sharing and task-stealing (aka. work-stealing) [5] are two widely-used
dynamic task scheduling policies. In task-sharing, all the workers (cores) share a central task pool.
To guarantee that task-sharing functions properly, all the workers need to acquire a unique “lock”
on the central task pool before pushing and popping tasks. For instance, early version of X10 [4]
implements a task-sharing scheduler. On the other hand, in task-stealing, each worker has an
individual pool that stores its own tasks and only when a worker’s pool is empty does it try to
“steal” tasks from other workers with locking. Task-stealing performs better than task-sharing due
to the reduced competition over locks [5]. For instance, Intel TBB [36], XKaapi [16], LLVM [20]
implementation of OpenMP, Cilk++ [22], X10 [21], LAWS [9] and RELWS [25] use task-stealing.

However, task-sharing and task-stealing fail to e�ciently utilize the high bandwidth of bandwidth-
asymmetric memory in both cache mode and �at mode, resulting in the poor performance of
memory-bound programs. In cache mode, the bandwidth of DRAM nodes is wasted and it could
incur severe remote memory accesses as stated before. In �at mode, as shown in Figure 1(b), a
task-stealing program su�ers from both low bandwidth usage and poor data locality problems.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:3

First of all, using “numactl” interface in Linux to explicitly distribute the data of a program to both
DRAM nodes and HBM nodes is the most straightforward way to utilize HBM nodes (all the data
is stored in DRAM nodes by default in �at mode). However, it is possible that hot data is stored
in DRAM nodes while cold data is stored in HBM nodes. Under this improper distribution, the
bandwidth of HBM is under-utilized, resulting in the low bandwidth usage. Meanwhile, random task
stealing results in serious remote memory accesses that further degrades a program’s performance
(pink arrows in Figure 1(b)). Lacking a runtime system that can distribute data based on access
hotness and schedule tasks to the sockets where they can access data from local memory nodes,
the performance of a memory-bound program could be worse when the bandwidth-asymmetric
memory is con�gured in �at mode than in cache mode, although the available bandwidth in �at
mode is higher (to be discussed in detail in Section 3).
To solve the above problems, we con�gure bandwidth-asymmetric memory in �at mode and

propose BATS, a task scheduling system that consists of an HBM-aware data allocator, a bandwidth-
aware tra�c balancer, and a hierarchical task-stealing scheduler. BATS targets for iterative memory-
bound programs in which the structures of the task graph are the same in di�erent iterations, and
data chunks of a program may have di�erent hotness. Leverage compile-time code transformation
and runtime placement, the data allocator automatically distributes the data set of a program to
DRAM and HBM nodes without user interference. The tra�c balancer monitors the hotness of dif-
ferent data chunks and the access tra�c of each memory node. Based on online-collected statistics,
the tra�c balancer migrates data accordingly to balance the tra�c to all the memory nodes propor-
tionally to their bandwidths. The hierarchical task-stealing scheduler identi�es appropriate socket
for each task so that the task can access its data from either local DRAM node or local HBM node.
To the best of our knowledge, BATS is the �rst task-stealing runtime system that improves
bandwidth utilization of asymmetric memory and enhances data locality automatically
without any program modi�cation, hardware modi�cation, or user interference.

Although Intel recently announced that it will discontinue KNL, other vendors (e.g., Micron and
AMD) plan to adopt bandwidth-asymmetric memory in their products to mitigate the low memory
bandwidth. Investigation [37] shows that HBMmarket is continuously growing. Because the design
of BATS does not rely on any speci�c features of KNL, it is also applicable for other computers that
adopt bandwidth-asymmetric memory. The main contributions of this paper are as follows.

• The design of a weighted data distribution mechanism for bandwidth-asymmetric
memory. Bene�tting from this mechanism, task-stealing programs can take advantage of
the high bandwidth of HBM nodes without user interference.
• The design of a low-overhead tra�c balancing mechanism. We propose a mechanism
that automatically balances the memory tra�c across all the memory nodes through sample-
based hotness monitoring and hot-�rst data migration.
• The design of a hierarchical task-stealing policy. We design and implement a novel
task-stealing policy for improving the data locality without priori program knowledge.

We implement BATS based on MIT Cilk [6] and evaluate it on an Intel KNL server that uses
bandwidth-asymmetric memory. Our evaluation shows that BATS signi�cantly reduces the execu-
tion time of memory-bound programs compared with traditional task-stealing schedulers.

2 RELATEDWORK
Targeting scheduling systems for task-based programs, a large amount of prior work aims to improve
energy-e�ciency [38, 41], to improve data locality [9, 10], or to reduce scheduling overhead [17, 29].
On the other hand, with the increasing bandwidth requirements of computing tasks, many papers
have also conducted related research for e�cient bandwidth usage.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:4 H. Zhao et al.

Table 1. Comparing BATS with related prior work.
Improve locality Optimize data alloc. Bandwidth aware No user interfer. No HW Modi�. HBM aware

CATS [10] 3 3 3
HWS [34] 3 3
DFA [15] 3 3 3
LAWS [9] 3 3 3 3
RELWS [25] 3 3 3
HPT [52] 3 3 3
Jenga [45] 3 3 3
BATS 3 3 3 3 3 3

Many task-stealing schedulers have been proposed to improve data locality by reducing shared
cache misses [10, 11] and increasing local memory accesses [9, 25, 40, 46]. Based on Charm++ [19],
NUMALB [32] is proposed to balance the workload while avoiding unnecessary migrations and
reducing cross-core communication. Yoo et al. [53] proposed an o�ine graph-based locality analysis
framework based on HPT [52] designed an interface for programmers to rewrite their programs in
a locality-aware manner. CAB [11] and HWS [34] used a rigid boundary level to divide tasks into
global tasks and local tasks. By scheduling local tasks within the same socket, the shared cache
misses can be reduced. However, users have to give the level manually in HWS or provide a number
of command line arguments for the scheduler to calculate the boundary level in CAB. To relieve
the above burden, CATS [10] was proposed to divide task graph based on the online information,
without extra user-provided information. These techniques assume that the data accessed by a task
is known by analyzing the task graph, which is not always true in real-system applications.
Paudel et. al [31] proposed task-stealing schedulers that schedule locality-�exible tasks across

nodes and locality-sensitive tasks to where their data is stored. The scheduler relies on programmer-
speci�ed locality hints to identify locality-�exible tasks. Drebes et. al [15] proposed data placement
techniques to distribute the data set of a program to NUMA nodes based on inter-task data
dependencies. Virouleau et. al [47] proposed heuristics to control data placement according to
architecture topology and task-data dependencies. Li�ander et al. [25] proposed RELWS that records
previous good schedule using steal tree [24] and reuses the good schedule for later iterations.

There is also prior work on the memory bandwidth optimization. Yoon et al proposed a dynamic
granularity memory system to save bandwidth for unused data [54], which is an architecture-
level solution based on DRAM memory. Carrefour [14] optimized the performance of memory-
bound applications by avoiding congestion on memory controllers and interconnects in multi-
socket computers. Carrefour neither consider bandwidth asymmetry nor improve data locality.
BATMAN [12] aimed at maximizing the bandwidth utilization of bandwidth-asymmetric memory
through explicit data movement. However, BATMAN required hardware and software modi�cations,
and did not consider data locality as BATS does. Other work optimized bandwidth utilization when
multiple applications run simultaneously: Jenga [45] proposed a module in an HBM-based cache to
improve bandwidth usage; Xu et.al [51] designed a bandwidth-aware scheduling method to mitigate
memory bandwidth contention between processes on OS; Lin et.al [26] proposed a bandwidth-
aware divisible task scheduling algorithm for cloud computing. Our work di�ers in the aspect that
targets bandwidth optimization for a task-based parallel program.

Besides data access performance optimization, prior work also optimizes task-stealing for asym-
metric multicore architectures [7, 8, 44]. AAWS [44] used work-pacing, work-sprinting, and work-
mugging to improve the CPU-bound applications’ performance on both static and dynamic asymmet-
ric multi-core architectures. Li et al. [23] proposed techniques to guarantee the Quality-of-Service
of latency-sensitive applications. Those e�orts are orthogonal to BATS.
There is also prior work on improving the performance of other schedulers, such as OpenMP.

Olivier et. al [30] proposed a hierarchical scheduling strategy that uses one thread to steal work
on behalf of all of the threads in a chip. This strategy provides good cache performance and load

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:5

spawn

�

� �

spawn

spawn spawn

sync

cilk test(int a, int b) {
 if (a - b < 2) {
 //do something
 } else {
 spawn test(a, a + (b-a)/2);
 spawn test(a + (b-a)/2, b);
 sync;
 }
}

 Inter node
Leaf node

(a) A Cilk program (b) The corresponding task graph

Fig. 2. DAG of a task-stealing program.

balance. BubbleSched [43] provided a framework for users to customize thread scheduler and tracing
tool. Clet-Ortega et. al [13] evaluated several scheduling strategies and proposed a con�gurable
scheduler to select the task list granularity and choose the most convenient work-stealing strategy
for OpenMP. StarPU [2] provided simple tasking APIs so that programmers can easily create task-
based programs for heterogeneous hardware, and scheduled tasks based on data-�ow dependencies.
Planas et. al [33] extended the StarSS syntax so that programmers can adjust task hierarchy by
knowing the complexity of the hardware. They are orthogonal to BATS.

Prior work on task-stealing did not consider the bandwidth-asymmetric memory as BATS. Table 1
compares BATS and related work.

