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Abstract—Web browsing on mobile devices is undoubtedly the
future. However, with the increasing complexity of webpages, the
mobile device’s computation capability and energy consumption
become major pitfalls for a satisfactory user experience. In this
paper, we propose a mechanism to effectively leverage processor
frequency scaling in order to balance the performance and energy
consumption of mobile web browsing. This mechanism explores
the performance and energy tradeoff in webpage loading, and
schedules webpage loading according to the webpages’ charac-
teristics, using the different frequencies. The proposed solution
achieves 20.3% energy saving compared to the performance
mode, and improves webpage loading performance by 37.1%
compared to the battery saving mode.

Index Terms—Energy, EDP, Cutoff, Performance, Webpages

I. INTRODUCTION

WEB experience is becoming more interactive, collabo-
rative, and personalized in today’s world. Two signifi-

cant trends are becoming clear. First, web browsing on mobile
devices will be dominant in the near future. International
Data Corporation (IDC) forecasts that by 2015, there will
be more mobile devices than humans on the planet, and
web surfing with mobile devices will surpass that on desktop
environments [6]. Thus, it is paramount that web browsing is
well supported on mobile platforms, regardless of whether the
device is a smartphone, tablet, or laptop computer.

Second, webpages have become more computationally in-
tensive and energy consuming over the years. For the 50
hottest websites listed on www.alexa.com, we measured the
network transmission time and page-content processing time
over the past 11 years on the Pandaboard ES (based on a dual-
core ARM Cortex-A9 processor connected to the 100 Mb/s
Ethernet). Randomly picking one image archived by Internet
Archive [4] from each year, we found that www.cnn.com
captures the most representative trend among all these hot
websites. Although there is about 5% measured overlapping
time between network and computation, the overall gap be-
tween network and computation time has been significantly
and consistently increasing over the years, as shown in Fig. 1.
The fitted line represents this consistent trend, which quantifies
a tenfold relative increase in webpage computation intensity
from the perspective of compute versus network. We ob-
serve a similar trend among other popular websites, and as
such believe that the browser workload is steadily becoming
compute bound and will therefore have more impact on a
device’s energy consumption. This trend is likely to hold true
in the future with the adoption of new web standards and
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technologies such as HTML5 and WebGL, which require more
demanding computational processing capabilities. This trend
will become especially more concerning in the mobile era
where energy efficiency is a first-class citizen.

There are a few proposals such as [10], [7] that aim
to improve web browser performance. Most are focused
on parallelizing browser-specific tasks such as parsing, CSS
selection, etc. Although these parallelized algorithms can
achieve speedups ranging from 4x to 80x for various browsing
tasks [10], they do not typically scale well [10], making the
parallelization methodology less favorable.
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Fig. 1: Webpage computation
time has increased significantly.
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Fig. 2: Webpages vary in per-
formance and energy needs.

On the other hand, heterogeneous systems with different
core configurations each with different P-states provide a
unique opportunity that enables both high performance and en-
ergy efficiency. We believe that fully harnessing such systems
entails detailed characterization and quantification of signif-
icantly varying performance and energy consumption across
different webpage loadings. Fig. 2 confirms the presence of
such different loading behaviors “in the wild” across five
randomly chosen websites. To enable research in that direction,
we take a first step and mainly explore dynamic voltage and
frequency scaling (DVFS) available in most systems. We make
the following contributions in this paper toward our objective:

• We characterize the webpage-level differences of web
browser page loading, which leads to novel insights
on how webpage differences can be applied to achieve
energy-efficient mobile web browsing.

• On the basis of the webpage characterization analytics,
we derive regression models for predicting the perfor-
mance and energy consumption of webpage loading.

• Using the prediction model, combined with intelligent
scheduling of webpages using different frequencies in the
processor, we achieve 20.3% energy improvement and
37.1% performance improvement compared to the native
performance and battery saving mode, respectively.
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II. WEBPAGE-LEVEL CHARACTERIZATION

The prerequisite to addressing the performance and en-
ergy issues for computationally intensive webpages is the
thorough understanding of web-browsing workloads. Previous
works [8], [9] treat the web browser as the target application
and perform system- and microarchitecture-level characteri-
zations/optimizations while treating webpages as input sets
to the target application. However, webpages contain richer
information than input sets in the traditional sense. Web-
pages bear full program semantics, put inherent constraints
in the processing order, and may even modify themselves
(JavaScript). Motivated by such information, we profiled the
hottest 30 webpages listed in www.alexa.com, analyzed
webpages as full-duty workloads, and identified differences
across webpages to explore energy-efficiency opportunities.
The way webpages are developed permits analysis along
two dimensions: static, which includes HTML and CSS, and
dynamic (i.e., JavaScript).

