
Themis: Predicting and Reining in Application-level
Slowdown on Spatial Multitasking GPUs
∗Wenyi Zhao, ∗†Quan Chen, ‡Hao Lin, ‡Jianfeng Zhang, ∗Jingwen Leng,

∗Chao Li, ∗Wenli Zheng, ∗Li Li, ∗†Minyi Guo
∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

†Shanghai Institute for Advanced Communication and Data Science, Shanghai Jiao Tong University, China
‡Alibaba Group, China

wenyizhao@sjtu.edu.cn, {chen-quan, leng-jw, lichao, zheng-wl, lilijp, guo-my}@cs.sjtu.edu.cn,
bixuan@taobao.com, xingdian@alibaba-inc.com

Abstract—Predicting performance degradation of a GPU ap-
plication when it is co-located with other applications on a spatial
multitasking GPU without prior application knowledge is essen-
tial in public Clouds. Prior work mainly targets CPU co-location,
and is inaccurate and/or inefficient for predicting performance
of applications at co-location on spatial multitasking GPUs. Our
investigation shows that hardware event statistics caused by
co-located applications, which can be collected with negligible
overhead, strongly correlate with their slowdowns. Based on this
observation, we present Themis, an online slowdown predictor
that can precisely and efficiently predict application slowdown
without prior application knowledge. We first train a precise
slowdown model offline using hardware event statistics collected
from representative co-locations. When new applications co-run,
Themis collects event statistics and predicts their slowdowns
simultaneously. Our evaluation shows that Themis has negligible
runtime overhead and can precisely predict application-level
slowdown with prediction error smaller than 9.5%. Based on
Themis, we also implement an SM allocation engine to rein in
application slowdown at co-location. Case studies show that the
engine successfully enforces fair sharing and QoS.

Index Terms—Spatial Multitasking GPU, Co-location, Slow-
down prediction

I. INTRODUCTION

Large-scale applications, such as graph processing [37]
and deep neural networks [22], are now more and more
computationally demanding. GPUs are particularly suitable
for these applications from both the performance and total
cost of ownership (TCO) perspectives. As such, private data
centers (e.g. Google’s [11]) and public multi-tenant Clouds
(e.g. Amazon EC2 [3]) have adopted GPU-outfitted servers.

While more and more streaming multiprocessors (SMs) are
integrated into a GPU (from 16 SMs in a a Nvidia K40
GPU, to 56 in P100, to 80 in V100), a single application
cannot always fully utilize all the resources [28]. For instance,
a compute-intensive GPU kernel would consume most of
the SMs but waste global memory bandwidth, while a data-
intensive kernel wastes computational power of SMs. To im-
prove resource utilization, prior work [1], [28], [32] proposed
spatial multitasking GPU, where the SMs can be explicitly
allocated to different GPU applications using preemption
technique [25]. As a result, applications with complementary

Quan Chen and Minyi Guo are co-corresponding authors of this paper.

resource requirement can be co-located on the same GPU,
which leads to better aggregated throughput [15].

On the other side, co-located applications can experience
performance slowdown compared to their solo-run owing to
the contention in shared resources such as shared cache ca-
pacity and global memory bandwidth. As such, the knowledge
on the slowdown of each application is crucial for co-locating
them. For instance, cloud providers may bill the customers
based on the slowdowns of their applications due to the co-
location (aka. fair pricing). Furthermore, accurate slowdown
prediction may enable better SM allocation that avoids over-
provision while still guarantees QoS or fair sharing. Failing to
guarantee QoS or fair pricing/sharing, cloud tenants may resist
the co-location according to Service Level Agreement (SLA),
wasting the opportunity to improve the aggregated throughput.

We observe that the application’s slowdown at co-location
on spatial multitasking GPU can be broken down into two
parts: scalability slowdown, resulting from the reduction of
SMs assigned to it, and interference slowdown, resulting from
the contention on L2 cache and global memory bandwidth.
It is nontrivial to predict the slowdown since GPU sharing
introduces varying amount of contention among the co-located
applications and the applications often have different scalabil-
ities as well as different sensitivities to the interference on the
shared L2 cache and global memory bandwidth.

Prior work on slowdown prediction mainly targets CPU
co-location [18], [24], [33], [35] and can be divided into
two categories: profiling-based and model-based. Profiling-
based techniques (e.g., Bubble-Flux [33]) periodically phase-
in and phase-out each application to collect its characteristics.
While the phase-in/-out operations on CPU are lightweight,
they require heavy SM preemption support on GPU, which
we show significantly degrades aggregated performance (in-
efficient). On the other hand, prior model-based techniques
(e.g., ASM [24]) ignore the impact of the number of SMs
allocated to an application on its performance, which makes
the prediction inaccurate.

Our investigation shows that a kernel’s scalability, sensi-
tivity to resource contention, and “pressure” on shared
resources affect its slowdown at co-location. The pressure
varies when the kernel is allocated different numbers of

SMs (Section III). We further find that some hardware event
statistics that can be collected online with negligible over-
head strongly correlate with these features. Based on the
above observations, we propose Themis to precisely and
efficiently predict application-level slowdown at co-location
on spatial multitasking GPUs, without degrading aggregated
performance. We train an unified kernel slowdown model in
Themis using correlated hardware event statistics as inputs.
The training data is collected by co-locating representative
GPU applications under multiple SM allocations (Section V).
When new GPU applications co-run, Themis periodically
collects event statistics, and predicts their slowdowns simulta-
neously using the kernel slowdown model.

Moreover, we propose a novel proactive slowdown predic-
tion method to predict the slowdown of an application with an
un-tried SM allocation (Section VII). Based on this method,
an SM allocation engine reallocates SMs periodically to rein
in application slowdown to satisfy user requirements.

The main contributions of this paper are as follows.
• Comprehensive slowdown analysis of co-located appli-

cations on a spatial multitasking GPU. We breakdown
application slowdown into scalability slowdown and in-
terference slowdown. The analysis lays the foundation for
our accurate slowdown prediction methodology.

• A precise online slowdown prediction with negligible
overhead. We show that prior profiling-based slowdown
prediction techniques, originally designed for CPU with
fast context switch support, are not applicable on GPUs
due to the large SM preemption overhead.

• A novel method to handle prediction of un-tried
SM allocations. We show previous posterior prediction
methods do not work owing to the unavailability of event
statistics under un-tried SM allocations, for which we use
constrained piecewise regression.

Our evaluation shows that Themis has negligible runtime
overhead and precisely predicts application slowdown with
error smaller than 9.5%. In addition, our case studies show
that the SM allocation engine based on Themis can precisely
rein in application slowdown to enforce fair sharing and QoS.

II. RELATED WORK

Co-locating applications in datacenters has been an active
research area because it can improve the server utilization.

On the one hand, researchers attempted to mitigate resource
contention to improve performance and fairness [8], [12],
[38]. FST [12] estimated performance unfairness in a shared
memory multi-core system and eliminated unfairness due to
bandwidth contention. Zhuravlev et. al [38] proposed a scheme
that classified threads into multiple classes, and scheduled
threads accordingly to eliminate the interference on CPU.
Similarly, there were also efforts on contention mitigation
on GPUs [27]. Park et al. proposed to dynamically change
the multitasking mode for better performance on GPUs [21].
Wang et. al [30] proposed a hybrid method to mitigate the
interference between CPU and GPU.

These prior work mostly rely on heuristics or contention
related metrics to perform mitigation. On the other hand,
qualitatively predicting performance interference between ap-
plications at co-location has been identified as a key challenge
in datacenter and Cloud.

