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Architectural Implication of Graph Neural Networks
Zhihui Zhang1, Jingwen Leng1∗, Lingxiao Ma2, Youshan Miao3, Chao Li,1 Minyi Guo1∗

Abstract—Graph neural networks (GNN) represent an emerging line of deep learning models that operate on graph structures. It is
becoming more and more popular due to its high accuracy achieved in many graph-related tasks. However, GNN is not as well
understood in the system and architecture community as its counterparts such as multi-layer perceptrons and convolutional neural
networks. This work tries to introduce the GNN to our community. In contrast to prior work that only presents characterizations of GCNs,
our work covers a large portion of the varieties for GNN workloads based on a general GNN description framework. By constructing the
models on top of two widely-used libraries, we characterize the GNN computation at inference stage concerning general-purpose and
application-specific architectures and hope our work can foster more system and architecture research for GNNs.

Index Terms—Graph neural networks, computation analysis, deep learning, characterization.
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1 INTRODUCTION

G RAPH neural networks (GNN) start to gain momentum
as researchers are considering important tasks involv-

ing the graph structure such as social media. Deep learning
(DL) has achieved great success in domains with grid data
structure, e.g., images and sequences, which, however, only
represents a small portion of the real-world data. In contrast,
graph structure reflects the vast majority of real-world data
such as molecular structure and knowledge graph.

Graph representation learning is one of the most im-
portant graph-related problems [1]. It converts the irregular
graph structure to embedding vectors, which are the com-
pressed representations of vertices (i.e. vertex embedding)
and the entire graph (i.e. graph embedding). A downstream
task such as molecular property prediction can then take
in the regular embeddings rather than the raw graph for
efficient processing. As such, the quality of the embeddings
directly determines the accuracy of downstream tasks.

Traditional graph representation methods like Deep-
Walk [2] and node2vec [3] mostly rely on hand-crafted
or intuition-based algorithms. In contrast, GNNs extend
the graph analytics with DL’s end-to-end learning capa-
bility, which has led to better accuracies in a variety of
domains including molecular science, recommendation, and
transportation. To realize the full potential of GNNs, we
should adapt the existing software and hardware platforms
to GNNs’ unique characteristics.

The combination of DL and graph analytics makes GNN
a new computation paradigm, which is quite different from
their counterparts such as multi-layer perceptrons (MLP)
and convolutional neural networks (CNN). Figure 1 com-
pares the graphics processing unit (GPU) kernel distribu-
tion for ResNet-50 and three popular GNNs. It is well
understood that CNNs are dominated by convolutional
layers, which are implemented through general matrix mul-
tiplication (GEMM) on GPU. In contrast, the computation-
intensive GEMM kernel is not the hotspot in the three
GNNs, which also demonstrate model-specific patterns.

In this work, we aim to introduce GNN to our com-
munity. In contrast to prior work [4] that only presents
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Fig. 1: Kernel breakdown of CNN (ResNet-50) and three GNN models.

characterizations of GCN [5], we select five representative
GNN models that cover a large portion of the varieties for
GNN workloads on the basis of a general GNN description
framework and our model review. By constructing the mod-
els on top of two widely-used libraries, we characterize the
efficiency of the GNN computation at inference stage on the
existing GPU architecture and suggest directions for GNN-
specific accelerators. We hope that our analysis can help
architects and system designers have a better understanding
of GNN computation and foster more future work.

2 GNN BENCHMARK SUITE CONSTRUCTION

This section describes our methodology of constructing
a representative GNN benchmark suite. We use a general
description framework to perform a detailed review of the
recently published GNN models. The result identifies a few
common patterns across the surveyed models, which lets us
choose five models to cover almost all patterns.
Model Survey. A multi-layered GNN model is designed
to learn the embeddings (i.e., vectors) for each vertex and
edge in a graph. The input for a GNN layer is the graph
structure in the form of adjacency matrix, together with the
vertex (edge) embedding matrix vertexl (edgel). The layer
generates the transformed embedding matrix vertexl+1 and
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Fig. 2: The computation stages in a GGNN [6] layer.
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TABLE 1: The SAGA-NN stage breakdown of the selected models.
Model Scatter ApplyEdge Gather ApplyVertex

GCN [5] - - sum(in edges) MLP
GAT [10] src&dst MLP attention(in edges) MLP

GGNN [6] src&dst MLP sum(all edges), vertex GRU
R-GCN [11] edge+src MLP sum(in edges), vertex sum