A. Hypertext Markup Language (HTML)

HTML uses tags, each possibly associated with zero or
more attributes, combined with plain text to describe the
webpage’s overall structure. Along with parsing the HTML
file, the rendering engine also constructs the DOM (Document
Object Model) tree structure dynamically with each node in the
tree corresponding to an HTML tag. The complex and irregular
tree-related computations indicate that the difference in tags,
attributes, and DOM tree structures can lead to different
processing overhead and thus different energy implications.

We performed a cumulative distribution analysis of the
HTML tag usage. About 10% of the possible tags make up
90% of tag usage, mainly because web developers tend to
use a few common tags. In order to know what these hot
tags are, we performed a tag distribution profiling, shown in
Fig. 3a sorted by the total number of tags. We identify a few
tags that are hot across all the webpages and lump the rest
together in the plot. As the figure shows, the number of tags
varies significantly across different webpages. For instance,
www.baidu.com, which is the 5th hottest website, only has
70 tags while www.163.com, which ranks 28th, has 4,135
tags. It is interesting to note that hot tags are not always hot
in all webpages; www.baidu.com does not have the <td>
tag. These indicate strong “interpage” differences.
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(a) HTML tag distributions.
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(b) DOM tree depths.

Fig. 3: HTML analysis indicates that tags and the complexity of the
DOM tree are significantly different across webpages.

We performed similar profiling on attributes and observed

similar interpage differences as in tags. For instance, we ob-
served that the number of attributes in the hottest 30 webpages
can vary from 9 to 8,351, with a relative standard deviation of
129.83%. Such variances can impact performance and energy
usage significantly when the rendering engine generates the
webpage’s visual properties.

We also capture the DOM tree structure’s complexity ac-
cording to the tree depth. Apart from HTML processing, even
CSS processing relies heavily on the DOM tree structure to
perform tasks such as selector matching, which was found
to be one of the most computation-intensive parts in web
browsers. Fig. 3b sorts the hottest 30 webpages by the tree
depth. As shown, DOM tree depth is significantly different
across webpages, with a relative standard deviation of 33%,
indicating strong interpage differences. Such differences lead
to different DOM-tree-related processing overheads that affect
performance and energy consumption of webpage loading.

B. Cascading Style Sheets (CSS)

CSS dictates how HTML tags are displayed using a set
of rules, each with a selector and a set of visual properties.
Referring to the DOM tree structure, the rendering engine
applies CSS rules to each HTML element and gives exact
coordinates in order to lay out the webpage. These CSS-related
processing tasks such as selector matching, style computation,
etc. are known for their computational intensity [10].
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(a) CSS selectors.
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Fig. 4: CSS analysis indicates that both selector and property values
are used very differently across several webpages, which leads to
different computation and energy requirements.

In order to capture the complexity of processing CSS rules,
we choose to use specificity [1] as the metric. Specificity
is a 4-tuple, with each element describing one pattern of
CSS selectors. We observed a similar selector specificities
distribution in external CSS selectors (shown in Fig. 4a)
as HTML tags. In particular, although there are a few hot
selector specificities across all webpages, several webpages
still rely heavily on their own selector patterns. This interpage
difference affects how selectors are matched to HTML tags,
leading to different performance and energy requirements.
Furthermore, we profiled CSS property usage across different
webpages. Similar to HTML tags, in Fig. 4b we observe hot
properties and significantly varied usage of these properties
across webpages. Such a difference in CSS properties trans-
lates to different performance and energy behaviors during the
style computation phase, where the rendering engine uses CSS
properties to resolve the visual and layout information for the
entire webpage.
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C. JavaScript

HTML and CSS define the static behavior of webpage load-
ing. However, webpages may embed JavaScript (JS) programs
that control a webpage’s dynamic behavior after the initial
webpage load. In general, a JS program is a collection of
event handlers. They are triggered by webpage internal state
transitioning or user actions such as mouse click, and most
often happen after the webpage’s basic content is rendered.
These event handlers change webpages dynamically through
DOM methods, and retrigger operations such as DOM tree
construction, layout, etc. that are originally performed during
the initial load.
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Fig. 5: Distribution of JS methods implies different JS-related
computation complexities across different webpages.