For CPU co-location, Bubble-Up [18] created bubbles that
have different pressures on the memory subsystem and profiles
each application individually to measure its sensitivity to re-
source contention. Bubble-Flux [33] and ASM [24] employed
online profiling techniques. However, these techniques are
either inadequate for GPUs owing to different architectural
features or invasive that requires modification of applications’
normal execution. Such invasiveness can also translate to
unaffordable profiling overhead on spatial multitasking GPUs
(in Section III). GDP [16] is a transparent interference pre-
diction technique, but is built on latency-optimized CPUs and
challenging to be extended for throughput-optimized GPUs.

For GPU co-location, Baymax [7] and Prophet [6] predicted
performance interference among co-located GPU applications
for a temporally shared GPU while we consider spatial mul-
titasking GPUs. Zhao et al [36] studied SM optimization
on spatial multitasking GPUs. They found memory-bound
applications exhibit a complex and program-specific slowdown
behavior when SM allocation changes, for which they used a
trial-and-failure approach without relying on an actual model.
Compared with them, Themis is accurate, spatial multitasking
GPU-specific, and transparent with negligible performance
overhead.

There is also prior work that builds performance models
with analysis based approaches or machine learning based ap-
proaches for GPU architectures. Themis borrow their insights
but extend them in the context of co-location performance pre-
diction. Zhang et. al [34] developed a microbenchmark-based
performance model for Nvidia GPUs. The model identifies
GPU program bottlenecks and allows programmers to predict
the benefits of potential program optimizations and architec-
tural improvements. Wu et. al [31] trained a neural network
model that predicts application performance on various GPUs.

III. BACKGROUND AND MOTIVATION

Our investigation seeks to answer three research questions in
this section. First, without application knowledge beforehand,
can prior work precisely and efficiently predict application
slowdown when multiple applications are co-located on a
spatial multitasking GPU? Second, if cannot, what are the
reasons of the poor accuracy and/or efficiency? Third, what
are the challenges to enable precise and efficient application-
level slowdown prediction without prior knowledge?

A. Investigation Setup and Metrics

In our investigation, we co-locate applications from two
widely-used GPU benchmark suites, Rodinia [5] and Par-
boil [23], on a spatial multitasking GPU, and evenly allocate
the SMs to them. We use GPGPU-Sim [4] to simulate a 60-
SM spatial multitasking GPU as the experimental platform
following the same implementation reported in prior work [2],

0.1 0.2 0.3 0.4 0.5
Aggregated Performance Degradation

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

0.14

0.41

0.63
0.76

0.92Mean = 0.27
 Std = 0.16

(a) Inefficiency of Bubble-Flux

0.1 0.2 0.4 0.6 0.8
Slowdown Prediction Error

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

0.22
0.31

0.57
0.71 0.78

Mean = 0.45
 Std = 0.34

(b) Inaccuracy of ASM

Fig. 1: Cumulative distribution of aggregated performance
degradation/slowdown estimation error of Bubble-Flux/ASM.

[25], [28]. The benchmarks have various scalabilities and
pressure on different shared resources. More details on the
hardware and benchmarks are described in Section VI. The
reason we do not perform the investigation on a real-system
GPU (e.g., Nvidia V100) is that prior work relies on SM
preemption and per-SM event collection. These features are
still not supported by real-system GPUs.

To quantify an application’s slowdown at co-location, we
first run it alone and collect its solo-run execution time Tsolo.
Let Tcolo represent its execution time when it is co-located
with other applications. Equation 1 calculates its slowdown
(denoted by SD) and normalized progress (denoted by PG)
at co-location. Note that, SD ≥ 1 and 0 < PG ≤ 1.

SD =
Tcolo
Tsolo

; PG =
Tsolo
Tcolo

=
1

SD
(1)

Based on Equation 1, let SDmeasured and SDpred represent
an application’s measured slowdown and predicted slowdown
respectively. Equation 2 calculates the error of slowdown
prediction (denoted by Err).

Err =
|SDpred − SDmeasured|

SDmeasured
(2)

Assume k (k > 1) applications are co-located on a spatial
multitasking GPU. Let PG1, ..., PGk denote their progresses
calculated in Equation 1. Same to prior work [13], Equation 3
calculates the aggregated application performance STcolo. The
larger STcolo is, the better the GPU performs.

STcolo =
∑k

i=1
PGi (3)

Then, the goal of this work is to minimize slowdown
prediction error Err without decreasing STcolo.

B. Limitations of Prior Work

Fig. 1 shows the inefficiency and inaccuracy of Bubble-
Flux [33] and ASM [24] respectively, on predicting the appli-
cation slowdown at colocation on spatial multitasking GPU.

As shown in Fig. 1(a), the average aggregate performance
degradation (compared with the case where no prediction
technique is used) across 49 pairwise colocations (more de-
tails in Section VI) is 0.27 (dropping from 1.22 to 0.95)
when applying Bubble-Flux, making colocation less attractive.
Bubble-Flux has large overhead because its fundamental

bp kmeansrd2 pfn mrigstenctpac
1
2

4

Sc
al

ab
ilit

y
SD 15 SMs

30 SMs
45 SMs

(a) Scalability slowdown

bp kmeansrd2 pfn mrigstenctpac

1

2

In
te

rfe
re

nc
e

SD App. mrig

(b) Interference slowdown

Fig. 2: Scalability of the benchmarks and their interference
slowdowns when they are co-located with mrig.

design logic is to periodically profile each of the co-located
applications, which can only be achieved through expensive
SM preemption on GPU [25].

ASM has low prediction accuracy for application co-
location on spatial multitasking GPUs. Observed from
Fig. 1(b), the average prediction error of ASM for the 49
co-locations is 45% (up to 105% in the worst case). This is
because ASM predicts an application’s slowdown only based
on the interference on shared cache and memory bandwidth,
ignoring the slowdown due to the reduction of SMs
allocated to it. This design choice is not a problem for CPU
co-location because a CPU application uses the same number
of cores when it runs alone and when it is co-located with
other applications. However, a GPU application uses much
fewer SMs (e.g., half of all the SMs) when it is co-located
with others on a spatial multitasking GPU.

C. Key Factors that Affect Kernel Slowdown

To better understand why ASM has low accuracy, we first
breakdown a kernel k’s slowdown at co-location. A GPU
application has multiple kernels and we can calculate an
application’s slowdown based on the slowdowns of its kernels
(Section IV). Assume k is co-located with other applications
and is allocated n SMs, its slowdown SD in Equation 1 can
be reformulated to be Equation 4, where Tn represent k’s
processing time when it runs alone but only uses n SMs.

SD =
Tcolo
Tsolo

=
Tcolo
Tn
× Tn
Tsolo

= SDscal × SDinter (4)

In Equation 4, Tn/Tsolo is k’s slowdown only due to fewer
SMs, Tcolo/Tn is k’s slowdown only due to shared resource
contention. We refer Tn/Tsolo and Tcolo/Tn as scalability
slowdown (SDscal) and interference slowdown (SDinter),
respectively. ASM has poor accuracy because it ignores scal-
ability slowdown at co-location on spatial multitasking GPUs.

As an example, for each test application in Table III,
Fig. 2(a) shows its scalability slowdown when it runs with
15, 30 and 45 SMs, and Fig. 2(b) shows its interference
slowdown when it is co-located with an memory-intensive
application mrig using 30 SMs. In Fig. 2(b), the x-axis
shows the benchmarks, the bar “App.” shows its corresponding
interference slowdown.

