
Sturgeon: Preference-aware Co-location for Improving
Utilization of Power Constrained Computers

∗Pu Pang, ∗†Quan Chen, ‡Deze Zeng,
∗Chao Li, ∗Jingwen Leng, ∗Wenli Zheng, ∗†Minyi Guo

†Shanghai Institute for Advanced Communication and Data Science, Shanghai Jiao Tong University, China
∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

‡School of Computer Science, China University of Geosciences, Wuhan, China
avengerispp@sjtu.edu.cn, {chen-quan, lichao, leng-jw, zheng-wl, guo-my}@cs.sjtu.edu.cn, deze@cug.edu.cn

Abstract—Large-scale datacenters often host latency-sensitive
services that have stringent Quality-of-Service requirement and
experience diurnal load pattern. Co-locating best-effort appli-
cations that have no QoS requirement with latency-sensitive
services has been widely used to improve the resource utilization
with careful shared resource management. However, existing
co-location techniques tend to result in the power overload
problem on power constrained computers due to the ignorance
of the power consumption. To this end, we propose Sturgeon,
a runtime system proactively manages resources between co-
located applications in a power constrained environment, to
ensure the QoS of latency-sensitive services while maximizing
the resource utilization. Our investigation shows that, at a given
load, there are multiple feasible resource configurations to meet
both QoS requirement and power budget, while one of them
yields the maximum throughput of best-effort applications. To
find such a configuration, we establish models to accurately
predict the performance and power consumption of the co-
located applications. Sturgeon monitors the QoS periodically in
order to eliminate the potential QoS violation caused by the
unpredictable interference. The experimental results show that
Sturgeon improves the throughput of best-effort applications
by 24.96% compared to the state-of-the-art technique, while
guaranteeing the 95%-ile latency within the QoS target.

Index Terms—QoS, Improved Utilization, Power Constrained
Computers

I. INTRODUCTION

Contemporary datacenters consume tens of megawatts of
power and cost $12 to $15 per watt to build them [6]. The
capacity of power infrastructure and the cooling system of a
datacenter constraints the available power of the datacenter.
Due to the huge energy consumption and the resulting unsus-
tainable problem, datacenters adopt commodity servers with
power constraint, in order to control costs. Latency-Sensitive
(LS) services (e.g., web search [2], and memcached [3])
are critical business workloads in datacenters. It is crucial
to consistently maintain the low tail latency of LS services.
While LS services often experience diurnal load pattern [5],
the resource utilization and power utilization of the datacenter
are low. It is cost-effective to co-locate LS services with Best-
Effort (BE) applications that have no QoS requirement.

A large amount of prior work has been proposed to im-
prove resource utilization while guaranteeing the QoS of
LS services [9], [11], [23], [31]. However, these researches
mainly focus on managing the directly controllable shared

Quan Chen is the corresponding author.

Config. A

CPU Frequency

CPU CapacityCPU Capacity

Cache CapacityCache Capacity

Power BudgetPower Budget

CPU of BECPU of BECPU of LSCPU of LS

!

Power

Overload

CPU Frequency

CPU Capacity

Cache Capacity

Power Budget

CPU of BECPU of LS

!

Power

Overload

CPU Frequency

CPU CapacityCPU Capacity

Cache CapacityCache Capacity

Power BudgetPower Budget

CPU of BECPU of BECPU of LSCPU of LS

CPU Frequency

CPU Capacity

Cache Capacity

Power Budget

CPU of BECPU of LS

LS BELS BE

CPU Frequency

CPU CapacityCPU Capacity

Cache CapacityCache Capacity

Power BudgetPower Budget

CPU of BECPU of BECPU of LSCPU of LS

Config. B

Decrease

Frequencies

Reallocate

Cores/Caches

Reset

Frequencies

(a) (b)

Multiple Feasible Resource Config.

Fig. 1. (a) The co-location leads to the power overload (b) There are multiple
feasible resource configurations (Config. A and Config. B). They can meet both
the QoS requirement and power budget.

resources (core, cache, memory, disk and so on) but failing to
consider the power constraint. Generally, when an LS service
is co-located with BE applications, prior researches harvest
all idle resources and allocate them to the BE applications
after reserving enough resources for the LS service. Relying
on some resource isolation techniques to eliminate shared
resource contention, they work well in improving resource
utilization, but can lead to the power overload.