We crawled the hottest 200 webpages listed on alexa.com
and counted the number of DOM methods across the web-
pages. Fig. 5 shows this statistic sorted by the total number
of DOM methods. We classify DOM methods as methods
that change the DOM tree topology, and methods that do
not modify the DOM tree structure. The latter is shown as
Others in the figure. Overall, most DOM methods used in real
webpages modify the DOM tree, therefore retriggering basic
rendering operations that could lead to intensive computations
when complex DOM tree structures are involved. In addition,
interpage variance is also observed. Although most webpages
contain DOM-tree-related operations, there are a few excep-
tions (such as those pointed out in Fig. 5) where most dynamic
operations trigged by JavaScript events do not touch the DOM
tree structure, indicating a relatively lower performance and
energy overhead.

III. WEBPAGE PERFORMANCE AND ENERGY MODELING

Mobile systems are more constrained by battery life than
power. Therefore, we choose energy, in addition to perfor-
mance, to evaluate browser-like workloads. We relate perfor-
mance and energy usage of webpage loading to the webpage-
level characterization performed in the previous section, and
quantify that by applying regression modeling on webpage-
level characterization results to derive a statistical inference
model.

A. Model Derivation

We use 200 webpages to obtain the training set. Each
measurement in the training set maps a set of meta-information
to observed per-page loading time and energy consumption.
This data is then used to train linear regression models that fit
and predict the performance and energy consumption.

Table I identifies the model features and groups them
as HTML and CSS. Using domain-specific knowledge, we
prune features that rarely appear and that have negligible
performance impact according to microbenchmarking. We also
find that features describing the same webpage characteristics
tend to have strong correlation with each other. We then cluster
features by calculating the correlation matrix, and pick only
one feature from each cluster.

TABLE I: Model Features

Groups Model Features

HTML

Number of each tag
Number of each attribute

Number of DOM tree nodes
DOM tree depth

CSS
Number of rules

Average selector specificity
Number of each property

We use R and its packages to perform linear regression with
regularization. We also perform logarithmic transformation on
features and responses (loading time and energy) before doing
a fit to reduce the value magnitude and improve linearity.

B. Model Evaluation

For validating the model, we performed experiments on
the Pandaboard ES (rev. B1) running a preinstalled OMAP4
image of Ubuntu 12.04 release with Linux kernel version
3.2.14. The Pandaboard is equipped with a dual-core Cortex-
A9 OMAP4460 and ran at 1.2 GHz in this experiment. We
instrumented Mozilla Firefox 12.0 source code for loading
time and energy measurements, such that only “page loading”
is instrumented without considering Firefox bootstrapping and
shutdown. In order to focus on studying the webpage itself,
we also always disable browser cache and isolate the effects
of (partially) caching webpage resources in both browser
and hardware. In addition, motivated by Fig. 1, we focus
on computation and isolate network and disk overhead by
downloading the webpages and mapping them into memory.

To measure the webpage loading time, we instrumented
Firefox and inserted signatures at the start and end of loading a
webpage and recorded their respective timestamps. For energy
measurements, we built a custom power sensing circuitry,
using a sense resistor located between the off-chip voltage
regulator module (VRM) and VDD to the chip [5]. Using
National Instruments’ data acquisition unit 6133 we gathered
power measurements at a rate of 100,000 samples per second.

In addition to the 200 webpages used to train the
model, we obtained 800 additional webpages listed on
www.alexa.com for evaluating the regression models.
Overall, the performance and energy models have a mean error
rate of 5.5% and 4.6%, respectively. Cumulative distribution
analysis of the error rates shows that the performance and
energy model can predict 87% and 89% of webpages within
10% error, respectively.