Observed from Euqation 4 and Fig. 2, we identify three key
factors that have to be considered to precisely predict a kernel’s

slowdown when it is co-located with other applications on a
spatial multitasking GPU.

(1) The number of SMs. It seriously affects a kernel’s
scalability slowdown SDscal. As shown in Fig. 2(a), a kernel
runs slower when fewer SMs are allocated to it. Furthermore,
kernels have different scalability slowdowns when they are
allocated the same number of SMs.

(2) Contention on shared resources. A kernel has smaller
interference slowdown when the contention on the shared
resource is lighter. For instance, mrig has smaller interference
slowdown when it is co-located with tpac that has light
“pressure” on shared L2 cache and global memory bandwidth.

(3) Sensitivity to resource contention. Kernels are slowed
down by different times due to the contention on shared
resources. For instance, kmeans and tpac have different in-
terference slowdowns when they are co-located with mrig. A
kernel’s sensitivity to resource contention affects its interfer-
ence slowdown under a given pressure on shared resources.

D. Challenges of Application-level Slowdown Prediction

According to the above analysis, it is non-trivial to precisely
predict application-level slowdown at co-location. Specifically,
there are three key challenges.
• An application’s slowdown at co-location varies. A GPU

application often has multiple kernels with various char-
acters, thus suffers from unstable slowdown.

• Precise slowdown prediction has to consider both inter-
ference slowdown and scalability slowdown. However, an
application’s sensitivity to the shared resource con-
tention and its scalability are not known beforehand.

• Context switch overhead is heavy on GPU [25]. The
technique that profiles each application to collect its char-
acters through frequent context switches on CPU (e.g.,
Bubble-Flux) [24], [33] is not applicable on GPU. We
have to obtain scalability and sensitivity information
of an application online without expensive profiling.

IV. THE THEMIS METHODOLOGY

To address the above challenges, we propose Themis, an
efficient and precise application-level slowdown predictor for
application co-location on spatial multitasking GPUs with
negligible runtime overhead.

Themis predicts the slowdown of a GPU application at co-
location in three steps: (1) divides its execution into phases
with stable slowdown; (2) predicts its slowdown in each phase;
(3) calculates its application-level slowdown. As an example,
Fig. 3 shows the execution timelines of App-a and App-b, when
they co-run on a spatial multitasking GPU and when they run
alone. Themis predicts their slowdowns simultaneously in a
time duration of Tcolo in Fig. 3(a) as follows.

First, Themis divides Tcolo into phases of duration
T1, ..., Tn, where the break points are at the end of every
kernel. In each phase, the slowdowns of both App-a and App-
b are stable, because the characteristics of a kernel is relative
stable. Prior work [32] reports similar finding.

...
...

T1/Sa1 T2/Sa2 Tn/San
Ka1 Ka2 Kan

Tsolo-a Tsolo-b

T1/Sb1 T2/Sb2 Tn/Sbn

KbnKb2Kb1

...

...
App-a

App-b

T1 T2 Tn

Tcolo

Ka1 Ka2

Kb1 Kb2 Kbn

Kan

(a) Co-location timeline (b) Solo-run timeline

Fig. 3: The scenarios when App-a and App-b are co-located
and when they run alone.

In the second step, Themis predicts App-a (and App-b)’s
slowdown in each phase based on hardware event statistics and
a pre-trained kernel slowdown model (Section V). The model
is trained to be a neural network based on the observation that
hardware event statistics of a kernel, which can be collected
online with negligible overhead, are highly correlated with
its inherent characteristics (scalability and sensitivity) and the
pressure it poses on the shared resources (Section V-A).

Let SDai and SDbi represent the predicted slowdowns
of App-a and App-b in the i-th phase Ti. In the third step,
Equation 5 calculates solo-run execution time of App-a and
App-b. The slowdowns of App-a and App-b can be calculated
to be Tcolo/Tsolo a and Tcolo/Tsolo b.

Tsolo a =

n∑
i=1

Ti
SDai

; Tsolo b =

n∑
i=1

Ti
SDbi

(5)

Whenever a kernel is launched or completes, Themis up-
dates the current slowdowns of all the co-located applications
following the above three steps.

It is worth nothing that the kernel slowdown mdoel gener-
alizes well for unseen applications since we use representative
applications with various characteristics to train the model. If
a new class of application is identified, we can enhance the
model using the incremental update.

Because the slowdown model in Themis takes hardware
event statistics as input, Themis requires to enhance current
GPU to support per-SM event collection. We show that the
modification is minor in Section V-B.

We further present an SM allocation engine based on
Themis that can precisely rein in application slowdown at co-
location in Section VII.

V. MODELING KERNEL SLOWDOWN

In this section, we present the details of kernel slowdown
model (KSM), which is used to predict the slowdown of a
kernel’s stable phase in Themis. According to the previous
key factors analysis (Section III-C), building a precise kernel
slowdown model is equivalent of finding the correlation func-
tion R in Equation 6. In the equation, Nsm is the number
of SMs allocated to a kernel, inher characteristics is its
sensitivity to the contention, interference reflects the level
of co-located kernel caused contention on the shared resources.

SD = R(Nsm, inher characteristics, interference) (6)

At runtime, NSM is already known, but interference and
inher characteristics are not available. To solve this prob-
lem, we adopt the following steps as shown in Fig. 4.

HW Event Collection

KSM Online

SM level
statistics

App. level statistics
Event Statistics

SDscal SDinter

SM Allocations

Model Constrution

App. Producer

SM SM...

L2 Cache

Global Mem.

...

SDscal

SDinter

NSM
sek

pec

KSM Offline
Slowdown Model

Fig. 4: Design overview of KSM.

(1) First, we identify the hardware events that are strongly
correlated with the inherent characteristics and the interference
level (Section V-A). These statistics are then used as a good
approximation to the corresponding factor in function R.

(2) Then, we collect training samples (Section V-C). We
design dedicated pressure producers that can stress various
pressures on the shared resource, and co-locate them with
representative benchmarks to collect relevant statistics.

(3) Lastly, the SM allocation and the statistics are then used
to be inputs and the slowdowns are used as the targets to train
a neural network to fit the function R (Section V-D).

At runtime, when multiple applications are co-located,
Themis periodically collects the required statistics, feeds the
data into the KSM model, and predicts the slowdown of an
application in the current time period at co-location.

A. Identifying Correlated Events

A brute force method is incorporating all the available
hardware events in the slowdown model. However, irrelevant
events can easily result in overfitting that conveys poor ac-
curacy. Moreover, the large input dimension also result in long
prediction time. Thus, we only use hardware events that are
highly correlated with inher characteristics or interference.

To measure the pressures (Pcache and Pbw) a kernel poses
on the shared resources, we design dedicated kernels to be
pressure meters. Let r represent either the shared L2 cache
resource or the global memory bandwidth resource; km rep-
resent the pressure meter for r. We run kernel k and km
together, and use km’s slowdown to estimate k’s pressure on
the resource r. We design km such that its performance is only
sensitive to the shared resource r, and therefore the slowdown
of kernel km should reflect amount of resource r stressed by
its colocated kernel. The pressure meter design will be detailed
in Section V-C.

We use spearman correlation coefficient [10] that is widely-
used in machine learning area, to measure the correlation
between a hardware event with a kernel’s scalability, sensitiv-
ity to shared resource contention, and its pressure on shared
resources. The larger the coefficient is, the higher the event is
correlated with the scalability, sensitivity, or pressure.