To better explain this problem, Fig. 1(a) shows an example
where an LS service is co-located with a BE application at
low load. Observed from Fig. 1(a), when the power budget
is enough to handle the peak load of the LS service, the
co-location results in the power overload problem. This is
mainly because BE applications may consume higher power
than LS services with the same amount of resources. A
straightforward solution to handle this problem is decreasing
the frequencies of the cores allocated to BE applications
(Config.A in Fig. 1(b)). This solution is also adopted in some
prior work [23]. However, this solution may result in the low
throughput of the BE application due to the lower frequency.

Our investigation shows that there are multiple feasible
resource configurations with different combinations of shared
resources (e.g., Config.A and Config.B) for a valid co-
location. They can meet both QoS requirement and power bud-
get but resulting in different throughput of the co-located BE

applications. It is nontrivial to find the configuration yielding
the maximum throughput, as it depends on the characteristic
and resource preference of the BE application. Specifically, in
Config.A, the BE application gets more cores and cache ways
but lower core frequency, while in Config.B it gets fewer
cores and cache ways but higher core frequency. If the BE
application scales well in multi-threading, Config.A yields
higher throughput; otherwise, Config.B outperforms.

Therefore, we are motivated to design a resource manage-
ment system that ensures the QoS of LS services, maximizes
the throughput of BE applications, and limits the total power
consumption within a given budget. Designing such a system
faces three critical challenges: 1) there is no prior knowledge
of the latency and power consumption of LS services and
BE applications under different resource configurations. 2)
there are multiple feasible configurations, but they result in
different throughput of BE applications. 3) the contention
on the unmanaged shared resources between the co-located
applications may result in QoS violation.

To this end, we propose Sturgeon, a runtime system
consisting of an online performance/power predictor and
a preference-aware resource balancer. Sturgeon runs on
each node of the datacenter and manages shared resources
proactively. When the load of the LS service changes, the
predictor predicts the performance and power consumption
under different resource configurations using offline-trained
models. For LS services, the predictor identifies whether a
configuration can meet the QoS requirement and predicts
the consequent power consumption. For BE applications, the
predictor estimates the throughput and power consumption of
a configuration. Based on the predictions, the configuration
that ensures the QoS and maximizes the throughput under the
given power budget can be found. Due to the unpredictable
interference (e.g., contention on unmanaged resources, inter-
rupt handling of OS), an LS service may still suffer from QoS
violation at co-location. The resource balancer monitors the
QoS of the LS service, harvests some resources from the BE
application and reallocates them to the LS service based on
the resource preference of the BE application.

Specifically, this paper makes three main contributions:
• Comprehensive analysis of application co-location un-

der power constraint. The analysis shows that multiple
feasible resource allocations exist for application co-
location. The finding reveals the possibility to identify
the allocation that maximizes the throughput of BE
applications under QoS and power constraints.

• The design of low-overhead performance and power
consumption models. The models enable precise predic-
tion of the performance and power consumption under
different loads and resource configurations.

• The design of a compensation mechanism to eliminate
the QoS violation caused by uncontrollable interfer-
ence. The mechanism guarantees the QoS of LS services
at co-location.

Our real-system evaluation shows that Sturgeon improves
the throughput of BE applications by 24.96% compared to
PARTIES [11], the state-of-the-art technique, while guarantee-
ing 95%-ile latency of LS services within their QoS targets.

II. BACKGROUND AND RELATED WORK

A. Hosting LS Services on Dedicated Datacenters

The cost of building and operating a large datacenter is
expensive, on both capital and operational expenditure (e.g.,
power provisioning and energy costs) [6]. Accurately assessing
the actual resource demands of services is significant for
datacenter operators to right-size the infrastructure to lower the
expenditure. While, the QoS of LS services is highly related
to the revenue of many large online service providers such as
Facebook and Microsoft, who usually deploy LS services on
their private dedicated clusters [19], [27]. In this way, they
can not only effectively guarantee the QoS, but also accu-
rately assess the cost-effectiveness and resource requirements.
Accordingly, it is also possible to plan the long-term capacity
and budget accordingly. Meanwhile, the extremely high energy
consumption incurred by large datacenters has increasingly
raised concerns of datacenter operators on energy efficiency.
For example, many datacenter operators have limitations on
power capacity of IT equipment. In addition to lowering oper-
ation costs, it also eliminates the risk that unexpected changes
in workload or sudden jitter in power consumption that trip
circuit breaker, leading to unplanned downtime. Generally, the
power capacity is set according to the server power usage at its
peak, as opposed to the average usage [8]. As a result, much
recent effort has been devoted to improving the resource utility
and the energy efficiency of datacenters. We next elaborate
some representive state-of-the-art work.