3 BACKGROUND ANDMOTIVATION
In this section, we �rst give a general overview of MIT Cilk, a task-stealing programming environ-
ment. Then, we present the architecture of Intel KNL server that adopts bandwidth-asymmetric
memory, and discuss the hardware con�gurations. After that, we show existing problems of emerg-
ing task-stealing schedulers on computers that use bandwidth-asymmetric memory.

3.1 Task-stealing Program Background
Our work targets task-based parallel program. Figure 2(a) shows a task-based parallel program
written in MIT Cilk [42] (denoted by “Cilk” for short), a task-stealing programming language based
on C language. Cilk extends the C language with three keywords: cilk , spawn and s�nc . The cilk
keyword identi�es that a function can be executed in parallel, the spawn keyword speci�es the
parallel function invocation, and the s�nc keyword guarantees that no statement after it can be
executed until all preceding tasks complete.

Figure 2(b) shows the task graph of the the Cilk code in Figure 2(a). In the task graph, each node
represents a task, each edge represents the “spawn” relationship between two tasks. Observed
from this �gure, we can �nd that only leaf tasks actually perform the computation, while the
other nodes divide the workload into smaller pieces. When the program in Figure 2(a) runs in a
multicore/manycore architecture, Cilk runtime system adopts a random task-stealing policy to
schedule all its tasks. It is worth noting that the task graph of a task-based program is not known
before it is executed, because the tasks are dynamically generated at runtime. It is not applicable to
analyze the task graph of a task-stealing program o�ine to �nd it optimal scheduling.

3.2 Hardware Configuration
We use an Intel KNL server that uses bandwidth-asymmetric memory as the experimental platform.
Figure 3(a) shows hardware architecture of the KNL server. Observed from the �gure, eight HBM
nodes are attached with the KNL processor, and the cores are connected with a mesh interconnect.
The interconnect can be con�gured in �ve clusteringmodes: ALL2ALL, QUADRANT, HEMISPHERE,

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:6 H. Zhao et al.

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

Tile
TD

M
C

DRAM

M
C

DRAM
DRAM

KNL Architecture

DRAM

HBM HBM

HBM HBM

HBM HBM

HBM HBM

(a) KNL physics architecture

HBM0

c

DR
AM

0

Socket S0
… …

TSV TSV

c… …

KNL ALL2ALL mode

HBM0 HBM1

c

DR
AM

0

DR
AM

1Socket S0 Socket S1
… …

c

DR
AM

3

DR
AM

2Socket S3 Socket S2
… …

HBM3 HBM2

KNL SNC4 mode

(b) KNL logical architecture

Fig. 3. KNL architectures and its interconnect modes.

SNC2, and SNC4. In ALL2ALLmode (Figure 3(b)), all the cores can route each other and can access all
memory directly (similar to single-socket multi-core architecture). In SNC4/SNC2mode (Figure 3(b)),
the cores are divided into four/two parts, while exposing HBM nodes as NUMA nodes (similar to
multi-socket architecture with NUMA memory). In QUADRANT/HEMISPHERE mode, all the cores
are divided into four/two parts as well, but the cores can directly access all the memory nodes.

By default, the interconnect of a KNL server is con�gured in ALL2ALL mode, while the memory
is con�gured in �at mode. With this con�guration, the performance of a memory-bound program
p is never optimal, because there is no interface to balance its data to the physically disjoint
HBM/DRAM nodes and p’s tasks have to access data from remote HBM/DRAM nodes.

To control data placement based on a program’s data access pattern, similar to traditional multi-
socket computers with NUMA memory, we con�gure the bandwidth-asymmetric memory in �at
mode and the interconnect in SNC4 clustering mode (recommended in prior work [48] for memory-
bound applications). Our experiment in Section 9.5 shows that memory-bound programs achieve
the best performance when the KNL server is in SNC4+�at mode and the tasks are scheduled with
BATS, compared with all the other scheduler-mode combinations.

When the KNL server is con�gured in SNC4+�at mode, memory-bound programs do not achieve
good performance automatically. By default, a legacy program would only use DRAM in �at mode.
The easiest way to use HBM is explicitly allocated data to HBM using “numactl” interface in Linux.
Using “numactl”, there are three policies to distribute the data of a program without modifying
its source code: all-DRAM policy, even allocation policy, and all-HBM policy. In all-DRAM policy
(the default policy), all the data is stored in DRAM nodes. In even allocation policy, we can use
“numactl –interleave” to evenly distributes the data of a parallel program to all the memory nodes
in a round-robin manner. There is no interface to precisely control the percentage of data allocated
to a memory node. In all-HBM policy, we can force the program to store all its data in HBM nodes.
Obviously, the all-DRAM policy wastes the bandwidth of HBM nodes, the all-HBM policy wastes
the bandwidth of DRAM nodes, the even allocation policy can better take advantage the bandwidth
of all the memory nodes when the bandwidth-asymmetric memory is con�gured in �at mode.

Figure 4(a) and Figure 4(b) show the bandwidth and access latency of an HBM node normalized
to the counterparts of a DRAM node measured with Intel MLC tool [1]. Observed from Figure 4,
the bandwidth of an HBM node is 4.2X of the bandwidth of a DRAM node, while the latency of

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:7

(a) Bandwidth (b) Latency (c) Performance

Fig. 4. Bandwidth and latency of DRAM and HBM, and the impact of latency on application performance.

HBM0 HBM1

t0t1

D
R

A
M

0

D
R

A
M

1

(a) Even allocation and one possible task scheduling

d0

d1

HBM0 HBM1

t1t0
D

R
A

M
0

D
R

A
M

1

(b) A better data allocation and task scheduling

d1d0

Data block

Core
TSV

Fig. 5. Two schedulings of program p’s tasks on a computer that uses bandwidth-asymmetric memory.

an HBM node is 1.1X of the latency of a DRAM node. To show the impact of the slightly longer
access latency of HBM nodes on application performance, we run all the benchmarks in Table 2
with one thread so that the required memory bandwidth is smaller than the bandwidth of a DRAM
node. Figure 4(c) shows their performance in Cilk-DRAM and Cilk-HBM that store data in a DRAM
node and an HBM node respectively. Observed from Figure 4(c), except CC, the slightly longer
latency of HBM nodes does not degrade application performance. This �nding is consistent with
the observation in prior work [35]. We do not consider the impact of access latency in BATS.

3.3 Problems in Random Task-stealing
However, memory-bound task-based programs still su�er from poor performance when their data
is allocated with the even allocation policy. To better explain the problem, Figure 5 shows two data
allocations and two possible schedulings of tasks t0 and t1 in a memory-bound program p. In the
�gure, d0 and d1 are the data chunks that contain the data used by t0 and t1 respectively. Observed
from Figure 5(a), even data allocation and random task-stealing incur low bandwidth usage and
poor data locality problems. The two problems together result in the poor performance of p on
computers with bandwidth-asymmetric memory.

The low bandwidth usage problem originates from two sources. First of all, the bandwidth of a
HBM node is much higher than the bandwidth of a DRAM node but the dataset of program p is
often evenly allocated to all the memory nodes as shown in Figure 5(a). In this case, even if all the
data has similar hotness, it is highly possible that DRAM nodes are overloaded while the bandwidth
of HBM nodes is still under-utilized. In addition, p’s dataset may have uneven access hotness. For
instance, it is possible that all the hot data of program p is stored in a single memory node DRAM0,
while all the other memory nodes store the cold data. In this case, most memory tra�c is served by
DRAM0, while the bandwidth of DRAM1, HBM0 and HBM1 is under-utilized. Note that, with the
all-HBM policy or all-DRAM policy, if di�erent parts of p’s dataset have di�erent hotnesses, it is
also possible that most hot data is allocated to one of the HBM or DRAM nodes.

As for the poor data locality problem, tasks of p are randomly scheduled to di�erent cores with
random task-stealing. It is highly possible that tasks t0 and t1 are scheduled as shown in Figure 5(a).
In this case, t0 and t1 have to access their data d0 and d1 from DRAM0 and HBM1 remotely. The

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:8 H. Zhao et al.

Compile for bandwidth-asymmetric memory BATS
Compiler

BATS
Runtime
System

User
program

Distribute
data

Balance
memory traffic

Schedule with
high locality

HBM-aware
Data Allocator

Bandwidth-aware
Traffic Balancer

Hierarchical Task-
stealing Scheduler

Fig. 6. The design of BATS.

serious remote memory accesses further degrade the performance of p. Random task-stealing also
results in the poor data locality problem even if p’s dataset is allocated in all-DRAM policy or
all-HBM policy. According to our measurement in Section 9, more than 70% of memory accesses
are from/to remote nodes with traditional random task-stealing on our KNL server.

According to the above analysis, the coarse-grained even allocation policy with “numactl” results
in low bandwidth usage problem and the random task-stealing policy results in poor data locality
problem. For traditional computers that only use DRAM nodes, prior locality-aware schedulers
(e.g., LAWS [9] and RELWS [25]) partially solve the second problem under the assumption that a
task’s data set is known according to task graph topology. However, this assumption is not valid for
programs that have uneven data access patterns. In addition, they are not applicable for computers
that employ bandwidth-asymmetric memory (evaluated in Section 9).

If the dataset of p is allocated in the way that memory tra�c is balanced across all the memory
nodes proportionally to their bandwidth, while t0 and t1 are scheduled to the cores where they
can access their data d0 and d1 from local memory nodes as shown in Figure 5(b), the performance
of p can be improved. However, there is no interface to precisely control how the dataset is split
and distributed without modifying the source code of a legacy program. Made more challenging,
because di�erent parts of a program’s data set may have di�erent access hotness and the hotness is
not known before program execution, a static data distribution could easily result in unbalanced
memory tra�cs. Furthermore, which piece of data will a task accesses is not known before the task
actual runs, invalidating prior locality-aware task-stealing techniques.