Let ρscal, ρinter, ρcache and ρbw denote the spearman cor-
relation coefficients between an event and SDscal , SDinter,
Pcache, Pbw respectively. When calculating ρscal and ρinter,
we co-locate representative applications (Section VI) with the
pressure meters under an SM allocation, collect the slowdowns
and corresponding event statistics of these applications. The

TABLE I: Events related to a kernel’s inherent characters

Event Description |ρscal|, |ρinter| |ρbw|,|ρcac|
IPC # of inst./cycle 0.81,0.71 0.43,0.36
L1dAcc # of data access 0.56,0.44 0.24,0.21
L1dMiss # of data miss 0.63,0.47 0.48,0.52
L1cAcc # of const access 0.66,0.67 0.39,0.19
L1cMiss # of const miss 0.76,0.70 0.41,0.33
L2Acc* # of l2 access 0.63,0.51 0.42,0.66
L2Miss* # of l2 miss 0.69,0.58 0.78,0.36
MemBW* % of bw. usage 0.76,0.67 0.73,0.31

slowdowns and the statistics are then used to calculate ρscal
and ρinter. We get the coefficients under five SM allocation
settings and report the median in Table I. We adopt the same
strategy to calculate ρcache and ρbw.

Let se and pe denote all the events and the starred events
in Table I respectively. As shown in the table, se is highly
correlated with SDscal and SDinter, and pe is highly corre-
lated with Pcache and Pbw. Thus, for a kernel k, we use its
se as an approximation of its inherent characteristics and its
pe as an approximation of its pressure. The interference from
k’s colocated kernels (φk) can be calculated as the sum of
their pressures. We re-formalize the correlation function R in
Equation 6, where Nsm is the number of SMs allocated to
k, sek is k’s inherent characteristic related event set, and pec
is the interference related event set of k’s co-located kernels.
The input size and output size of R are 12 (1+8+3) and
2 (SDscal and Sinter) respectively. The intermediate results
(SDscal and SDinter) are useful when reining in application-
level slowdown (Section VII).

< SDscal, SDinter >= R(Nsm, sek,
∑

c∈φk

pec) (7)

B. Hardware Modification

In Equation 7, the input parameters (se and pe) are hardware
event statistics caused by each kernel that can be collected
online with minor hardware modification. In our design, we
enhance GPU to support SM-level event collection, and accu-
mulate the statistics of the SMs allocated to a kernel to be the
kernel’s event statistics. To enable SM-level event collection,
a GPU needs to track the source SM of each memory request.
Themis does not need to add extra hardware to track the
requests, because modern GPUs use Network-on-Chip (NoC)
as the communication infrastructure [17], where the source of
each request has already been incorporated into the request to
route the response back efficiently.

Themis only need to add at most 8 (the number of events in
Table I) additional registers for each SM as the event counters.
The storage overhead is 4 × 8 × 60=1920 bytes for a GPU
having 60 SMs. The hardware modification overhead is minor.

C. Collecting Training Samples

We implement the enhanced GPU using GPGPU-Sim [4].
Based on the enhanced GPU, we collect hardware event statis-
tics in Table I under different interference levels as training
data to train the slowdown model. The interference level is

determined by the contention on shared resources. Simply co-
locating real world applications to collect training data results
in exponential increase of the required training set size when
more than two applications are co-located. For instance, KSM
needs to collect training samples in MN possible colocations
if we use M applications to collect training data for a N -
workload colocation scenario.

Listing 1: Cache and bandwidth pressure producers
1/********** Cache pressure producer *********/
2// ws: working set size; warp_size: gpu warp size
3// Arr: shuffle {0,1,...,ws-1} by warp size
4__global__ void cache(int* Arr, int C, ...) {
5int idx = blockDim.x * blockIdx.x + threadIdx.x;
6while(...) {
7idx = Arr[idx];rep_pure_comp(C);//rep. C times
8}}
9/********* Bandwidth pressure producer ********/
10//n: number of vectors; dim: dimension of a vector
11__global__ void bandwidth(int* A, int* B, ...) {
12int idx = blockDim.x * blockIdx.x + threadIdx.x;
13while(...) { for(int i = 0; i < dim; ++i) {
14A[i*n+idx] = B[i*n+idx] + val;
15val = rep_pure_comp(C);// repeat C times
16}}}

To reduce the number of required training samples, we
instead co-locate representative applications with the pressure
producers that can stress various pressures on the shared
resources. In this way, we do not need to collect more
training data when the number of concurrent kernels increases.
Suppose that we use two types of pressure producers (for
shared L2 cache and global memory bandwidth respectively),
each of L levels, then we only need to collect training data in
M × L× 2 colocations.

As shown in List 1, we use dedicated kernel as the cache
(bandwidth) producer for the corresponding shared resource.
By changing the ratio of memory access over computation, the
pressure on the shared resources varies. More specifically, if
we increase the variable C in Line 7 and Line 15 of Listing 1,
the two kernels become more computationally intensive and
thus produce smaller pressure on the shared cache and global
memory bandwidth, respectively. We use the producer with
the smallest C as the pressure meter in Section V-A.

For every kernel k in the training set, we first profile
it to collect its solo-run processing time Tn with n SMs
(n = 1, 2, ..., N), if the target spatial multitasking GPU has
N SMs. After that, we co-locate k with a cache (bandwidth)
pressure producer kp, allocate the N SMs to them, record
k’s execution time Tcolo at co-location, and collect event
statistics (Table I) caused by k and kp respectively. If n SMs
are allocated to k in this co-location, we can get a valid
training sample, where the slowdowns (SDscal = Tn/TN ,
SDinter = Tcolo/Tn) are output labels, the number of SMs
allocated to k and the event statistics are input features. By
changing the training kernel k, the number of SMs allocated
to k, and the pressure of cache (bandwidth) pressure producer,
we can collect representative training samples. In current
implementation, we use kernels in 15 GPU benchmarks, 12
pressure levels for the cache (bandwidth) pressure producer
and 5 SM allocations (i.e., 10:50, 20:40, 30:30, 40:20, 50:10;

TABLE II: The GPGPU-Sim setup

Parameter Configuration
SMs 60 SMs, 32 CTA, 64K Regs, 96K SharedMem
L1 Cache 24K Data, 2K Inst, 6K Texture, 8K Const
L2 Cache 2M, 256K/Memory sub-partition, 8-way
Memory 4MCs, 2 partitions/MC, FR-FCFS, 3500MHz

here 10:50 means 10 SMs are allocated to k and 50 SMs are
allocated to the pressure producer).

D. Building Kernel Slowdown Model

Adopting machine learning technique, we train a neural
network using the training samples to fit the correlation
function R. As shown in Fig. 4, the model consists of an input
layer, two hidden layers, and an output layer. For the sake
of computation efficiency, we use leakyRelu as the activation
function. The number of nodes in each hidden layer equals to
the number of input dimensions. To train the model, we use
Equation 8 as the loss function L.

L = Lscal + Linter + αLcolo + λ‖W‖2 ,

where Lx =

∥∥∥∥SD∗x − SDx

SD∗x

∥∥∥∥
2

, SD∗x is ground truth.
(8)

The loss function is comprised of four parts: 1) Lscal, loss
from the scalability slowdown estimation, 2) Linter, loss from
the interference scalability estimation, 3) Lcolo, loss from real
slowdown SD estimation, and 4) the regularization term which
can reduce the risk of overfitting. When training our slowdown
model, we set α = 2 and λ = 0.001.