IV. WEBPAGE LOADING: ENERGY-DELAY TRADEOFF

Performance and energy-prediction models derived in the
previous section provide a unique opportunity to achieve
high-performance and energy-efficient mobile web browsing.
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Asymmetric systems such as NVIDIA’s Tegra 3 [2] incorporate
both high-frequency, energy-consuming and low-frequency,
energy-conserving cores, and thus provide a large optimization
space for exploring the tradeoff between performance and
energy consumption. We believe that applying our inference
models for webpage scheduling helps us efficiently utilize
heterogeneous resources. As a first step, in this section we
use the DVFS knob available on Pandaboard to mimic the
scheduling on such heterogeneous systems. We focus only on
the static loading of webpages and leave the dynamic behavior
caused by JS activity as opportunity for future work.

Mobile systems must make tradeoffs between energy (E)
and delay (D) while accounting for the webpage-loading cutoff
latency. We identify two typical operating modes in mobile
systems that make E-D tradeoff differently. In particular, the
battery-saving mode aims at minimizing energy consumption
and uses the lowest frequency of the processor. The perfor-
mance mode intends to deliver webpages as fast as possible,
and therefore uses the highest frequency of the processor.

In order to understand the E-D tradeoff, we measured the
loading time and energy consumption of the hottest 1,000
webpages listed by www.alexa.com on the Pandaboard.
The Cortex-A9 processors on the Pandaboard support four
frequency levels: 350 MHz, 700 MHz, 920 MHz, and 1.2 GHz.
We swept all frequencies and chose 3s as the cutoff latency for
webpage loading according to the well-known “three-second
rule” [3]. Fig. 6a shows four representative webpages having
different optimal frequencies that meet the cutoff latency while
achieving the minimal energy consumption.

A fixed frequency is not necessarily the best choice for
all the webpages. As Fig. 6a shows, simple websitesig such
as www.google.cn and www.hbr.org can be loaded
using 350 MHz and 700 MHz to meet the cutoff latency,
whereas more complex websites such as www.cnn.com and
jp.msn.com require higher computation capabilities from
higher frequencies. In general, lower frequencies result in
lower processor energy consumption, and thus suggest the
energy saving opportunity at load time using lower frequencies
without violating the cutoff latency.

Fig. 6b shows the distribution of webpage loading time
under each mode. Each region represents the portion of
webpages that meet a particular cutoff latency. We also show
the total energy consumption of 1,000 webpages under each
mode on the right y-axis. Assuming a 3s cutoff latency, the
battery mode consumes 1.6 kJ of energy, 55.5% less than the
performance mode; however, it violates the cutoff latency for
42.6% of webpages, more than the performance mode which
only violates 3.3% of webpages. This extreme imbalance
requires a mechanism that balances E and D more effectively.

The performance and energy models we derived in the
previous section, however, can accurately predict the optimal
frequency that meets the cutoff latency while minimizing
energy. After the webpage is parsed, which according to our
task profiling is only 1% of the entire time, our models can
quickly predict the loading time and energy consumption and
then decide the optimal frequency. We exert our scheduling
technique; it achieves 20.3% energy savings, or 0.73 J saving
per webpage, as compared to the performance mode, while
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Fig. 6: A fixed frequency does not work best for all webpages.

only violating 2.2% more webpages. Meanwhile, it reduces
the number of violated webpages by 37.1% compared to the
battery mode, with 78.8% more energy consumption.

We also compared our scheduling mechanism with a “static
balanced mode” that always loads webpages using 700 MHz.
Under the 3s cutoff latency, we reduced 5% of cutoff violations
by consuming 1% less energy. As we tightened the cutoff
latency to 2s, our scheduling mechanism reduced violations by
16% compared to the static mode with only 6% more energy
consumption.

V. CONCLUSION

We proposed an innovative scheme to achieve energy-
efficient mobile web browsing. Leveraging the insight that
different webpages have varying performance and energy con-
sumption, we derived statistical inference models to accurately
predict the loading time and energy consumption for each
webpage. Building on such models, we explored the webpage
loading cutoff latency to balance energy consumption and user
browsing experience by scheduling webpage loading using
processor DVFS. Measured hardware results show that our
technique reduces energy consumption by 20.3% compared
to the performance mode, and it improves webpage loading
performance by 37.1% as compared to the battery mode.
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