GraphSAGE [12] - - LSTM(in edges), vertex MLP
Coverage 85% 100% 100% 100%

edgel+1 for the next layer, as shown in Figure 2. We re-
viewed 53 GNN models published in recent top conferences
and journals, spanning across molecular science, recommen-
dation, and transportation domains. Since GNNs mix the
graph and DL computation, the surveyed models demon-
strate significant variability, which poses a great challenge
for the analysis of their computational characteristics.
Model Decomposition. To overcome the diversity chal-
lenge, we adopt the recent GNN description framework
SAGA-NN [7], which defines four stages in a GNN layer
(Scatter, ApplyEdge, Gather, and ApplyVertex.). The
current popular GNN libraries DGL [8] and PyG [9] also
implicitly follow a similar framework. We express and de-
compose the surveyed models into different stages in the
SAGA-NN framework. We then categorize each stage’s op-
erations to mine common patterns and simplify the analysis.

We use GGNN [6] in Figure 2 as an example to illustrate
the different stages. In the first Scatter stage, each edge
concatenates its source and destination vertex embeddings
as edgescatter. In the second ApplyEdge stage, each edge
transforms edgescatter with a MLP operation to produce the
new edge embedding edgel+1. In the third Gather stage,
each vertex first sums the edgel+1 of all its inedges (incom-
ing edges) to output vertexgather, and then concatenates it
with the vertex’s existing embedding vertexl as the input
for the next stage. In the fourth ApplyVertex stage, each
vertex transforms this input with a GRU (Gated Recurrent
Unit) operation to the new vertex embedding vertexl+1.
Survey Result. For the surveyed 53 models, we decompose
them into different SAGA-NN stages. Figure 3 summarizes
the operation distribution in each stage. The results show
that although GNNs have a tremendous design space (diversity),
there exist a few commonly used operations in each stage. GNNs
can adopt a mix of source/destination vertex embedding,
and edge embedding in the Scatter stage. For the Gather
stage, some models use the simple sum/mean/max opera-
tion while others use more complex attention/LSTM (Long
short-term memory) operations. Some models bypass the
ApplyEdge or ApplyVertex, while most models use MLP
operations. The survey insight suggests that we can cover
the large GNN space by carefully selecting a few models.
Studied Models. In the end, we select five representative
GNN models in Table 1, which cover almost 100% of

TABLE 2: The evaluated datasets for the vertex classification task.
Name Cora Citeseer Pubmed AIFB MUTAG BGS

Vertex# 2,708 3,327 19,717 8,285 23,644 333,845
Edge# 5,429 4,732 44,338 29,043 74,227 916,199
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Fig. 4: Execution statistics of selected models with the different datasets.

the operations used in the 53 surveyed models. In other
words, the 53 models can be viewed as recombination of
different stages in the five models. We study and analyze
those models on existing GNN execution library DGL [8]
and PyG [9]. However, the two libraries do not explicitly
implement SAGA-NN so we refactor the codes following
the SAGA-NN description framework for a more systematic
analysis. We focus more on DGL analysis because the PyG
currently does not support GraphSAGE. We also select 6
commonly used datasets from the literature, with the num-
ber of vertices ranging from 5 K to about 1 M in Table 2.

3 GNN COMPUTATION ANALYSIS ON GPU
We study the computational characteristics of the se-

lected GNN models on the contemporary GPU. We conduct
an end-to-end analysis to examine the model difference and
the impact of the dataset. We then analyze the stage-level
characteristics in detail, which lets us identify the possible
bottleneck and suggest new optimizations.

3.1 End-to-end Analysis
Figure 4 plots the execution statistics of our selected

models with the different datasets (Table 2). The experi-
ments are carried on a machine with two Intel Xeon 4110
CPUs and one NVIDIA RTX 2080Ti GPU. The machine runs
Ubuntu 16.04 with CUDA 10 and cuDNN 7. We use GNN
libraries DGL 0.4 [8] and PyG 1.3 [9], both with PyTorch 1.4
as backend. We summarize the key insights as follows.
Execution Time. Figure 4(a) plots the inference execution
time with different graph structures that are ranked by their
edge/vertex count. The inference time for GraphSAGE and
RGCN generally increases with graph vertex/edge count
except for the AIFB dataset. The reason for RGCN is that
this dataset has additional edge types that lead to more
computation in the two models, while the reason for Graph-
SAGE is its bottleneck stage Gather that we describe later.
In contrast, the inference time for the rest three models do
not vary except the largest graph BGS. The reason is that the
CPU time dominates the execution when the graph is small.
Instruction & FLOP. Figure 4(b) and (c) compare the total
instructions and FLOPs (floating-point operations), which
increase as the graph size increases. When the graph is too
small, the CPU time dominates the entire inference time
so the increase of instructions and FLOPs are not reflected
in Figure 4(a). Unlike the CNNs whose input is usually
the fixed-size image, the size of graphs varies significantly
across different domains and problem settings. As such, the
design of GNN acceleration architecture must be aware of
the graph size (also embedding vector size) of the targeted
problems to balance resource utilization.