The slowdown model trained for a GPU cannot be used
to predict slowdown at co-location on another type of GPU,
because they have different features. When a new generation
of GPU is adopted, we can collect samples on it and train it
a new model. As we will show in Section VI-B, benefit from
the design of pressure producers, the overhead of collecting
samples and training slowdown model is moderate.

VI. EVALUATION OF THEMIS ACCURACY

We evaluate the accuracy of Themis on a 60-SM enhanced
GPU. We modified GPGPU-Sim [4] to support spatial multi-
tasking and preemption, and follow the same assumptions and
implementation reported in prior work [1], [2], [25], [28]. The
reason we do NOT evaluate a real-system GPU is that Themis
(as well as ASM) requires per-SM performance counters and
Bubble-Flux relies on SM preemption. Current GPUs (even
Nvidia V100) do not support these features yet. We also add
8 registers for each SM as hardware event counters. Table II
summarizes GPGPU-Sim settings.

Table III lists the benchmarks we used in the experiment,
where 7 workloads are from Parboil [23] (marked with ∗)
and 15 workloads are from Rodinia [5]. Note that, we have
removed duplicated benchmarks in Rodinia and Parboil. We
use 15 out of the 22 benchmarks (68%) to train the slowdown
model and use the rest 7 benchmarks as the test set. To
evaluate Themis, the training set and the test set are

bp
km

ea
n

sr
d2 pf

n
m

rig
st

en
c

tp
ac bp

km
ea

n
sr

d2 pf
n

m
rig

st
en

c
tp

ac bp
km

ea
n

sr
d2 pf

n
m

rig
st

en
c

tp
ac bp

km
ea

n
sr

d2 pf
n

m
rig

st
en

c
tp

ac bp
km

ea
n

sr
d2 pf

n
m

rig
st

en
c

tp
ac bp

km
ea

n
sr

d2 pf
n

m
rig

st
en

c
tp

ac bp
km

ea
n

sr
d2 pf

n
m

rig
st

en
c

tp
ac

Av
g.0.0

0.2
0.4
0.6
0.8
1.0

Pr
ed

ict
io

n
Er

ro
r

bp kmean srd2 pfn mrig stenc tpac

Themis Bubble-Flux ASM ASM_GPM

Fig. 5: The slowdown prediction error of the 49 pairwise co-locations under three SM allocation settings.

TABLE III: Benchmarks in train set and test set1

Training set Test set
Compute mriq (mri q), ctcp∗ (cutcp) pfn (particlefiltern),
intensive wall(heartwall) tpac∗ (tpacf)

bfs, spot (hotspot), bp (backprop),
Balanced srd1 (srdv1), path (pathfinder) srd2 (srdv2)

leuk (leukocyte)
eul (euler3d), nn, mrig∗ (mri gridding),

Memory pff (particlefilterf), kmeans
intensive lava (lavaMD), lbbm∗ stenc∗ (stencil)

hist∗ (histo), gau (gaussian)

selected using stratified sampling method [9] in machine
learning. Specifically, we divide the 22 benchmarks into
three categories: compute-intensive, memory-intensive, and
balanced; we randomly select several benchmarks from each
category to form the test set. In this way, the test set is
representative of benchmarks from all categories.

We compare Themis with Bubble-Flux [33], ASM [24] and
ASM-GPM. ASM-GPM captures both scalability slowdown
and interference slowdown by combining ASM and GPM [31].
GPM predicts scalability slowdown of an application through
clustering-classification method in solo-run scenario. When
implementing Bubble-Flux, we alternate phase-in/phase-out
stages every 300k cycles to balance accuracy and preemption
overhead. For the best accuracy of ASM, we disable cache
sampling since it harms the accuracy. For the best accuracy
of GPM, we cluster the training set into 8 groups and use the
same hardware events in Table I to train the classifier.

A. Accuracy of Themis

We evaluate the accuracy of Themis, Bubble-Flux, ASM,
ASM-GPM in all the 7×7 = 49 pairwise combinations of the
7 test benchmarks under 3 SM allocation settings (10:50, 20:40
and 30:30). Fig. 5 shows their prediction errors. In the figure,
each bar shows the average prediction error for a combination
of 3 different SM allocation settings while the “O” above the
bar indicates the maximum error. For the ease of presentation,
we clip the errors to 0 and 1. Observed from this figure, the
average prediction errors of Themis for all the co-locations
of the three different SM allocation settings is 9.5%. ASM
and ASM-GPM have much higher prediction errors compared
with Themis. The reason ASM is accurate on CPU but suffers
from poor accuracy on GPU is that it ignores scalability
slowdown. In addition, although GPM can predict scalability

slowdown, it relies on hardware events collected in solo-
run mode. Therefore, it cannot precisely predict scalability
slowdown at co-location because hardware events are polluted
by concurrent applications.

Although Bubble-Flux achieves similar prediction accuracy
compared with Themis, our experiment in Section III has
shown that Bubble-Flux incurs severe performance loss. The
average aggregated performance across all the co-locations
drops to 0.95, which is lower than the aggregated performance
in sequential execution scenario. Therefore, Bubble-Flux is
not practical for spatial multitasking GPU. On the contrary,
Themis does not harm the aggregated performance.

B. Overhead Analysis

The runtime overhead of Themis is low. As shown in
Table IV, the kernel slowdown model in Themis has overall
312 parameters, each of 4 bytes. The storage overhead of the
model is 1248 bytes. The model is small enough to be fitted
into L1 cache. Moreover, single prediction only needs ∼ 0.3K
float point multiplications. It is lightweight enough to be used
online. At runtime, slowdown prediction does not interfere
with the applications executionthe and the prediction can be
performed on microcontroller [14] in GPU (within 1 us). The
overhead of collecting event statistics on GPU using hardware
counters is also small [20].

Meanwhile, the overhead of building our kernel slowdown
model is moderate, because we only co-locate training ap-
plications with two pressure producers to collect training
samples. Moreover, Themis only needs to collect training
samples in several SM allocation settings (5 settings are used
in our model) and relies on the neural network to interpolate
the performance under other settings. Section VI-D reports
Themis’s sensitivity to the number of SM allocation settings
used in training the model. Once the training samples are
collected, we can train the slowdown model in 10 minutes.

TABLE IV: The size of each layer in the slowdown model
and the amount of computation per prediction.

In Hidden1 Hidden2 Out All
input size 12 12 12 2 -
weight size - 12× 12 12× 12 12× 2 312
multiplication - 144+12 144+12 24+2 338

Themis
Bubble-Flux ASM ASM-GPM

10 2

10 1

1

Pr
ed

ict
io

n
Er

ro
r

0.1/0.07
0.1/0.07

0.88/0.76

0.36/0.31

(a) 3-app co-locations

Themis
Bubble-Flux ASM ASM-GPM

10 2

10 1

1

Pr
ed

ict
io

n
Er

ro
r

0.1/0.08 0.12/0.07

1.3/1.27

0.37/0.32

(b) 4-app co-locations

Fig. 6: Prediction errors of Themis, Bubble-Flux, ASM, and
ASM-GPM for 3-application and 4-application co-locations.

C. Beyond Pair-wise Co-location

It is possible that more than two applications are co-
located on the same spatial multitasking GPU. As such, we
also evaluate the case of using Themis to predict application
slowdown for all 3-application co-locations (73 = 343) and
150 randomly picked 4-application co-locations (the SMs are
evenly allocated to the co-located applications).