B. Improving the Resource Utilization in Datacenters

Most LS services are provided directly to the end-users
characterized by diurnal pattern, as the load reaches the maxi-
mum near midday and the lowest during night. The resources
become idle at the low load, leading to low resource utilization.
Remarkably, the idle time constitutes a non-negligible portion
in many clusters. For instance, Google web search servers have
an average idleness of 30% over a 24 hour period [23]. The
mainstream approach to improve the utilization is to co-locate
other BE applications without QoS requirement at idle time.
Co-location inevitably imposes performance impact to the LS
services. Previous works mainly focus on how to lower such
performance impact and generally fall into two categories:
profile-based and feedback-based.

Profile-based approaches first identify whether a co-located
pair is “safe” (i.e., without QoS violation) or not. Bubble se-
ries [24], [31] only allow the “safe” pair to co-locate and count
on OS to manage shared resources. Profile-based approaches
can always strictly guarantee the QoS of the LS service but
wastes potential co-location opportunity at a fluctuating load.

Feedback-based approaches explore the online information
to dynamically adjust the resource allocation between the co-
located applications. Heracles [23] decreases the frequencies
of cores allocated to the BE application, so as to ensure suffi-
cient power slack to the LS service. PARTIES [11] is unaware
of the power constraint and the resource configuration gener-
ated by its controller may lead to power overload. Dirigent [33]
develops an LS service execution time prediction technique
and adjusts resource allocation based on the prediction.

TABLE I
COMPARING STURGEON WITH PRIOR RELATED WORK.

QoS-aware Online Res. Co-locate Power Consider
Systems Management LS+BE Constraint Res. Preference
Bubble X
PARTIES X X LS
Dirigent X X LS
PowerChief X X
Rubik X X
Sturgeon X X X LS+BE

C. Improving the Power Efficiency in Datacenters
When only LS services run on datacenters with power-

limitations, several recent studies have discussed on the power
efficiency issue. For example, EEWA [10] improves the power
efficiency by using dynamic voltage and frequency scaling
(DVFS) to properly tune the frequencies of the cores according
to the online workload information. PowerChief [32] identifies
the bottleneck of multi-stage LS service and adaptively ap-
plies boosting techniques to mitigate the latency under power
constraint. When LS services and BE applications co-exist,
co-location is inevitably considered for improving resource
utilization. Rubik [20] uses DVFS to quickly adapt to the vari-
ability of LS services for power consumption minimization.
BE applications run on a fixed frequency with the maximum
throughput per watt only when LS services are idle.

Summarizing existing studies discussed above, we notice
that they more or less exhibit certain limitations when perform-
ing co-location in power constrained datacenters. For example,
Bubble, Heracles and Rubik may fail to harvest the opportunity
of maximizing the throughput of BE applications. EEWA and
PowerChief are inapplicable when co-location is considered.
This motivates us to propose Sturgeon that allows more fine-
grained co-location for higher resource utilization and energy
efficiency without violating both QoS requirement and power
limitation. Table I compares Sturgeon with previous works.

III. MOTIVATION

In this section, we investigate the challenges of performing
application co-location on power constraint datacenters.

A. Experimental Setup
In the investigation, we use three widely-used services:

Memcached, Xapian, and Img-dnn selected from Cloud-
Suite [14] and Tailbench [21] as LS services and six applica-
tions: blackshcoles (bs), facesim (fa), ferret (fe), raytrace (rt),
swaptions (sp) and fluidanimate (fd) from PARSEC [7] as the
BE applications. The BE benchmarks show different characters
thus cover a large spectrum of real-system applications. The
details of the LS services are listed below. Table II lists the
hardware specification of the experimental platform.

1) Memcached [3], a high-performance in-memory key-
value caching system, has became the key component
in cloud services to increase the concurrency. We take it
from CloudSuite [14] and follows its setting. We use the
scaled Twitter dataset [14] as the input of memcached.