4 THE BATS METHODOLOGY
Figure 6 presents the design ofBATS that is comprised of a source-to-source compiler and a runtime
system to address the above challenges. The runtime system has three components: an HBM-aware
data allocator, a bandwidth-aware tra�c balancer, and a hierarchical task-stealing scheduler.
BATS targets iterative programs where the task graph structures of di�erent iterations are

identical. Before scheduling such an iterative program p with BATS, we �rst compile p using BATS
compiler. The compiler automatically transforms p’s source code and generates the binary so that
BATS runtime system can specify the memory node in which a task’s data set is stored. When p
starts to run, the HBM-aware data allocator splits and distributes p’s dataset to all the memory
nodes proportional to their bandwidth in the initialization iteration (Section 5).

In the �rst iteration, the tra�c balancer monitors and balances the tra�c of all the memory nodes.
To achieve this purpose, BATS migrates hot data from overloaded memory nodes to under-utilized
memory nodes. Because BATS only migrates data in the �rst iteration, the migration overhead can
be easily amortized in later iterations (Section 6).
In the following several iterations, for every task t , BATS identi�es the socket in which t can

access most of its data from local memory nodes. To reduce overhead, BATS divides the task graph
of an iteration into intra-socket subgraphs. The tasks in the same intra-socket subgraph are pro�led
and scheduled in a whole between the sockets. On a computer havingM socket, BATS schedules
each intra-socket subgraph SG to a di�erent socket in M iterations, and identi�es the socket in

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:9

…Chunk 1 Chunk n

…T1 T2 Tn

1
1_1 1_2

1_1_1 1_1_2 1_2_1 1_2_2

1_1_1_1 1_2_2_2

Fig. 7. An example task graph of initializing a program’s data set in parallel.

which SG achieves the highest local data accesses (Section 6.1). This high locality mapping is
recorded for guiding subgraph allocation in future iterations.

Starting from the (M+1)-th iterations, BATS adopts a hierarchical task-stealing policy to schedule
tasks in a bandwidth and locality-aware manner (Section 7). Each intra-socket subgraph is directly
allocated to the socket where it can �nd most of its data from local memory nodes. Meanwhile, if a
socket completes all its intra-socket subgraphs, it tries to steal a subgraph from a randomly chosen
victim socket in order to solve the possible slight load imbalance.

5 HBM-AWARE DATA ALLOCATION
Most existing task-stealing programs (e.g., examples in MIT Cilk package) adopt parallelized data
initialization, in which the whole dataset of a program is initialized by multiple tasks. By scheduling
these data initializing tasks to di�erent sockets, the dataset of the program is split and distributed
to multiple memory nodes (�rst-touch policy). In this case, workers can access data from multiple
memory nodes concurrently, increasing the available bandwidth. Same to state-of-the-art locality-
aware task-stealing schedulers, such as LAWS [9] and RELWS [25], BATS targets for programs that
use parallelized data initialization.

Figure 7 shows an example task graph of the parallelized data initializer of a task-stealing program
p. In the �gure, p’s data set is split into n equal-size chunks, and each leaf task allocates memory
space for a chunk. In this paper, we assume that the data initializer adopts divide-and-conquer
pattern to initialize data chunks in parallel using “malloc”, and all the data of the program is
initialized by the initializer. Program p can also directly spawn n tasks to perform the initialization,
and the generated task graph equivalents to a two-level task graph where the root task has n
branches. BATS assumes that applications adopt the above parallelized data allocation mode.

5.1 Weighted Data Distribution
Without prior knowledge of p’s data access pattern, it is not possible to identify the optimal data
distribution for p in the initialization iteration. As a reasonable start point, we assume all the
initialized data has the same hotness and rely on the bandwidth-aware tra�c balancer to adjust
data distribution according to p’s real data access pattern later.

Speci�cally, we design a weighted data distribution scheme that satis�es two constraints. First, if
the bandwidth of memory node Na is n times of the bandwidth of memory node Nb , n times more
data should be stored in Na . Second, adjacent data should be stored in the same memory node to
better utilize data prefetching and spatial locality. Traditional task schedulers do not satisfy both
the two constraints, lacking the ability to control the data placement.

Suppose p runs on a computer that has k memory nodes: N1, ..., Nk . Let B1, ..., Bk represent their
bandwidth respectively, and D represent p’s dataset size. Obeying the �rst constraint, Equation 1
calculates the size of data that should be stored in Ni (denoted by Si).

Si = D ⇥ Bi
Pk

j=1 Bj
(1)

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:10 H. Zhao et al.

To achieve the data distribution that satis�es Equation 1, BATS distributes data based on the
topology of the initializer’s task graph. As shown in Figure 7, suppose there are n tasks (denoted by
T1, ...,Tn) in the leaf level of the initializer’s task graph. In this case, the data initialized by tasks from
Ts to Te (included) is stored in memory node Ni (s < e), where s and e are calculated in Equation 2.

s = bn ⇥
Pi�1

j=1 Bj
Pk

j=1 Bj
c; e = bn ⇥

Pi
j=1 Bj
Pk

j=1 Bj
c � 1 (2)

Distributing data based on Equation 2 satis�es both the two constraints. First of all, e � s tasks
allocate memory pages for their data in memory node Ni , and the size of data stored in Ni is
(e � s) ⇥ D

n = Si , satisfying Equation 1 (the �rst constraint). In addition, the data initialized by tasks
Ts , ..., Te are adjacent parts of p’s dataset, satisfying the second constraint.

In Equation 2, Bi can be found in the machine design document. It is also easy to pro�le them
using bandwidth pro�ler such as the Intel latency checker [1]. Furthermore, to actually distribute
data according to Equation 2, BATS needs to know the number of leaf tasks and the position of
each leaf task in the leaf level. In our current implementation, each task is automatically given a
unique identi�er (a string) when it is generated. As shown in Figure 7, if a task’s identi�er is S ,
then its ith sub-task’s identi�er is S_i . The string by side of each task in Figure 7 is its identi�er. By
sorting the tasks according to their identi�ers, the position of each task can be identi�ed.

5.2 Compiling Support
The weighted distribution scheme requires that BATS has the ability to explicitly specify the
memory node in which each individual initialization task stores its corresponding data. However,
the numactl interface is too coarse-grained to achieve this purpose, while the �rst-touch policy
itself is not able to “touch” data to HBM nodes.

The task identi�er is also used to identify the tasks in the same position of task graphs in di�erent
iterations (tasks that have the same identi�ers) and specify memory nodes for them. During the
program execution, if the scheduler �nds that an identi�er ID appears again for the �rst time, the
task is the root of an iteration’s task graph. Therefore, whenever a task that has identi�er ID is
generated, the program enters a new iteration.

To precisely control data placement in the absence of user interference, BATS adopts a compile-
time and run-time joint solution. In this solution, BATS runtime system declares a globally visible
parameter mem_id, and BATS compiler transforms the data allocation instructions at compile-
time as follows. The instruction “malloc (space_size)” in the data initializer is transformed
into “numa_alloc_on_node (space_size, mem_id)”, which allocates pages of space_size on the
memory node numbered with mem_id, no matter it is a DRAM node or an HBM node.

By analyzing task identi�ers, BATS can �nd the number of tasks in each level of the task graph
and their positions. Let (Ts , Te) represent the range of tasks that should store their data chunks
on memory node Ni as calculated in Equation 2. When a leaf task Tj is generated, if s j < e ,
the mem_id of Tj equals to i . The calculated mem_id is saved in the struct CilkStackFrame that
storesTj ’s meta-data. The instruction “numa_alloc_on_node (space_size, mem_id)” inTj reads
mem_id from its CilkStackFrame.

Readers may think that it is easy to manually declare mem_id in user program and change instruc-
tion “malloc (space_size)” into “numa_alloc_on_node (space_size, mem_id)”. However,
this program-side solution is not working in BATS, because parameters declared in a program is
not visible in runtime system. In this case, the scheduler is not able to calculate the value of mem_id
for each task accordingly.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:11

t1 t2 t3 t4

N1 N2

t3 t4 t1 t2

N1 N2

(a) One iteration (b) Another iteration

Socket S0 Socket S1 Socket S0 Socket S1

d1 d3 d4d2 d1 d3 d4d2

Fig. 8. The memory accesses in two iterations.

6 BANDWIDTH-AWARE TRAFFIC BALANCING
Adopting the weighted data distribution scheme, memory nodes may still su�er from unbalanced
memory tra�c when di�erent parts of p’s dataset have di�erent access hotness.
BATS identi�es whether the memory tra�c is balanced in the �rst iteration, and mitigates the

imbalance by migrating data. We adopt this method because later iterations would also su�er
from tra�c imbalance if the imbalance exists in the �rst iteration. Figure 8 shows the data access
behavior of four tasks (t1, ..., t4) in di�erent iterations of an iterative program in a dual-socket
architecture. As shown in this �gure, the tra�c of memory node N1 (and N2) are the same in the
two iterations although the tasks are scheduled di�erently. For instance, data block d1 stored in N1
is always accessed by task t1, no matter t1 is scheduled to socket S0 or S1.

6.1 Identifying the Tra�ic Imbalance
To identify whether the data accesses of program p are balanced across all the k memory nodes
N1, ..., Nk , BATS needs to collect the tra�c to each memory node. A naive method is to directly
collect the tra�c of each memory node at runtime. However, it is not applicable in real system,
because there are no such hardware performance counters. In emerging real-system hardware, for
a memory node Ni , we can only collect the number of local memory accesses but cannot �nd the
number of accesses to Ni from remote sockets.
To solve this problem, we propose to monitor the number of accesses to each memory page by

modifying operating system and calculate the tra�c to each memory node according to the location
of each memory page. This method is applicable when the dataset size of p is small. However, if
program p accesses too many pages, the overhead of monitoring the number of accesses to every
page is too large to be directly used in the real system. According to our measurement, sweeping
through one million pages (4GB) to check whether each page is accessed consumes 3 seconds.