Fig. 6 shows prediction errors of Themis, Bubble-Flux,
ASM and ASM-GPM in these co-locations. Observed from
this figure, the average/median prediction errors of Themis
are 10%/7% and 10%/8% for 3-application co-locations and
4-application co-locations. Bubble-Flux achieves only slightly
worse accuracy than Themis, but it reduces aggregated perfor-
mance to 0.95 in both scenarios.

D. Sensitivity to Hyper Parameters

We also perform sensitivity to the hyper parameters for
collecting training samples in Themis: the number of pressure
levels (nL) and the number of SM allocation settings (nC).
Fig. 7(a) shows their impacts on the accuracy of Themis,
where the prediction error of Themis drops when nC and/or
nL increases. This is because the model is trained with more
valid samples when nC and/or nL increases. However, the
predication accuracy plateaus with 12 levels in the cache
(bandwidth) pressure producers, and 5 SM allocation settings.
Our current model is trained with nC = 5 and nL = 12.

When predicting slowdown, we can also collect event statis-
tics periodically in the middle of kernel execution. Fig. 7(b)
shows the sensitivity of Themis to the predicting period
(denoted by T). Observed from the figure, T does not affect
Themis’s accuracy significantly, because the characteristics of
a kernel is relative stable [32]. According to this observation,
we can further divide a stable kernel overlap phase into
multiple periods. In this case, our SM allocation engine (to
be introduced in Section VII) can identify unfair sharing or
QoS violation earlier and re-allocate SMs accordingly.

To conclude, Themis is more accurate and more efficient
than state-of-the-art techniques for predicting application
slowdown at co-location on spatial multitasking GPUs.

VII. REINING IN APPLICATION SLOWDOWN

In this section, we demonstrate the proactive slowdown
management based on our derived prediction model. Specif-
ically, we design an SM allocation engine based on Themis,

1 2 3 4 5 6 7 8
nC

10 1

2 × 10 1

3 × 10 1

Pr
ed

ict
io

n
Er

ro
r

nL = 8
nL = 12
nL = 16

(a) nC and nL

10 20 50 100 150 200
T (kilo cycles)

0.12

0.14

Pr
ed

ict
io

n
Er

ro
r

nC = 2, nL = 12

nC = 5, nL = 8

nC = 5, nL = 12

(b) Event collecting period

Fig. 7: Themis’s sensitivity to nC, nL, and the length of
predicting period (T) respectively.

0 mn N
SMs

0

PGscal_n

1

Pr
og

re
ss

2

real
known
pred

(a) Two-segment regression

0 m n N
SMs

0

PGscal_m
PGscal_n

1

2

real
pred
known

(b) Multi-segment regression

Fig. 8: Approximating scalability progress curve of a kernel
using piecewise linear regression [19].

which can rein in application slowdown at co-location for
the purposes of enforcing fair sharing or QoS target. The
engine periodically uses Themis to predict each application’s
slowdown. It compares the predicted slowdown with user de-
termined threshold (e.g., fair sharing or QoS) and dynamically
adjusts the SM allocation. The key challenge is how to predict
the slowdown of an application with an un-tried SM allocation
because event statistics under an un-tried SM allocation
are not available. As such, we augment Themis with the
interpolation ability to handle the un-tried SM allocation case.

A. Proactive Slowdown Prediction

We augment Themis with a Proactive Slowdown Predictor
(PSP) to address the above challenge. PSP is based on our
finding that the slowdown of a kernel is compose of scalability
slowdown and interference slowdown in Section III-C. The
scalability slowdown is a kernel’s inherent characteristics, for
which we use piecewise linear regression [19] for proactive
prediction. Meanwhile, a kernel’s interference slowdown is
also affected by the co-located applications, for which we use
the current interference slowdown to approximate it under a
similar SM allocation.

Suppose a kernel k is currently allocated n SMs. Let
SDinter n (SDscal n) denote its current interference (scala-
bility) slowdown predicted with Themis. Equation 9 calculates
the slowdown of k if it is allocated m SMs (denoted by SDm).
In this equation, SDscal m (SDinter n) is k’s scalability
(interference) slowdown with m SMs. Equation 9 is valid
when |m − n| ≤ ∆: when ∆ is small (e.g., 3.), SDinter m

and SDinter n are close because of similar the pressure on

the shared resources.

SDm = SDscal m × SDinter m ≈ SDscal m × SDinter n (9)

In Equation 9, SDinter n can be predicted with Themis
directly. PSP adopts piecewise linear regression to accurately
predict SDscal m, and therefore SDm. The red curve in
Fig. 8 shows the scalability of kernel k in term of scalability
progress, PGscal (reciprocal of scalability slowdown). N is
the overall number of SMs in the GPU, and PGscal n is
scalability progress of k when it is allocated n SMs (obtained
with Themis). Because 0 ≤ PGscal ≤ 1, we approximate
the curve using two-segment piecewise linear regression as
shown in Fig. 8(a). The two segments are from point [0,0] to
[n, PGscal n], and from [n, PGscal n] to [N ,1] respectively.
Based on this approximation, the scalability progress of k
with m SMs, denoted by PGscal m, can be calculated in
Equation 10. Then, SDscal m = 1/PGscal m.

PGscal m =

PGscal n×(m−n)

n + PGscal n, if m < n
(1−PGscal n)×(m−n)

N−n + PGscal n, if m > n
(10)

At runtime, we record scalability progress information and
further improve the prediction accuracy. This is achieved by
extending the segments in the piecewise linear regression.
For instance, after we allocate m SMs to kernel k, its real
PGscal m is known. In this case, as shown in Fig. 8(b), we can
further break the segment from point [0, 0] to [n, PGscal n]
into two segments: one from [0, 0] to [m, PGscal m], and
one from [m, PGscal m] to [n, PGscal n]. The more seg-
ments we use, the more accurate piecewise linear regression
approximates scalability progress curve.

A naive method is to approximate the actual progress
(reciprocal of the slowdown at colocation) curve instead of
the scalability progress. However, there is no such a convex
progress curve to be approximated, because the actual progress
of a kernel depends on both the number of its SMs and the
co-located kernel. For instance, k may have smaller progress
when it is allocated more SMs but is co-located with L2 cache
(memory) intensive kernels.

B. SM Allocation Engine

Based on Themis and PSP, our SM allocation engine reins in
application slowdown to fulfill user requirement. Algorithm 1
shows the common algorithm used in the engine.

Suppose m applications p1, ..., pm are co-located on a
spatial multitasking GPU. Let π=<n1, n2,...,nm> denote the
current SM allocation, where ni (i = 1, 2, ...m) is the number
of SMs allocated to pi. Algorithm 1 tries to find a better
allocation π′=<n′1, n′2,...,n′m> that increases allocation score
(line 14 in Algorithm 1). The score is calculated according to
user-defined policy (e.g. fair sharing or QoS guarantee).

In more details, SM allocation engine goes through all pairs
of pi and pj (1 ≤ i, j ≤ m), and examines whether reallocat-
ing one SM from pi to pj would increase the score. If so, the
engine updates the score and the identified SM allocation π′.
Note that the above search may run multiple rounds (line 5).
The algorithm stops when the criterion is satisfied, the score

fails to increase, or the distance between π′ and π is larger than
maxDist, which equals to ∆ in PSP. The distance between π
and π′ is defined to be max1≤∀i≤m{|ni−n′i|}. If the distance
is too large, the proactive slowdown prediction of PSP is not
accurate as discussed in Section VII-A, thus may result in
inappropriate SM reallocation. We investigate the sensitivity
to maxDist in Section VII-C.