2) Xapian [4], an open-source web search engine, which
is widely used in popular websites and software frame-
works. We take it from Tailbench [21] and follow Tail-
bench’s setup to configure it as a leaf node. In the

TABLE II
HARDWARE SPECIFICATION

CPU Intel Xeon E5-2630 v4
OS Ubuntun 16.04 x86 64 (kernel 4.14)

Cores/Sockets 2 sockets, 10 cores per socket
Core frequency 1.2GHz - 2.2GHz
Hyperthreading Enabled, 2 threads per core

L3 (Last-level) Cache 25MB, 20 ways

bs
fa

fe
rt

sp

fd

bs
fa

fe
rt

sp

fd

bs
fa

fe
rt

sp

fd

0.8

0.9

1.0

1.1

1.2

N
or

m
al

iz
ed

 P
ow

er

memcached xapian img-dnn

Power Consumption
Power Budget

Fig. 2. The power consumption of the computer at co-location normalized
to the power budget.

experiments, the search index is built from a English
Wikipedia from July 2013.

3) Img-dnn [1], a handwriting recognition application based
on OpenCV, which is widely used for image-based
search, automatic image tagging and various online ser-
vices. We take it from Tailbench [21] as well. The input
data is randomly chosen from MNIST database.

Same to prior work [14], [21], we use 10ms as the QoS
target of memcached and img-dnn, and 15ms as the QoS
target of xapian. Note that setting different QoS targets does
not affect the investigation, because Sturgeon works for either
longer or shorter QoS targets.

B. Power Overload Problem at Co-location

In this subsection, we seek to answer the question that
whether the co-location results in the power overload problem.
Specifically, we co-locate LS services and BE applications on
the same machine and report the power consumption.

For all the 3 × 6 = 18 co-location pairs, Fig. 2 shows the
power consumption normalized to the power budget, while
the resource allocation ensures the QoS of LS services. We
set the load of each LS service to be 20% of the peak load in
this experiment, while experimenting with other loads conveys
similar results. Besides, because datacenters achieve high cost-
effectiveness by right-sizing the power budget based on the
needs of the primary applications (i.e., the LS services) [15],
[30], the power budget for a server is set to be the power
consumption when the server runs the LS service at the peak
load. In Fig. 2, the x-axis shows the co-location pairs (e.g.,
bs under memecached represents the LS service memcached
is co-located with the BE application blackscholes). Observed
from this figure, the actual power consumption of all the co-
location pairs exceeds the power budget by 2.04% to 12.57%.

According to our measurement, at 20% of the peak load, 4
cores at 1.6GHz and 6 LLC ways are enough for memcached,
while 4 cores at 1.8GHz and 5 LLC ways are enough for

bs
fa

fe
rt

sw
fd

bs
fa

fe
rt

sw
fd

bs
fa

fe
rt

sw
fd

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 T

hr
ou

gh
pu

t

memcached
at 20% load

memcached
at 35% load

memcached
at 50% load

<4C, 1.6F, 6L ; 16C, 1.8F, 14L>; <8C, 2.0F, 10L; 12C, 1.4F, 10L>; <10C, 1.8F, 10L ; 10C, 1.8F, 10L>
<8C, 1.2F, 7L ; 12C, 2.2F, 13L>; <12C, 1.3F, 12L; 8C, 2.2F, 8L >; <14C, 1.2F, 13L ; 6C, 2.2F, 7L>

Fig. 3. The throughput of BE applications co-located with memcached under
different resource configurations at different loads. <8C, 1.2F, 7L; 12C, 2.2F,
13L> indicates a resource configuration that allocates 8 cores at 1.2GHz and
7 LLC ways to the LS service (memcached) while allocating 12 cores at
2.2GHz and 13 LLC ways to the BE application.

xapian and img-dnn. Without considering power consumption,
the rest cores and LLC space are allocated to the BE applica-
tion and the cores allocated to the BE application run at the
highest frequency 2.2GHz. The high power consumption of
the cores allocated to the BE application results in the power
overload problem at co-location.

C. Multiple Feasible Resource Configurations

To keep the total power consumption within the power bud-
get, the frequencies of the cores allocated to BE applications
are often scaled down. However, this strategy may result in
the low throughput of the co-located BE applications.