To reduce the overhead of identifying the imbalance, we leverage the virtual memory area (VMA)
notion in Linux kernel. Each VMA is a contiguous range of virtual addresses. In our scenario, the
virtual pages allocated by each leaf task in the parallel data initializer form an individual VMA, and
the VMAs have the same number of virtual pages because leaf tasks allocate memory for the data
of the same size. BATS treats the virtual pages in a VMA as a whole, monitors the access hotness
and migrates data in the granularity of a VMA. According to the virtual address, we can obtain
the memory node corresponding to each VMA. By counting the access number of every VMA of
program p, we can obtain the overall access number to all the memory nodes and the number of
accesses to each node (denoted by A1, ..., Ak) in the �rst iteration. Equation 3 calculates the number
of memory accesses to memory node Ni , in whichm is the number of VMAs in Ni , and Hotj is
hotness of the j-th VMA in Ni .

Ai =

mX

j=1
Hotj (3)

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:12 H. Zhao et al.

ALGORITHM 1: Bandwidth-aware tra�c balancing algorithm
Input: N1 , ..., Nm (Overloaded memory nodes)
Input: Nm+1 , ..., Nk (Under-utilized memory nodes)
Input: OPT1 , ..., OPTk (Optimal tra�cs to the k nodes)

1 for (und = k ;und > m + 1;und � �) do // Migrate data to the nodes with the lowest util. first

2 REQ = OPTund � Aund ;
3 if REQ > 0 then // Still under-utilized

4 for (ol = 1;ol m;ol + +) do // Offload data from the busy nodes first

5 HR = Aol �OPTol ;
6 while HR > 0 do
7 Identify the hottest VMA � in Nol whose hotness (H�) < HR and REQ ;
8 if � == NU LL then
9 break ;

10 else
11 Migrate � to Nund ;
12 HR � = H� ; REQ � = H� ;

In more detail, we randomly choose a small number of virtual pages (saying b pages) from every
VMA and collect the numbers of memory accesses to the b pages. Based on the number of accesses
to the sampled pages, we accumulate the number of memory accesses to all the VMAs in a memory
node Ni to be the hotness of Ni . Equation 4 calculates the hotness of VMA � , in which np is the
number of virtual pages in � and ai is the number of accesses to the i-th sampled page in � .

Hot =
np
b
⇥

bX

i=1
ai (4)

Equation 4 assumes that the pages in a VMA tend to have similar access hotness. Although
Equation 4 is only an approximation of the number of accesses to VMA � , our experiment shows
that it is enough to identify the tra�c imbalance between multiple memory nodes.

We identify whether the memory tra�c is balanced as follows. The memory tra�c is proportion-
ally balanced to the k memory nodes according to their bandwidth when Equation 5 is satis�ed. In
the equation, Bi is the bandwidth of Ni as de�ned in Section 5.1.

B1 : B2 : ... : Bk = A1 : A2 : ... : Ak (5)

Deduced from Equation 5, Equation 6 calculates the optimal memory tra�c to Ni (denoted by
OPTi) when the tra�c is balanced. For Ni , if Ai < OPTi , its current memory tra�c is lower than its
optimal tra�c thus it is under-utilized. Otherwise, it is overloaded as Ni ’s memory tra�c is higher
than its optimal tra�c.

OPTi =
kX

j=1
(Aj) ⇥

Bj
Pk

j=1 Bj
(6)

Based on Equation 6 and online-collected information, BATS migrates data from overloaded
memory nodes to under-utilized memory nodes to mitigate the tra�c imbalance.

6.2 Mitigating the Tra�ic Imbalance
Based on the hotness of every VMA, we design a hot-�rst migration scheme following three
principles. First, if both Ni and Nj are overloaded but Ni is more congested than Nj , we o�oad data
from Ni to the under-utilized memory nodes before Nj . Second, if both Ni and Nj are under-utilized
but the utilization of Ni is lower than the utilization of Nj , the data is migrated to Ni before Nj .
Third, we migrate hot VMA before cold VMA to minimize the size of data to be migrated for
balancing the tra�c.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:13

… … … …

Intra-socket subgraphs

Fig. 9. Group tasks into intra-socket subgraphs.

Algorithm 1 lists the designed tra�c balancing algorithm according to the hot-�rst migration
scheme. In the algorithm, the k memory nodes N1, ..., Nk are sorted in the descending order of
Ai �OPTi (1 i k). Them memory nodes N1, ..., Nm are overloaded and the later Nm+1, ..., Nk
are under-utilized. Memory node Ni is more congested than Nj if i < j.

7 HIERARCHICAL TASK-STEALING
After the memory tra�c is balanced, tasks may still su�er from serious remote memory access in
later iterations. To improve data locality, BATS adopts a hierarchical task-stealing policy.

7.1 Online Profiling
BATS groups tasks into intra-socket subgraphs and identi�es optimal socket for each of them.
Figure 9 shows the way to group tasks into intra-socket subgraphs. In the �gure, the subgraph in
each ellipse is an intra-socket subgraph. Tasks in the same subgraph have the same optimal socket
in which they achieve the best locality because neighbor tasks often process adjacent data stored
in the same memory node. Another reason we choose this method is that it is too space-consuming
to record the mapping of each individual task to its socket and too time-consuming to obtain the
mapping online for a task. We evaluate the space overhead of online pro�ling in Section 9.7.

The intra-socket subgraphs are created satisfying three constraints. First, an intra-socket subgraph
should have a single root node for easy scheduling. Second, the number of tasks in an intra-socket
subgraph is at least 10X of the number of cores in a socket. In terms of the second constraint,
as stated in prior work [5], when the task number is 10X of the core number, the workload can
be balanced across the cores with task-stealing. Third, an intra-socket subgraph should have the
smallest number of tasks that ful�ll the aforementioned two constraints at the same time.

When the �rst iteration of p completes, BATS knows the task graph topology and groups tasks
according to the above constraints. On anM-socket computer, in the followingM iterations, BATS
schedules each subgraph SG to each of theM sockets and collects its memory access statistics. Let
Ldram , Rdram , Lhbm , and Rhbm represent the local DRAM accesses, remote DRAM accesses, local
HBM accesses, and remote HBM accesses caused by SG when it is scheduled to socket S .
If Ldram + Lhbm � Rdram + Rhbm , SG can access most of the data from either the local DRAM

node or HBM node attached with S . In this case, SG is directly allocated to socket S in all the
later iterations, and SG is called a high-localized subgraph of S . Otherwise, if the local memory
accesses (local DRAM accesses + local HBM accesses) of SG on all theM sockets are smaller than
the corresponding remote memory accesses, BATS assigns SG to the socket Si in which SG has the
largest local memory accesses, and SG is called a low-localized subgraph of Si in this case.

7.2 Scheduling Policies
Figure 10 gives the structure of BATS runtime system on anM-socket computer with bandwidth-
asymmetric memory and illustrates our hierarchical task-stealing design. On each core, BATS
launches a worker. For easing of description, we use “core” to represent “worker”.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:14 H. Zhao et al.

c

Intra-socket
task pools

High-localized
task pools

Low-localized
task pools

SMS1 … D
R

A
M

H
B

M

D
R

A
M

H
B

M

Fig. 10. Structure of BATS runtime system on anM-socket computer with bandwidth-asymmetric memory.

BATS creates a high-localized task pool and a low-localized task pool for each socket S , while the
high-localized task pool stores the root tasks of its high-localized subgraphs and the low-localized
task pool stores the root tasks of its low-localized subgraphs. For each core, BATS creates an
intra-socket task pool to store the tasks within an intra-socket subgraph. Suppose a core c in socket
S is free, in di�erent iterations, it obtains new tasks in di�erent ways.

In the initialization iteration, all the tasks are �rst pushed into a single task pool, saying the
high-localized task pool of socket S1 in Figure 10. Once all the tasks are generated, BATS schedules
the tasks according to the weighted data distribution scheme. After that, BATS adopts random
task-stealing to schedule the tasks. Note that, when the leaf tasks are distributed to the cores, the
memory node in which a task will store its data set is already known according to Equation 2.

In the �rst compute iteration, BATS adopts random task-stealing to schedule all the tasks because
the data is supposed to be migrated later and the task scheduling does not a�ect the memory tra�c
to each memory node. At the end of the �rst iteration, BATS migrates data to balance the tra�c
across all the memory nodes.

In the followingM iterations, each intra-socket subgraph is directly allocated to the target socket
for collecting the numbers of local memory accesses and remote memory accesses. Meanwhile,
core c is not allowed to steal tasks from other sockets and cores in the same socket are not allowed
to execute tasks in multiple intra-socket subgraphs concurrently.
After at most M iterations, intra-socket subgraphs are stabilized to di�erent sockets. In this

stage, adopting hierarchical task-stealing, core c can steal a new task from �ve levels: intra-socket
task pools of other cores in its socket S , high-localized task pool of S , low-localized task pool of S ,
low-localized task pool of other sockets, and high-localized task pools of other sockets.
BATS allows a socket to help other sockets execute their intra-socket subgraphs. After all the

tasks in both the high-localized and low-localized task pools of S complete, c tries to steal a task
from low-localized task pools of other sockets. If the low-localized task pools of all the other sockets
are empty, c tries to steal a task from high-localized task pools of other sockets. Core c �rst tries to
steal a task from low-localized task pools because the victim sockets execute the high-localized
subgraphs more e�ciently due to better data locality. In addition, although S needs longer time to
process the stolen subgraphs, the workload is balanced and the performance of memory-bound
programs is highly possible to be improved.