We also observe that GCN is the simplest model with
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Fig. 5: Stage time breakdown.
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Fig. 6: Stage execution statistics.

less number of instructions and FLOPs. The rest four models
have similar instruction counts for the same graph but
their FLOPs are quite different. This variability can be
attributed to their different model complexity: GraphSAGE
is more complicated with the LSTM-based Gather stage
while GGNN uses GRU cell in the ApplyVertex stage.
Next, we perform a detailed stage-level analysis for a deeper
understanding of these models.

3.2 Stage-level Analysis
Figure 5 shows the stage-level time breakdown and

Figure 6 shows each stage’s execution statistics. Both results
are obtained on the largest dataset BGS. The stage time
distribution varies greatly among models, which confirms
the diversity of our selected models, and also suggests that
there is no fixed hotspot in GNNs. Therefore, we must
equally and jointly consider all the stages. We present our
detailed stage-by-stage analysis as follows.
Scatter. This stage prepares data for its following edge
transformation stage ApplyEdge so that it only involves
data movement. As such, Figure 6(a) shows that this stage
has no floating-point operation and intensively uses DRAM
bandwidth (note that GCN and GraphSAGE bypass this
stage). Through the kernel trace profiling (not shown owing
to space limits), we find that this stage uses the CUDA
kernel indexSelectLargeIndex to implement the data
movement, which puts together the embedding vector of
each edge and the embedding vector of its two connected
vertices into a new edge embedding vector (Figure 2). This
stage also has a high L2 cache hit rate while graph process-
ing is well known as low locality. The reason is that GNNs
use a typical size of 32 or more for vertex/edge embedding
while graph processing like BFS/PageRank uses one.
ApplyEdge. This stage performs edge embedding matrix
transformation with MLPs. In general, it is possible to batch
all edges for a parallel process so that this stage should
have high computation efficiency. However, only GGNN
has high FLOP efficiency while both GAT and RGCN have
low-efficiency values. The size of edge embedding in GAT
and GGNN is 1 (as attention value) and 32, respectively.
As such, the ApplyEdge stage can be implemented by
GEMV (matrix-vector multiplication) and GEMM in GAT
and GGNN, respectively. This explains why the FLOP ef-
ficiency in GGNN is higher than the GAT. Meanwhile,
the RGCN assigns another edge type attribute to different
edges. As a result, its ApplyEdge stage first needs to select
edges with the same type and then batches them to GEMM
operation, which leads to the overall low FLOP efficiency.
Gather. This stage gathers edge embeddings for the fol-
lowing vertex transformation stage ApplyVertex. Since
different vertices have different edge counts, this stage uses
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Fig. 7: (a) GCN time with/without fusion. (b) The fused Gather can be imple-
mented by multiplying the graph adjacency matrix and edge embedding matrix.

a Reduction function that reduces the varying edge count
to a fixed size embedding. Through profiling, we find that
the Gather stage uses an important fusion optimization. To
emphasize its importance, we run the GCN model with and
without the fusion that DGL exposes. Figure 7-a shows that
the stage fusion leads to about 200× speedup.

We use an example with the sum reduction function to
illustrate how the fusion works. Assume an edge-to-vertex
adjacency matrix (Figure 7-b middle), where a nonzero
element represents an inedge (column) of the corresponding
vertex (row). With the sum reduction function, the Gather
stage calculates the new embedding of each vertex by sum-
ming the embeddings of all inedges. For each vertex, the
summation can be implemented by multiplying its corre-
sponding row in the adjacency matrix and the entire edge
embedding matrix, where each row is an edge embedding
vector. As such, the fused operation equals the multipli-
cation between the adjacency matrix and the embedding
matrix. Through the kernel trace profiling, we find that
this multiplication uses sparse GEMM for great performance and
efficiency as the adjacency matrix is highly sparse.

The exception is GraphSAGE which adopts LSTM as the
reduction function, which treats the inedges of a vertex as
a sequence and outputs a new vector. The LSTM requires a
serialized input of a vertex’s inedges, which cannot lever-
age the fusion optimization and becomes the bottleneck
(Figure 5). We find that DGL implements the LSTM-based
Gather in a degree traversal technique. It batches the vertices
with the same degree for parallel computation on the GPU.
Figure 8-b shows that the number of kernel invocations
equals the number of vertex degrees in the graph.