Algo. 1 Algorithm of identifying a better SM allocation
1: Input π : {original allocation}
2: Input sd: {original slowdown list}
3: m← # active kernels ; π′ ← π {current allocation}
4: sd′ ← sd {current slowdown list}
5: while ‖π′, π‖ < maxDist do
6: if Criterion(π′, sd′) then
7: return π′

8: no improvement← True
9: for i← 1, . . . ,m do

10: for j ← 1, . . . ,m do
11: π′′ ← π′ {temporal allocation list}
12: π′′[i]← π′′[i]− 1; π′′[j]← π′′[j] + 1
13: sd′′ ← PSP (π′′)
14: if Score(π′′, sd′′) > Score(π′, sd′) then
15: π′ ← π′′; sd′ ← sd′′

16: no improvement← False
17: if no improvement then
18: return π′

19: return π′

C. Case Study 1: Enforcing Fair Sharing

In the first case study, we enforce weighted fair sharing by
implementing a fairness-aware SM allocation policy, Themis-
Fair, in SM allocation engine. A GPU is considered to be
fairly shared by multiple applications, if their slowdowns are
proportional to the reciprocals of their weights. Assume m
applications p1, ..., pm are co-located, and their weights are
w1, ..., wm (

∑m
i=1 wi = 1). Let s1, ..., sm represent their

slowdowns at co-location. Equation 11 calculates unfairness
of the sharing. If unfairness=0, the GPU is fairly shared.

unfairness =

max
1≤∀i≤m

{si × wi} − min
1≤∀i≤m

{si × wi}

max
1≤∀i≤m

{si × wi}
(11)

Algorithm 2 shows the criterion and score functions defined
in Themis-Fair. We compare Themis-Fair with Bubble-PSP,
ASM-PSP, ASM-GPM-PSP that combines Bubble-Flux, ASM,
ASM-GPM with our SM allocation engine. We also compare
Themis-Fair with the static weighted even allocation policy
HP [1]. By default, we use maxDist=5 and thres=0.1.

Algo. 2 Criterion and Score Functions in Themis-Fair

1: Function Criterion(π, sd):
2: return unfairness(sd) < thres
3: Function Score(π, sd):
4: return −unfairness(sd)

Unfairness. For all the 49 pair-wise co-locations in two
weight configurations (<0.5, 0.5>, <0.2, 0.8>), Fig. 9 shows
the resulted unfairness when we allocate SMs using HP,
Themis-Fair, Bubble-PSP, ASM-PSP and ASM-GPM-PSP.
Observed from the figure, Themis-Fair achieves the small-
est unfairness in all the configurations. For configuration

HP
Themis-Fair

Bubble-PSP
ASM-PSP

ASM-GPM-PSP
10 2

10 1

1
Un

fa
irn

es
s

0.28/0.34

0.15/0.11
0.17/0.16

0.27/0.30.26/0.3

(a) <0.5,0.5>

HP
Themis-Fair

Bubble-PSP
ASM-PSP

ASM-GPM-PSP
10 2

10 1

1

Un
fa

irn
es

s

0.29/0.21
0.17/0.14

0.64/0.63
0.39/0.41

0.3/0.25

(b) <0.2,0.8>

Fig. 9: Distribution of unfairness in all the 49 pair-wise co-
locations with different weight configurations.

HP
Themis-Fair

Bubble-PSP
ASM-PSP

ASM-GPM-PSP
0.8

1

1.5

Ag
gr

eg
at

ed
 p

er
f.

1.22/1.19

1.26/1.19
0.95/0.94

1.22/1.14

1.22/1.15

(a) <0.5,0.5>

HP
Themis-Fair

Bubble-PSP
ASM-PSP

ASM-GPM-PSP
0.8

1

1.5

Ag
gr

eg
at

ed
 p

er
f.

1.18/1.12

1.12/1.1
0.94/0.94

1.13/1.08

1.14/1.1

(b) <0.2,0.8>

Fig. 10: Aggregated performance of all the 49 pair-wise co-
locations with different weight configurations.

<0.5, 05>, the average/median unfairness with Themis-Fair is
0.15/0.11 (very close to the thres 0.1), and it is much smaller
than the unfairness with HP, Bubble-PSP, ASM-PSP and
ASM-GPM-PSP. Themis-Fair reduces the average unfairness
by more than 47% compared with HP. For configuration
<0.2, 0.8>, we observe that the unfairness with Bubble-PSP
increases significantly to 0.64. This is because the unfairness
in solo-run profiling stage of Bubble-PSP increases when the
difference between the weights is large.

Aggregated Performance. Fig. 10 shows the aggregated
application performance when we use HP, Themis-Fair,
Bubble-PSP, ASM-PSP and ASL-GPM-PSP to allocate SMs.
Observed from the figure, only Bubble-PSP reduces the ag-
gregated performance compared with no co-location scenario.
The inefficiency of Bubble-PSP results from the preemption-
based profiling as analyzed in Section VI.

Sensitivity. Fig. 11 shows the impact of maxDist and thres
in Themis-Fair. Observed from the figure, maxDist=5 results
in the smallest unfairness in all the cases. If maxDist is
smaller (e.g., =1), Themis-Fair may need many adjust rounds
before achieving fair sharing. On the contrary, if maxDist is
larger (e.g., =20), the proactive slowdown prediction is not
accurate, resulting inappropriate SM allocation. Meanwhile,
when maxDist is small (< 5), thres has little impact on the
aggregated performance. If maxDist is large, a large thres may
improve the aggregated performance. This sensitivity study
suggests us to set maxDist=5 and thres=0.1.

D. Case Study 2: Guaranteeing QoS

We also study how to use Themis to guarantee QoS by
implementing a QoS-aware SM allocation policy, Themis-

1 3 5 10 20 60
maxDist

0.18

0.20

0.22

Un
fa

irn
es

s thres : 0.05
thres : 0.1

thres : 0.15
thres : 0.2

(a) Unfairness

1 3 5 10 20 60
maxDist

1.06

1.08

1.10

1.12

1.14

Ag
gr

eg
at

ed
 p

er
f.

thres : 0.05
thres : 0.1

thres : 0.15
thres : 0.2

(b) Aggregated performance

Fig. 11: Impact of maxDist and thres in Themis-Fair on
unfairness and aggregated performance.

0.9 0.85 0.8 0.75 0.7 0.65 0.6
QoS target (Progress)

1x
1.2x
1.4x

LS
's

No
rm

al
ize

d
Pr

og
re

ss Satisfied

0.0
0.2
0.4
0.6

Ba
tc

h'
s P

ro
gr

es
s

Fig. 12: QoS of LS applications and aggregated progress of
batch applications with Themis-QoS.

QoS, whose goal is to ensure that the progress of latency-
sensitive (LS) application is larger than a given QoS target
PGtarget while maximizing the progress of batch applications
with no QoS requirement at co-location [26], [33]. Note that
we assume the solo-run time of a QoS kernel is known such
that we can convert its QoS target to the progress target, similar
in [29]. For example, assume that the latency QoS target is
200 ms and the solo-run execution is 100 ms, then the progress
target is 0.5. Similar to the fair sharing case, Themis-QoS
monitors its slowdown online and adjusts the SM allocation
accordingly if the QoS target is violated.