8 IMPLEMENTATION OF BATS
We implement BATS in MIT Cilk that consists of a compiler and a random task-stealing scheduler.
We modify the compiler to transform programs as described in Section 5.2; and modify the task-
stealing scheduler to support bandwidth-aware tra�c balancing and hierarchical task-stealing.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:15

8.1 Implementation of Hotness Monitoring
In BATS, we implement a module (enhanced from Memos [27] and SysMon [49]) to collect the
access hotness of VMAs in kernel space. The two frameworks have been proved to be able to
precisely collect the hotness of pages [27, 49]. The module passes hotness data to BATS runtime
system through “/proc” virtual �le system in Linux operating system.

Basically, the module �rst obtains process descriptor of the target program from its PID, and
obtains VMA structs of the program. For each VMA, the module �nds the page table entries in
it according to page directory conversion in Linux. The module then selects the sampled pages
according to the policy in Section 6.1 and monitors their hotness. For a page pg, the _access_bit
in its page table entry represents whether it has been accessed. We do not use _dirty_bit here
because it is set only when the page is modi�ed, ignoring read operations. The module periodically
checks whether pg is accessed in the �rst iteration. In each period, the module uses system call
pte_young() to check _access_bit of pg and then clear the bit using pte_mkold(). In this way,
the module obtains the number of times that pg is accessed in the �rst iteration.

We minimize the overhead of hotness monitoring by ignoring the VMAs that are related to the
data set of the program. In Linux, the VMA structs of a program contain not only data segment,
but also text segment, Block Started by Symbol (BSS) segment, etc. When collecting access hotness
of VMAs, the module skips �le-mapping VMAs, stacks for every thread, unreadable/unwritable/ex-
ecutable VMAs, and VMAs that contain data for the scheduler itself.

Another problemwe need to solve is that Linux tends to merge VMAs if their virtual addresses are
continuous, but BATS assumes that the pages allocated by each leaf task in the data initializer form
an individual VMA. To solve this problem, BATS calculates the overall number of pages allocated by
the program (denoted by Np), and obtains the number of leaf tasks in the data initializer (denoted
by Nl). By dividing Np by Nl , we can get the actual number of pages allocated by a leaf task in the
data initializer (N�ma). The merged VMAs are then divided into “logic” VMAs of size N�ma . The
hotness monitoring and data migration are performed in the granularity of “logic” VMA.
In our current implementation, the module uses four threads to collect hotness of VMAs con-

currently. In the �rst iteration, BATS scheduler disables four cores for the module to ensure the
performance of the hotness detection. After getting the hotness data, the module stores the ad-
dresses of VMAs and their hotness in “/proc” virtual �le system. BATS identi�es the memory node
that each VMA belongs to using move_pages() function, and applies Algorithm 1 to identify the
VMAs to migrate. BATS uses numa_move_pages() to perform the page migration.

8.2 Implementation of Online Profiling
During online-pro�ling, BATS needs to collect local/remote DRAM access, local/remote HBM access
for every intra-socket subgraph. However, a core in KNL can only collect two events because a tile
(consists of two hardware cores, eight virtual cores) only has two performance counter registers.

To solve this problem, we modify the online pro�ling algorithm slightly for KNL. When pro�ling
an intra-socket subgraph SG on a socket, the two counters �rst record the numbers of DRAM
accesses (OFFCORE_RESPONSE_0: DDR) and HBM accesses (OFFCORE_RESPONSE_0: MCDRAM)
respectively. If SG accesses more data from DRAM/HBM, the two counters record the numbers
of its local DRAM/HBM accesses (OFFCORE_RESPONSE_0: DDR_NEAR / HBM_NEAR) and its
remote DRAM/HBM accesses (OFFCORE_RESPONSE_0: DDR_REMOTE / HBM_REMOTE) in
later online-pro�ling iterations respectively. BATS uses local DRAM/HBM accesses and remote
DRAM/HBM accesses to approximate the overall local and remote memory accesses in Section 6.1.
Because local DRAM/HBM accesses and remote DRAM/HBM accesses are approximations,

our current implementation of BATS for KNL performs worse than its implementation if each

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:16 H. Zhao et al.

core has four performance counter registers in future. Our evaluation shows that the current
implementation of BATS for KNL is already able to signi�cantly improve the performance of
memory-bound programs.

9 EVALUATION
In this section, we �rst detail our experimental setup and evaluate the performance advantages of
BATS over existing task-stealing schedulers such as Cilk and LAWS. Then, we show the scalability
of BATS, and demonstrate how the three components in BATS, i.e., data allocator, tra�c balancer,
and scheduler, contribute to the overall e�ectiveness. Lastly, we compare BATS with OpenMP that
adopts static scheduling and analyze the overhead of BATS.

9.1 Experimental Configuration
We use an Intel Knights Landing (KNL) server that uses bandwidth-asymmetric memory as the
experimental platform to evaluate the performance of BATS. We con�gure the memory of KNL in
�at mode so that the schedulers can explicitly manage all the memory nodes. We also con�gure the
interconnect of KNL in SNC4 mode so that the cores are divided into four sockets. As a result, each
socket has 64 virtual cores, a 32GB DRAM node and a 4GB HBM node. The peak bandwidth of an
HBM node (384/4=96GB/s) is around 4⇥ of the peak bandwidth of a DRAM node (90/4=22.5GB/s).
We compare BATS with state-of-the-art task-stealing schedulers: MIT Cilk (version 5.4.6) [6]

and LAWS [9]. LAWS evenly distributes the dataset of a program to all the memory nodes and
schedules tasks to the sockets where the memory nodes store their data for applications with
regular data access patterns. However, LAWS considers neither bandwidth-asymmetric memory
nor tra�c imbalance as BATS does. Once the data is stored in a memory node in LAWS, it would
not be migrated to other memory nodes even if the memory tra�c is not balanced. All the tested
schedulers use 256 workers to fully utilize all the cores in KNL.

While both Cilk and LAWS store data in DRAM nodes by default, for the sake of comprehensive
comparison, we also evaluate the cases of using HBM as the last-level cache for Cilk and LAWS.
We achieve that by con�guring KNL in the ALL2ALL-cache mode. We call them as Cilk-C and
LAWS-C, respectively. We skip the comparison for SNC4-cache mode because our results show
that its performance is worse than ALL2ALL-cache mode and we give the comparison of di�erent
modes on KNL in Section 9.5. We also evaluate two other cases by forcing Cilk and LAWS to use
HBM nodes only, which we call Cilk-H and LAWS-H, respectively. This two cases are achieved by
using “numactl --membind=4-7” as the pre�x to launch the benchmark (memory nodes 0-3 are
DRAM nodes, and 4-7 are HBM nodes), Note that, if we force Cilk and LAWS to use both DRAM
and HBM at the same time (i.e., use “numactl --interleave=0-7”), their performance is worse
than Cilk-H and LAWS-H according to our measurement.
We implement all the schedulers mentioned above by modifying the original Cilk scheduler

while Cilk programs run without any modi�cation. In the tra�c balancer of BATS, we randomly
select 4 pages from each VMA to calculate its hotness with low overhead.

We use memory-bound benchmarks in Table 2 to evaluate the performance of BATS. Besides the
benchmarks that have regular grid-based access pattern, we further implement GE, PR, LP and CC
that have trajectory-based and graph-based data access patterns to evaluate the performance of
BATS for applications with uneven data accesses. All the benchmarks have 200 iterations and are
compiled with “GCC-5.4.0" and “-O3” option, which involves auto-vectorization.

9.2 Performance of BATS
Figure 11(a) shows the performance of all the benchmarks in Cilk-C/H, LAWS, LAWS-C/H, and
BATS, normalized to their performance in Cilk. In the experiment, for HEAT, SOR, CONV and STEN,

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:17

Table 2. Benchmarks used in the experiments

Benchmark Access pattern Description Benchmark’s source

SOR Grid-based Successive over relaxation [28] LAWS [9]
HEAT Grid-based 2D heat distribution Cilk’s example [42]
CONV Grid-based Convolution �lter LAWS [9]
STEN Grid-based 2D 9-point stencil computing LAWS [9]
GE Trajectory Gaussian elimination algorithm [39] LAWS [9]
PR Graph-based Page rank algorithm Ported from Spark GraphX [50]
LP Graph-based Label propagation algorithm in ML Ported from Spark GraphX [50]
CC Graph-based Identifying connected components Ported from Spark GraphX [50]

we use a 224K ⇥ 4K matrix as their input data and the input size is approximately 16GB. For GE,
the input data used is a 48K ⇥ 48K matrix due to the algorithm constraint which has about 10GB.
For PR, the input graph has 16 million nodes and the edge count of di�erent nodes ranges from 1 to
10. For both LP and CC, the input graph has 8 million nodes and the edge count of di�erent nodes
range from 2 to 20. For these graph algorithms, the input size is approximately 16GB. Since numactl
cannot allocate memory larger than HBM capacity, we choose 16GB as input size in this subsection,
and we will discuss the performance of benchmarks with larger input size in Section 9.3.