The degree traversal approach causes a severe GPU
under-utilization as the idle time dominates in the stage
(Figure 8-c). Figure 8-a shows the degree distribution in the
BGS dataset, which obeys the power-law distribution: the
number of vertices with the same degree decreases expo-
nentially when the degree increases. As such, this approach
is close to the sequential vertex-by-vertex computation for
large degrees. Through profiling, we find that the interval
time between two adjacent vertex computations can be 20×
larger than the invoked kernel duration. As a result, the
Gather becomes the major bottleneck in GraphSAGE.
ApplyVertex. This stage usually performs vertex embed-
ding matrix transformation with MLPs, which is similar to
the ApplyEdge stage. All vertices can be batched so that
this stage can be implemented by GEMM, which leads to the
highest FLOP efficiency among all stages (Figure 6d). The
only exception of RGCN is due to the simple sum defined
for the stage (Table 1). On the other hand, ApplyEdge and
ApplyVertex often play a key role in the model accuracy,
and more and more GNN models are being developed
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with complex functions in those two stages to capture more
information on the vertex, edge, and graph.
Library. We observe a similar result on PyG, especially for
ApplyEdge/ApplyVertex that both leverage PyTorch’s
existing features for efficient computation. Their greatest
difference lies in Scatter and Gather stages. For example,
PyG lets users customize the data movement in Scatter
while DGL moves all data (embeddings of the edge and its
vertices) by default. As such, PyG performs better when part
of the data is fetched (e.g., RGCN). Moreover, the PyG does
not support the LSTM-based Gather stage.
Summary. Table 3 summarizes the characteristics of each
stage. It shows that although GNNs have a large design
space, the stage-level characteristics are relatively stable
across different models. In other words, our stage-level
characterization can lay the foundation for future hard-
ware/software acceleration of GNNs.

4 IMPLICATIONS FOR HARDWARE ACCELERATION

We now study the feasibility and challenges for the GNN
accelerator, which can further improve the performance or
energy efficiency of GNNs, on the basis of our previous
analysis. Instead of building an accelerator from scratch,
we take the existing DL accelerator TPU, and study its
performance of running the GNN models. Based on the
detailed stage-level analysis, we shed light on the efficient
GNN accelerator design. We use TensorFlow 1.12 on top of
one Google Cloud TPU v2 for this part of the experiments.
Projection Methodology. Because both DGL and PyG only
support CPU and GPU platforms, we adopt a micro-
benchmark based methodology to project the performance
of running a typical GNN model on the TPU. We extract the
parameters for the regular computation and run them on
the TPU. For the irregular data movement, we use the time
of our local CPU due to the lack of native TPU support.
Figure 9 shows the result of two datasets. We report both
the dense and sparse performance on the CPU/GPU, and
report only the dense performance of TPU because it does
not support the sparse GEMM.
Result Analysis. We show a counter-intuitive result in
Figure 9. The TPU does not achieve the best performance
on both datasets (Total bar), although it does achieve the
best dense GEMM performance (ApplyV bar). On the small
dataset Cora, TPU performs worse than the GPU because
the TPU has to rely on CPU for the data movement. On the

TABLE 3: The characteristics of different GNN computation stages.

Stage Description Kernel
Scatter Vertex/edge embedding movement IndexSelection

ApplyEdge DL-based edge embedding transformation GEMM/GEMV
Gather (fused) Edge embedding reduction Sparse GEMM

Gather Edge embedding movement IndexSelection
(non-fused) Complex reduction (e.g., LSTM) GEMM/GEMV
ApplyVertex DL based vertex embedding transformation GEMM/GEMV

 CPU dense CPU sparse  GPU dense  GPU sparse  TPU dense
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Fig. 9: The inference time (ms) on difference architectures.

large dataset MUTAG, the GPU outperforms TPU with the
sparse stage fusion due to the higher graph sparsity.
Forward Looking. In summary, we think it is important
for GNN accelerators to support both sparse and dense
matrix operations for efficient GNN acceleration. Efficient
data movement for the graph structure is also indispensable
to avoid unnecessary data copy between processors. As
such, an ideal GNN accelerator in our outlook consists of
three key components: data movement component, dense
operation component, and sparse operation component.
Meanwhile, the current execution paradigm for GNN is
stage-by-stage and layer-by-layer. We believe that there is
a huge design space to break this sequential paradigm by,
for example, by fine-grained pipelining the different stages.
We leave those for our future work.

5 CONCLUSION

We systematically study the computation characteristics
of graph neural networks. We first construct a representative
GNN benchmark based on the extensive model review and
a general GNN description framework. We then analyze
their computational efficiency and microarchitectural char-
acteristics on the existing GPU architecture. Our analysis
suggests that the GNN is a unique workload with the mixed
features from graph analytics and DL computation, which
warrants more future research.
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