We evaluate Themis-QoS with all the 49 pair-wise co-
locations under seven QoS targets ranging from 0.6 to 0.9.
Fig. 12 shows the progress of LS applications normalized
to QoS targets (upper part), and the aggregated progress of
batch applications (lower part) at co-location. If the normalized
progress of an LS application is larger than 1, its QoS is satis-
fied. Observed from this figure, the QoS of LS applications in
almost all the co-locations is satisfied with Themis-QoS. In the
worst case, LS applications in 8.2% of the co-locations suffer
from slightly QoS violation (violated less than 5%). Mean-
while, Themis-QoS also improves aggregated performance of
batch applications when the QoS target decreases.

In summary, SM allocation engine based on Themis
and proactive slowdown prediction can precisely rein in
application slowdown to fulfill user requirements.

VIII. CONCLUSIONS

We present Themis, a precise and efficient application-
level slowdown predictor for application co-location on spatial
multitasking GPUs. Based on Themis, we further propose PSP
to predict the slowdown of an application with a new SM
allocation proactively, and implement an SM allocation engine

to rein in application slowdown through SM reallocation. Our
evaluation shows that Themis can predict application slow-
down with the error smaller than 9.5%. Meanwhile, the SM
allocation engine can precisely rein in application slowdown.

IX. ACKNOWLEDGEMENT

This work is partially sponsored by the National Ba-
sic Research 973 Program of China (No. 2015CB352403),
the National Natural Science Foundation of China (NSFC)
(61602301, 61632017, 61702328, 61702329, 61872240).

REFERENCES

[1] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case
for gpgpu spatial multitasking,” in International Symposium on High
Performance Computer Architecture. IEEE, 2012, pp. 1–12.

[2] P. Aguilera, K. Morrow, and N. S. Kim, “Qos-aware dynamic resource
allocation for spatial-multitasking gpus,” in Asia and South Pacific
Design Automation Conference. IEEE, 2014, pp. 726–731.

[3] Amazon, “Amazon ec2 elastic gpus,” 2017,
https://aws.amazon.com/ec2/Elastic-GPUs/.

[4] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in IEEE
International Symposium on Performance Analysis of Systems and
Software. IEEE, 2009, pp. 163–174.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in International Symposium on Workload Characterization. IEEE, 2009,
pp. 44–54.

[6] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise qos prediction on non-preemptive accelerators to
improve utilization in warehouse-scale computers,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2017, pp. 17–32.

[7] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” in International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2016, pp.
681–696.

[8] Q. Chen, L. Zheng, M. Guo, and Z. Huang, “Eewa: Energy-efficient
workload-aware task scheduling in multi-core architectures,” in Inter-
national Parallel and Distributed Processing Symposium Workshops.
IEEE, 2014, pp. 642–651.

[9] W. G. Cochran, Sampling techniques. John Wiley & Sons, 2007.
[10] G. W. Corder and D. I. Foreman, Nonparametric statistics: A step-by-

step approach. John Wiley & Sons’14.
[11] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the

ACM, vol. 56, no. 2, pp. 74–80, 2013.
[12] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via source

throttling: A configurable and high-performance fairness substrate for
multi-core memory systems,” in International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 2010, pp. 335–346.

[13] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE micro, vol. 28, no. 3, 2008.

[14] Y. Fujii, T. Azumi, N. Nishio, and S. Kato, “Exploring microcontrollers
in gpus,” in Asia-Pacific Workshop on Systems. ACM, 2013, p. 2.

[15] C. Iancu, S. Hofmeyr, F. Blagojević, and Y. Zheng, “Oversubscription
on multicore processors,” in International Symposium on Parallel &
Distributed Processing. IEEE, 2010, pp. 1–11.

[16] M. Jahre and L. Eeckhout, “Gdp: Using dataflow properties to accurately
estimate interference-free performance at runtime,” in International
Symposium on High Performance Computer Architecture. IEEE, 2018,
pp. 296–309.

[17] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelo-
giannakis, and J. Kim, “A detailed and flexible cycle-accurate network-
on-chip simulator,” in International Symposium on Performance Analysis
of Systems and Software. IEEE, 2013, pp. 86–96.

[18] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in International Symposium on Microarchitecture. ACM,
2011, pp. 248–259.

[19] V. E. McZgee and W. T. Carleton, “Piecewise regression,” Journal of
the American Statistical Association, vol. 65, no. 331, pp. 1109–1124,
1970.

[20] Nvidia, “Nvidia profiler user’s guide,” 2018,
https://docs.nvidia.com/cuda/profiler-users-guide/.

[21] J. J. K. Park, Y. Park, and S. Mahlke, “Dynamic resource manage-
ment for efficient utilization of multitasking gpus,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2017, pp. 527–540.

[22] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-
power, highly-accurate deep neural network accelerators,” in Interna-
tional Symposium on Computer Architecture. IEEE, 2016, pp. 267–278.

[23] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.

[24] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The
application slowdown model: Quantifying and controlling the impact
of inter-application interference at shared caches and main memory,” in
International Symposium on Microarchitecture. IEEE, 2015, pp. 62–75.

[25] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on gpus,” in International
Symposium on Computer Architecture. IEEE, 2014, pp. 193–204.

[26] Y. Ukidave, X. Li, and D. Kaeli, “Mystic: Predictive scheduling for gpu
based cloud servers using machine learning,” in International Parallel
and Distributed Processing Symposium. IEEE, 2016, pp. 353–362.

[27] H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog, “Efficient and
fair multi-programming in gpus via effective bandwidth management,” in
International Symposium on High Performance Computer Architecture,
2018, pp. 247–258.

[28] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel gpu: Multi-tasking throughput processors via
fine-grained sharing,” in International Symposium on High Performance
Computer Architecture. IEEE, 2016, pp. 358–369.

[29] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Quality of service support for fine-grained sharing on gpus,” in In-
ternational Symposium on Computer Architecture. ACM, 2017, pp.
269–281.

[30] Z. Wang, L. Zheng, Q. Chen, and M. Guo, “Cap: co-scheduling based
on asymptotic profiling in cpu+ gpu hybrid systems,” in International
Workshop on Programming Models and Applications for Multicores and
Manycores. ACM, 2013, pp. 107–114.

[31] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“Gpgpu performance and power estimation using machine learning,” in
International Symposium on High Performance Computer Architecture.
IEEE, 2015, pp. 564–576.

[32] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-
slicer: efficient intra-sm slicing through dynamic resource partitioning
for gpu multiprogramming,” in International Symposium on Computer
Architecture. IEEE, 2016, pp. 230–242.

[33] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers,”
in ACM SIGARCH Computer Architecture News, vol. 41, no. 3. ACM,
2013, pp. 607–618.

[34] Y. Zhang and J. D. Owens, “A quantitative performance analysis model
for gpu architectures,” in International Symposium on High Performance
Computer Architecture. IEEE, 2011, pp. 382–393.

[35] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise
qos prediction on real-system smt processors to improve utilization in
warehouse scale computers,” in International Symposium on Microar-
chitecture. IEEE, 2014, pp. 406–418.

[36] X. Zhao, Z. Wang, and L. Eeckhout, “Classification-driven search
for effective sm partitioning in multitasking gpus,” in International
Conference on Supercomputing. ACM, 2018, pp. 65–75.

[37] J. Zhong and B. He, “Medusa: Simplified graph processing on gpus,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1543–1552, 2014.

[38] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2010, pp. 129–142.