As Figure 11(a) shows, BATS signi�cantly improves the performance of all benchmarks compared
to Cilk, Cilk-C, Cilk-H, LAWS, LAWS-C, and LAWS-H. Because HBM node has higher bandwidth
than DRAM node, using HBM as last level cache (Cilk-C and LAWS-C) or main memory (Cilk-H
and LAWS-H) always perform better than their counterparts that only use DRAM nodes. Plus, we
observe that Cilk-H performs better than Cilk-C for some applications and this phenomenon also
exists for LAWS-C and LAWS-H. Such observations suggest that there are performance bene�ts of
explicitly managing the HBM nodes but existing schedulers fail to leverage. BATS successfully takes
advantage of such optimization potential with principled design and outperforms both Cilk-H and
LAWS-H. In summary, BATS reduces execution time of the benchmarks ranging from 29.3% to 83.5%
compared with Cilk, from 27.8% to 78% compared with Cilk-C, from 20.3% to 57.9% compared with
Cilk-H, from 25.5% to 80.1% compared with LAWS, from 22.4% to 57.7% compared with LAWS-C,
and from 8.6% to 27.2% compared with LAWS-H.

We then explain why BATS outperforms all the other schedulers by measuring each benchmark’s
local memory access ratio (including DRAM and HBM nodes). Figure 11(b) shows the results. In
the �gure, the bars show the overall memory accesses when scheduling the benchmarks with
Cilk, Cilk-H, LAWS, LAWS-H, and BATS normalized to the number of their memory accesses with
Cilk. In each bar, the slash-�lled parts represent local DRAM accesses and local HBM accesses
respectively while the rest part (i.e., the un�lled part) represents the remote accesses that include
remote DRAM accesses and HBM accesses. We only compare BATS with Cilk, Cilk-H, LAWS, and
LAWS-H in Figure 11(b), because the interconnect is con�gured in ALL2ALL mode to support
Cilk-C and LAWS-C. In ALL2ALL mode, there is only one NUMA node, thus no remote memory
accesses will be reported.

Observed from Figure 11(b), both Cilk and Cilk-H involve a signi�cant portion of remote mem-
ory accesses. Although LAWS and LAWS-H reduce remote memory accesses, they su�er from
imbalanced access tra�c. For example, LAWS directs most of the local accesses to DRAM nodes
while LAWS-H directs most of the local accesses to HBM nodes. On the contrary, BATS not only
reduces remote accesses, but also balances the access tra�c between DRAM and HBM nodes. For
instance, with BATS, more than 90% memory accesses in HEAT are local accesses, and the number
of accesses to HBM nodes is around 4⇥ of the counterpart to DRAM nodes. The access tra�c is

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:18 H. Zhao et al.

(a) Normalized execution time (smaller is better)

(b) Normalized overall memory accesses, local DRAM accesses, local HBM accesses

(c) Normalized memory bandwidth usage

Fig. 11. The normalized performance, the corresponding memory accesses and memory bandwidth usage.

balanced across memory nodes proportional to their bandwidth. Other benchmarks (except PR and
CC) have similar e�ects. PR and CC have relatively large number of remote accesses because most
tasks in all the sockets need to access the hot data from remote nodes (BATS still improves data
locality for PR and CC compared with all the other schedulers).

For programs with regular blocked data accesses, BATS is able to improve data locality because
it identi�es the very socket for each intra-socket subgraph in which it can �nd most of the required
data in the local DRAM or HBM nodes through online pro�ling, and schedules intra-socket sub-
graphs accordingly. For programs that have uneven data access hotness, BATS improves their data
locality because it properly distributes hot data and schedules tasks to the sockets where they can
access most data from local DRAM or HBM nodes.

Figure 11(c) shows the normalized memory bandwidth usage of di�erent schedulers normalized
to the Cilk case. Because Cilk-C and LAWS-C use HBM as the last level cache, we cannot measure
their real bandwidth usage and therefore do not include them in this comparison. From the �gure,
we observe that BATS always brings the highest memory bandwidth usage. On the contrary, Cilk,
Cilk-H, LAWS, and LAWS-H use either DRAM nodes or HBM nodes, failing to simultaneously

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:19

leverage the bandwidth of both nodes. The high bandwidth usage and the improved data locality
together result in the good performance of BATS.

From the above observations, we summarize why BATS performs the best among all schedulers.
First, BATS reduces remote memory accesses by improving the data locality. BATS uses online
pro�ling to identify the very socket for each intra-socket subgraph in which it can �nd most of the
required data in the local DRAM or HBM nodes, and then schedules the intra-socket subgraphs
accordingly. In the mean time, BATS identi�es hot data and performs proper migration to balance
access tra�c. Lacking of online pro�ling, LAWS and LAWS-H cannot improve the data locality
as much as BATS does. In addition, they also su�er from low bandwidth usage resulted from the
bandwidth-asymmetric-unaware data distribution.
BATS is e�cient when it is able to precisely monitor the access hotness of di�erent VMAs. To

show the accuracy of monitoring, for each benchmark, Table 3 further presents its dataset size, the
number of data pages, the number of “logic” VMAs, the number of actual VMAs, the number of
sampled pages, and the number of test loops performed in the �rst iteration. Observed from the
�gure, BATS identi�es all the data pages. For instance, for HEAT, the pages are able to store data of
size 4.49M ⇥ 4K = 17.96GB, which is larger than its dataset size (16GB). In addition, the number
of VMAs is small, because multiple adjacent “logic” VMAs are merged as described in Section 8.
Furthermore, BATS monitors more than 4 pages in each “logic” VMA (the number of sampled pages
is much larger than the number of “logic” VMAs). Also, for all the benchmarks, BATS tests whether
the sampled pages are accessed by more than 10 times (except SOR) in the �rst iteration, thus is
able to tell the hotness of the VMAs.

Table 3. Statistics when performing hotness detection in BATS for all the benchmarks.

Benchmark Dataset Pages “Logic” VMAs Actual VMAs Samples Loops
HEAT 16GB 4.49M 8769 1368 35100 17
PR 16GB 4.23M 8261 1542 33205 32
SOR 16GB 4.89M 9562 1269 38353 5
CC 16GB 4.18M 8166 1125 32678 30
GE 10GB 2.81M 5498 1206 21969 32
LP 16GB 4.35M 8498 1119 33983 10
STEN 16GB 4.69M 8507 1364 36715 17
CONV 16GB 4.53M 8853 1316 35484 16

In the following experiments, due to the space limit, we only present the result for Cilk-H and
LAWS-H because they always perform better than the default Cilk/LAWS.

9.3 Scalability of BATS
To evaluate the scalability of BATS, we compare the performance of the benchmarks with di�erent
input data sizes in Cilk-C/H, LAWS-C/H and BATS. For the benchmarks using an x ⇥ � 2D matrix
as the input (HEAT, SOR, CONV, STEN), we �x � = 4K for all the input 2D matrices and only adjust
the x of the matrices in the experiment. For PR and CC, we adjust the number of nodes in the
input graph without changing the number of edges of each node. In this way, we can measure the
scalability of BATS without the impact of the leaf task granularity. We use HEAT and PR as the
representative benchmarks with both even and uneven data access patterns. These two benchmarks’
data size is up to approximately 22GB that is above the HBM capacity.
Figure 12 shows the performance of HEAT and PR with di�erent input data sizes in Cilk-H,

LAWS-H and BATS. In the �gure, the x-axis represents dataset size of HEAT and PR. When the input
data is small (e.g., 2GB), BATS reduces the execution time of HEAT by 42.9%-47.3% compared to

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:20 H. Zhao et al.

Fig. 12. The performance of HEAT and PR with di�erent input data sizes.

Cilk-C, Cilk-H, LAWS-C and LAWS-H. When the input size is close to the capacity of HBMmemory
(i.e., 16GB), BATS reduces its execution time by 18.2%-29.9%. When the dataset size exceeds the
capacity of HBM memory, BATS reduces its execution time by 30.3%-34.2%. Note that, Cilk-H and
LAWS-H fail to run in this case owing to the HBM capacity limitation. On the contrary, if the
size of data to be allocated to HBM memory is larger than HBM capacity, BATS re-allocates the
extra data to DRAM. When the input size is small (e.g., 2GB), BATS reduces PR’s execution time by
18.2%-38.1% compared to other schedulers. When the input size is large (e.g., 24GB), BATS reduces
PR’s execution time by 20.7-25.3%.
Observed from Figure 12, the execution time of the benchmarks in Cilk-H, Cilk-C, LAWS-H,

LAWS-C and BATS increases linearly with the increasing of their input data sizes. For all the input
data sizes, BATS can always reduce the execution time of memory-bound applications. Especially,
for PR that has uneven data access hotness, its execution time increases much slower in BATS than
other systems. The larger the input data is, the better BATS performs.

In summary, BATS is scalable in scheduling memory-bound program no matter its dataset has even
or uneven access hotness.