There are multiple configurations that meet both QoS re-
quirement and power constraint by adjusting the allocation
of cores and their frequencies (we refer these configurations
as “feasible”), but they bring different throughput of the
BE applications. Take memcached as a representative LS
service, Fig. 3 shows the throughput of the BE application
(normalized to its solo-run throughput) at co-location with two
feasible configurations. More feasible configurations for each
co-location exist but are not shown in Fig. 3 due to the limited
space. Since cache allocation has little influence on the overall
power consumption, we allocate “just-enough” cache ways to
the LS service to maintain QoS in each configuration. Other
LS services and other loads show similar results.

In the figure, <C1, F1, L1; C2, F2, L2> represents the
resource configuration that allocates C1 cores operating at
frequency F1 and L1 LLC ways to the LS service while
allocating C2 cores operating at frequency F2 and L2 LLC
ways to the BE application.

Observed from Fig. 3, in 13 out of the 18 co-locations,
more cores result in higher throughput of BE applications,
while higher core frequencies result in higher throughput in 5
co-locations. The performance gap between the two feasible
configurations is large. For example, <12C, 1.3F, 12L; 8C,
2.2F, 8L> results in higher throughput of bs compared with
<8C, 2.0F, 10L; 12C, 1.4F, 10L> when bs is co-located with
memcached at 35% load (higher frequency is better for the
throughput of bs in this case). Note that <8C, 2.0F, 10L; 12C,
1.4F, 10L> is the configuration by simply reducing the fre-
quency of the cores allocated to BE applications. Meanwhile,

<4C, 1.6F, 6L; 16C, 1.8F, 14L> results in higher throughput
of bs compared with <8C, 1.2F, 7L; 12C, 2.2F, 13L> when
bs is co-located with memcached at 20% load (more cores are
better for bs in this case).

It is nontrivial that more cores or higher frequencies are
better for the BE applications to achieve higher throughput
at co-location. The feasible configuration that maximizes the
throughput of BE applications while ensuring the QoS of LS
services under power constraint depends on (1) the load of the
LS service, (2) the resource preferences of both the LS services
and BE applications, and (3) the given power budget.

We use Fig. 3 as an example to explain the above finding.
Observed from Fig. 3, more cores are better for BE applica-
tions when the load of memcached is 20% of its peak load, but
higher frequency are better when the load is 35% of the peak
load (The load of LS service matters). Meanwhile, more cores
result in higher throughput of fe but higher frequency results
in higher throughput of other BE applications when the load of
memcached is 35% of the peak load (The resource preferences
of LS service and BE application matters). Generally, if the
LS service is scalable but the BE application is not, allocating
fewer cores operating at high frequency to the BE application
may be a better choice, and vice versa. Since the power budget
affects the remaining power for the BE application and there
is no linear relationship between the frequency of a core and
its power consumption, the power budget affects the selecting
of the best resource configuration (The power budget matters).

D. Challenges

Based on the above analysis, we propose Sturgeon, a
runtime system that efficiently finds and applies the configu-
ration that maximizes the throughput of BE applications while
ensuring the QoS of LS services under a given power budget.
Specifically, Sturgeon faces three key problems.

• There is no prior knowledge of the latency and power
consumption of LS services and BE applications
under different resource configurations. An method is
required to predict the QoS of LS services and the total
power consumption at co-location with various resource
configurations, and identify all feasible configurations.

• The search space of the feasible configurations is large.
While there are a large number of feasible configurations,
Sturgeon needs to identify the appropriate configuration
that maximizes the throughput of BE applications quickly
at runtime because the load of LS services changes fast.

• Co-located applications contend for shared resources.
Some occasional contentions may result in the QoS viola-
tion of LS services. An mechanism is required to monitor
the QoS of LS services and mitigates the potential QoS
violation due to unpredictable interference.

IV. DESIGN OF STURGEON

Fig. 4 presents an overview of Sturgeon. In a datacenter,
the queries sent by users are first dispatched to each server by
the cluster-level scheduler. Sturgeon runs on each node and
manages shared resources between co-located applications.

Cluster-level

Scheduler

Server1

Server2 Server3

Server4

LS Service LS Service

BE App.BE App.BE App.