9.4 E�ectiveness of the Components
To evaluate the e�ectiveness of BATS components including the HBM-aware data allocator, the
bandwidth-aware tra�c balancer, and the hierarchical task-stealing scheduler, we implemented
six BATS variants, BATS-NH, BATS-NB, BATS-NL, which disable one component accordingly, and
BATS-H, BATS-B, BATS-L, which enable one component accordingly. In BATS-NH, the dataset
is evenly distributed to all the nodes while the tra�c balancer and hierarchical task-stealing
scheduler are still active. In BATS-NB, the data is not migrated according to the memory tra�cs of
di�erent memory nodes. In BATS-NL, tasks are scheduled with the random task-stealing policy. In
BATS-H, the data set is distributed to all the memory nodes according to their bandwidths while
bandwidth-aware tra�c balancer and hierarchical task-stealing scheduler are disabled. In BATS-B,
only bandwidth-aware tra�c balancer is active while dataset is evenly distributed and no locality
improvement. In BATS-L, hierarchical task-stealing scheduler is enabled while the HBM-aware data
allocator and the bandwidth-aware tra�c balancer are disabled. Figure 13 shows the performance
of all the benchmarks with the six variants normalized to their performance in BATS.
Figure 13(a) shows that BATS-NH performs much worse than BATS. In BATS-NH, because the

data is evenly distributed, the memory bandwidth utilization of DRAM nodes and HBM nodes are
not balanced. As a result, DRAM nodes are overloaded while the HBM nodes are under-utilized.
Even if bandwidth-aware tra�c balancer mitigates the imbalance later through migrating data,
the migration overhead still results in the low performance. Observed from Figure 13(b), BATS-H
performs better when executing benchmarks that have even data access hotness (e.g., HEAT) than

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:21

(a) Variants that disable one component (b) Variants that enable one component

Fig. 13. The normalized execution time of all the benchmarks in six BATS variants.

benchmarks that have uneven data access hotness (e.g., PR). This is mainly because the HBM-aware
data allocation in BATS-H has already balance the data access tra�c across all the memory nodes
for benchmarks that have even data access hotness. Therefore, the HBM-aware data allocator is
e�ective in improving memory bandwidth usage.
For benchmarks that have even data access hotness (e.g., HEAT), BATS-NB performs similarly

to BATS. This is because the weighted data distribution already balances the memory tra�cs for
these benchmarks. On the contrary, for the benchmarks in which di�erent parts of the dataset have
di�erent hotness (e.g., PR), BATS-NB performs much worse than BATS. For these benchmarks, the
memory tra�c is not balanced only with the weighted data distribution, and the tra�c imbalance
results in the poor performance of BATS-NB. Meanwhile, BATS-B performs poor for all the bench-
marks. It means that we still need the hierarchical task-stealing to distribute tasks to improve data
locality, even if the memory tra�c is balanced. The tra�c balancer is e�ective in balancing the
memory tra�cs across memory nodes with di�erent bandwidths.

In addition, BATS-NL performs worse than BATS for all the benchmarks, because the benchmarks
su�er from serious remote memory accesses due to the random task-stealing in BATS-NL. The
large number of remote memory accesses results in severe performance degradation. BATS-L also
performs much worse than BATS because it su�ers from poor bandwidth utilization. Therefore,
the hierarchical task-stealing scheduler is e�ective in scheduling the tasks to the sockets where
they can �nd most of their data from the local memory nodes.

In summary, all the three components: the HBM-aware data allocator, the bandwidth-aware tra�c
balancer, and the hierarchical task-stealing scheduler are necessary and e�ective for BATS to achieve
good performance in computers with bandwidth-asymmetric memories.

9.5 Comparison of Configuration Modes
To evaluate the performance of traditional task-stealing when the hardware runs in other modes,
we show the performance of memory-bound benchmarks when the KNL server is con�gured in
ALL2ALL-cache mode, ALL2ALL-�at mode, QUADRANT-cache mode, QUADRANT-�at mode,
SNC4-cache mode and SNC4-�at mode. “X -Y ” mode means that the interconnect is con�gured in
X mode while the bandwidth-asymmetric memory is con�gured in Y mode.

In this experiment, if the memory is in �at mode, we use “numactl” to allocate all the data of
benchmarks in HBM nodes. if the memory is in cache mode, KNL could directly use the high-
bandwidth memory as the last-level cache. In this experiment, all the results are normalized to the
performance of Cilk in ALL2ALL-cache mode (i.e., the performance of Cilk-C in Section 9.2).
Observed from Figure 14, ALL2ALL-cache mode and QUADRANT-cache mode have similar

performance, ALL2ALL-�at and QUADRANT-�at have similar performance. The reason is that

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:22 H. Zhao et al.

Fig. 14. The performance of the benchmarks in di�erent hardware configurations with Cilk.

Fig. 15. The performance of all the benchmarks in Cilk-H, OpenMP and BATS.

the two modes have the same architecture from the system level which is single-socket multi-
core architecture. Although they have slight di�erence inside the memory con�guration, the
performance di�erence of most memory-bound benchmarks on these con�gurations is negligible,
such as Heat and Pagerank. Besides, SNC4 mode has more �uctuant performance compared with
other con�gurations. We can also �nd that the benchmarks perform slightly better in SNC4-�at
mode than in SNC-cache mode. That is because SNC4 has four-socket multi-core architecture and
it has the whole HBM as the last level cache, which is opaque for the task. As we discussed before,
it caused serious remote accesses.
Most importantly, by con�guring hardware in SNC4-�at mode and using BATS to schedule

the tasks, BATS reduces the execution time of memory-bound benchmarks ranging from 20%
to 70% compared with all the other traditional task-stealing policy and hardware con�guration
combinations. According to Section 9.2, higher bandwidth usage and better memory locality are the
two main reasons that BATS has better performance than other systems. This experiment further
illustrates the e�ectiveness of BATS.

9.6 Comparing with OpenMP
We compare BATS with OpenMP [3] in executing memory-bound task-based programs. To achieve
this purpose, we port all the benchmarks in Table 2 to OpenMP (Version 4.0) by simply using
OpenMP loop function. In each OpenMP benchmark, similar to Cilk-H, we force that all the data is
stored in HBM nodes to utilize the high memory bandwidth. OpenMP adopts static scheduling to
balance workload and relies on �rst touch page allocation policy to enhance data locality.

Figure 15 shows the performance of all the benchmarks in Cilk-H, OpenMP, and BATS. OpenMP
performs slightly worse than Cilk-H for most benchmarks, and performs much worse than BATS
for all the benchmarks. OpenMP performs bad because it is not able to fully utilize the bandwidth
of all the memory nodes and it does not perceive the hotness of di�erent data chunks.

9.7 Overhead Analysis
As we described in Section 6 and Section 8, the hotness detection and the page migration when the
imbalance is identi�ed incur extra runtime overhead. The hotness detection incurs extra overhead
in the �rst iteration because four virtual cores are used to perform the detection instead of task

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:23

(a) Overhead (b) Compensation

Fig. 16. Overhead of BATS and the number of iterations needed to compensate the overhead.

processing. Figure 16(a) shows the percentage of execution time of the benchmarks consumed by
the hotness detection and page migration. Figure 16(b) shows the number of required iterations to
compensate the extra overhead caused by the hotness detection and page migration.

Observed from the �gure, for all the benchmarks, less than 1.5% of the execution time is used on
the hotness monitoring and less than 2.5% of the overall execution time is incurred by the page
migration. In order to compensate the extra overhead introduced by BATS, the benchmarks need
to run for at most 6 iterations, while scienti�c applications often run for thousands of iterations.
The hierarchical task-stealing scheduler in BATS needs extra memory space to store hotness

related data of every intra-socket subgraph. The data includes local memory access number, remote
memory access number, and four �ags. The �rst �ag designates the task mainly accesses DRMA
or HBM. The second �ag determines whether the task already �nd the best-locality position. The
third �ag indicates the number that the task has been placed on the di�erent socket. The fourth �ag
shows the best-locality position that the task has in previous attempts. The extra memory space
needed by each intra-socket subgraph is only 8 + 8 + 4 ⇥ 2 = 24 bytes. For instance, HEAT has
2048 intra-socket subgraphs thus requires 48KB extra memory space, while the size of its dataset is
16GB. Therefore, the extra spatial overhead caused by BATS is negligible.

10 CONCLUSION AND FUTUREWORK
Task-based programs scheduled with traditional task-stealing schedulers are not able to utilize
the HBM nodes e�ciently and su�er from poor data locality in bandwidth-asymmetric memory
architectures. To solve the two problems, we have proposed BATS, which consists of an HBM-aware
data allocator, a bandwidth-aware tra�c balancer, and a hierarchical task-stealing scheduler. The
data allocator automatically distributes the data set of a task-based program to the DRAM nodes
and HBM nodes according to their bandwidths. The tra�c balancer migrates hot data to balance the
memory tra�cs across di�erent memory nodes. The hierarchical task-stealing scheduler schedules
tasks to the socket where they can �nd their data from local memory nodes. Our experiment
demonstrates that BATS can achieve up to 83.5% execution time reduction for memory-bound
programs compared with traditional task-stealing schedulers.

In future, while we have new counters like the memory access number of every page, BATS could
avoid the hotness monitoring module. We can utilize new counters and the memory addresses
transformation to collect the memory access data which is more e�cient and involves less overhead.
Besides, we will extend BATS to improve the performance of memory-bound applications on
computers that adopt heterogeneous memory architecture (such as DRAM + Non-Volatile Memory).
Because Non-Volatile Memory has much higher latency than DRAM, BATS should consider the
impact of data access latency in advance.

ACKNOWLEDGMENTS
This work is partially sponsored by the National R&D Program of China (No. 2018YFB1004802),
the National Natural Science Foundation of China (NSFC) (61602301, 61632017).

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

10:24 H. Zhao et al.

REFERENCES
[1] 2017. Intel Memory Latency Checker. https://software.intel.com/en-us/articles/intelr-memory-latency-checker.
[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2011. StarPU: a Uni�ed Platform

for Task Scheduling on Heterogeneous Multicore Architectures. CCPE 23, 2 (2011), 187–198.
[3] E. Ayguadé, N. Copty, A. Duran, J. Hoe�inger, Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang. 2009. The

Design of OpenMP tasks. IEEE TPDS 20, 3 (2009), 404–418.
[4] Rajkishore Barik, Vincent Cave, Christopher Donawa, Allan Kielstra, Igor Peshansky, and Vivek Sarkar. 2006. Experi-

ences with an SMP Implementation for X10 based on the Java Concurrency Utilities. InWorkshop on Programming
Models for Ubiquitous Parallelism. Citeseer.

[5] Robert D. Blumofe. 1995. Executing Multithreaded Programs E�ciently. Ph.D. Dissertation. MIT.
[6] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou.

1996. Cilk: An E�cient Multithreaded Runtime System. JPDC 37, 1 (1996), 55–69.
[7] Quan Chen, Yawen Chen, Zhiyi Huang, and Minyi Guo. 2012. WATS: Workload-Aware Task Scheduling in Asymmetric

Multi-core Architectures. In IPDPS. 249–260.
[8] Quan Chen and Minyi Guo. 2014. Adaptive Workload Aware Task Scheduling for Single-ISA Multi-core Architectures.

ACM TACO 11, 1 (2014).
[9] Quan Chen, Minyi Guo, and Haibing Guan. 2014. LAWS: Locality-Aware Work-Stealing for Multi-socket Multi-core

Architectures. In ICS. 3–12.
[10] Quan Chen, Minyi Guo, and Zhiyi Huang. 2012. CATS: Cache Aware Task-Stealing based on Online Pro�ling in

Multi-socket Multi-core Architectures. In ICS. 163–172.
[11] Quan Chen, Zhiyi Huang, Minyi Guo, and Jingyu Zhou. 2011. CAB: Cache-Aware Bi-tier Task-stealing in Multi-socket

Multi-core Architecture. In ICPP. 722–732.
[12] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2017. BATMAN: Techniques for Maximizing System Bandwidth

of Memory Systems with Stacked-DRAM. In MemSys. ACM, 268–280.
[13] Jérôme Clet-Ortega, Patrick Carribault, and Marc Pérache. 2014. Evaluation of OpenMP Task Scheduling Algorithms

for Large NUMA Architectures. In EuroPar. Springer, 596–607.
[14] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers, Vivien

Quema, and Mark Roth. 2013. Tra�c Management: A Holistic Approach to Memory Placement on NUMA systems. In
ASPLOS. ACM, 381–394.

[15] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie Drach. 2016. Scalable Task Parallelism for
NUMA: A Uniform Abstraction for Coordinated Scheduling and Memory Management. In PACT. ACM, 125–137.

[16] Thierry Gautier, Joao V.F. Lima, Nicolas Maillard, and Bruno Ra�n. 2013. XKaapi: A Runtime System for Data-Flow
Task Programming on Heterogeneous Architectures. In IPDPS. 1299–1308.

[17] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. 2010. SLAW: A Scalable Locality-Aware Adaptive Work-Stealing Scheduler. In
IPDPS. 1–12.

[18] James Je�ers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Phi Processor High Performance Programming:
Knights Landing Edition. Morgan Kaufmann.

[19] Laxmikant V Kale and Sanjeev Krishnan. 1993. CHARM++: A Portable Concurrent Object Oriented System based on C++.
ACM.

[20] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transfor-
mation. In CGO. IEEE, 75.

[21] J.K. Lee and J. Palsberg. 2010. Featherweight X10: A Core Calculus for Async-�nish Parallelism. In PPoPP. 25–36.
[22] C.E. Leiserson. 2009. The Cilk++ Concurrency Platform. In DAC. 522–527.
[23] Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I Lee, Chenyang Lu, Kathryn S McKinley, et al. 2016. Work

Stealing for Interactive Services to Meet Target Latency. In PPoPP. ACM, 14.
[24] Jonathan Li�ander, Sriram Krishnamoorthy, and Laxmikant V. Kale. 2013. Steal Tree: Low-overhead Tracing of Work

Stealing Schedulers. In PLDI. 507–518.
[25] Jonathan Li�ander, Sriram Krishnamoorthy, and Laxmikant V Kale. 2014. Optimizing Data Locality for Fork/Join

Programs using Constrained Work Stealing. In SC. 857–868.
[26] Weiwei Lin, Chen Liang, James Z Wang, and Rajkumar Buyya. 2014. Bandwidth-Aware Divisible Task Scheduling for

Cloud Computing. Software: Practice and Experience 44, 2 (2014), 163–174.
[27] Lei Liu, Hao Yang, Yong Li, Mengyao Xie, Lian Li, and Chenggang Wu. 2016. Memos: A Full Hierarchy Hybrid Memory

Management Framework. In ICCD. IEEE, 368–371.
[28] Olvi L Mangasarian and David R Musicant. 1999. Successive Over-Relaxation for Support Vector Machines. IEEE

Transactions on Neural Networks 10, 5 (1999), 1032–1037.
[29] Adam Morrison and Yehuda Afek. 2014. Fence-free Work Stealing on Bounded TSO processors. In ASPLOS. 413–426.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

Bandwidth Aware Task-stealing for Computers with Bandwidth-Asymmetric Memory 10:25

[30] Stephen L Olivier, Allan K Porter�eld, Kyle BWheeler, Michael Spiegel, and Jan F Prins. 2012. OpenMP Task Scheduling
Strategies for Multicore NUMA Systems. International Journal of High Performance Computing Applications 26, 2 (2012),
110–124.

[31] Jeeva Paudel and José Nelson Amaral. 2015. Hybrid Parallel Task Placement in Irregular Applications. JPDC 76 (2015),
94–105.

[32] Laércio L Pilla, Christiane Pousa Ribeiro, Daniel Cordeiro, Abhinav Bhatele, Philippe OA Navaux, Jean-François
Méhaut, Laxmikant V Kalé, et al. 2011. Improving Parallel System Performance with a NUMA-aware Load Balancer.
TR-JLPC-11-02 (2011).

[33] Judit Planas, Rosa M Badia, Eduard Ayguadé, and Jesus Labarta. 2009. Hierarchical Task-Based Programming with
StarSs. International Journal of High Performance Computing Applications 23, 3 (2009), 284–299.

[34] Jean-Noël Quintin and Frédéric Wagner. 2010. Hierarchical Work-Stealing. In EuroPar. 217–229.
[35] Sabela Ramos and Torsten Hoe�er. 2017. Capability Models for Manycore Memory Systems: A Case-study with Xeon

Phi KNL. In IPDPS. IEEE, 297–306.
[36] J. Reinders. 2007. Intel Threading Building Blocks. Intel.
[37] Research and markets. [n. d.]. Hybrid Memory Cube (HMC) and High-bandwidth Memory (HBM) Market by Memory

Type (HMC and HBM), Product type (GPU, CPU, APU, FPGA, ASIC), Application, and Geography-Global Forecast to
2023.

[38] Haris Ribic and David Yu. 2014. Energy-E�cient Work-Stealing Language Runtimes. In ASPLOS. 513–528.
[39] Robert Schreiber. 1982. A New Implementation of Sparse Gaussian Elimination. ACM Trans. Math. Software 8, 3 (1982),

256–276.
[40] Mohammed Shaheen and Robert Strzodka. 2012. NUMA Aware Iterative Stencil Computations on Many-Core Systems.

In IPDPS. 461–473.
[41] Srinath Sridharan, Gagan Gupta, and Gurindar S Sohi. 2013. Holistic Run-time Parallelism Management for Time and

Energy E�ciency. In ICS. 337–348.
[42] Supercomputing Technologies Group, MIT 2001. Cilk 5.4.6 Reference Manual. Supercomputing Technologies Group,

MIT. http://supertech.lcs.mit.edu/cilk/manual-5.4.6.pdf
[43] Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2007. Building Portable Thread Schedulers for

Hierarchical Multiprocessors: The Bubblesched Framework. In EuroPar. Springer, 42–51.
[44] Christopher Torng, Moyang Wang, and Christopher Batten. 2016. Asymmetry-Aware Work-Stealing Runtimes. In

ISCA. 40–52.
[45] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga: Software-de�ned Cache Hierarchies. In ISCA. ACM,

652–665.
[46] B Vikranth, Rajeev Wankar, and C Raghavendra Rao. 2013. Topology Aware Task stealing for on-Chip NUMA

Multi-Core Processors. Procedia Computer Science 18 (2013), 379–388.
[47] Philippe Virouleau, François Broquedis, Thierry Gautier, and Fabrice Rastello. 2016. Using Data Dependencies to

Improve Task-based Scheduling Strategies on NUMA Architectures. In EuroPar. Springer, 531–544.
[48] Andrey Vladimirov and Ryo Asai. 2016. Clustering Modes in Knights Landing Processors: Developer’s Guide. Technical

Report. Colfax International.
[49] Mengyao Xie, Lei Liu, Hao Yang, Chenggang Wu, and Hongna Geng. 2017. SysMon: Monitoring Memory Behaviors

via OS Approach. In International Workshop on Advanced Parallel Processing Technologies. Springer, 51–63.
[50] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013. GraphX: A Resilient Distributed Graph

System on Spark. In International Workshop on Graph Data Management Experiences and Systems. ACM, 2.
[51] Di Xu, Chenggang Wu, and Pen-Chung Yew. 2010. On Mitigating Memory Bandwidth Contention through Bandwidth-

Aware Scheduling. In PACT. ACM, 237–248.
[52] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. 2009. Hierarchical Place Trees: A Portable Abstraction for

Task Parallelism and Data Movement. In International Workshop on Languages and Compilers for Parallel Computing.
Springer, 172–187.

[53] Richard M Yoo, Christopher J Hughes, Changkyu Kim, Yen-Kuang Chen, and Christos Kozyrakis. 2013. Locality-aware
Task Management for Unstructured Parallelism: A Quantitative Limit Study. In SPAA. 315–325.

[54] Doe Hyun Yoon, Min Kyu Jeong, Michael Sullivan, and Mattan Erez. 2012. The Dynamic Granularity Memory System.
In ISCA. 548–559.

Received June 2018; revised Sep. 2018; accepted Oct. 2018

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 10. Publication date: October 2018.