Online Perf. / Power Predictor

Sturgeon Resource Management System

Perf. Model

Power Model

LS BE

LS BE

Perf. Model

Power Model

LS BE

LS BE

Perf. Model

Power Model

LS BE

LS BE

Search

Config.

Preference-aware Res. Balancer

Monitor Latency

Fine-tune Config.

Monitor Latency

Fine-tune Config.

LS BELS BE

CPUCPUCPU CacheCacheCache Freq.

CPU of BECPU of BE

CPU of LSCPU of LS

Freq.

CPU of BE

CPU of LS

CPU Cache Freq.

CPU of BE

CPU of LS

PowerPower ThroughputThroughputTail Lat.Tail Lat.

Feasible Config. With Max. Pref.

CPUCPUCPU CacheCache Freq.

CPU of BECPU of BE

CPU of LSCPU of LS

Freq.

CPU of BE

CPU of LS

Power ThroughputTail Lat.

Feasible Config. With Max. Pref.

CPU Cache Freq.

CPU of BE

CPU of LS

Fig. 4. The overview of Sturgeon. The cluster-level scheduler dispatches user queries to different servers. Sturgeon is deployed on each server to manage the
shared resources.

Algorithm 1: Sturgeon Top-level Controller
1 initialize resource allocation;
2 while TRUE do
3 monitor the load and tail latency at an interval of 1s;
4 slack ← (target− latency) / target;
5 if slack < α or slack > β then
6 find and apply a new configuration (predictor);
7 fine-tune the configuration if necessary (balancer);

As shown in Fig. 4, Sturgeon is comprised of an online
performance/power predictor and a preference-aware re-
source balancer. The predictor adopts offline-trained per-
application performance and power models to predict the
QoS and throughput of LS services and BE applications,
respectively. Meanwhile, the power consumption of different
applications is also predicted. With the help of the predictor,
Sturgeon is able to effectively find a feasible resource con-
figuration that maximizes the throughput of BE applications
while meeting both QoS requirement and power constraint.
However, due to the contention on unmanaged resources or
uncontrollable system interference, the LS service may still
suffer from QoS violation when running under the resource
configuration generated by the predictor. In this case, the
balancer is invoked to fine-tune the resource allocation to
eliminate the risk of QoS violation.

Based on the architecture, Algorithm 1 shows the top-level
control flow of Sturgeon. The control flow starts from resource
allocation initialization. Because the initial load of the LS
service is unknown, a generic approach is adopted to initially
allocate all resources to the LS service for QoS guaranteed.
Thereafter, the number of queries and tail latency of the service
are sampled every second. Sturgeon measures slack between
QoS target and tail latency to decide whether to tune the
resource configuration at runtime [11], [23].

Sturgeon reconfigures the resource allocation whenever the
slack is too large or too small. That is, if the slack is smaller
than the lower bound α, more resources will be allocated to
maintain the QoS and if it is larger than the upper bound β,
some resources will be released to BE applications. Note that

TABLE III
RESOURCE PARTITIONING AND POWER MEASUREMENT TOOLS

Item Tool
Core Linux’s cpuset cgroups
LLC Intel Cache Allocation Technology [18]

Frequency The ACPI frequency driver
Power Intel Running Average Power Limit (RAPL) interface [18]

the loads of LS services change quickly, the predictor must
also react quickly to identify all the feasible resource config-
urations and find the one that maximize the BE throughput.
We will detail our design of predictor in Section V. The two
bounds (i.e., α and β) are set according to the sensitivity of
specific applications. A larger α leads to strict protection of
QoS but it is prone to raise false alarm and lower the resource
utilization; a smaller β makes the system free the resources
of LS services more proactively, but it imposes higher QoS
violation risk at the same time. In this paper α and β are
respectively set to 10% and 20% by default.

After resource reconfiguration, the balancer monitors the tail
latency of LS services. The balancer shall harvest and allocate
more resources from BE application to the LS service if it
tends to suffer from (or is suffering from) QoS violation. The
challenge is on how to harvest resources in a proper way with
the minimum impact on the BE application throughput. We
will detail our design in Section VI.

Sturgeon is not involved in the call stack of any LS/BE
application. It runs as a daemon thread on each node of
a datacenter and only adjusts the resource allocation in the
background using the lightweight tools in Table III. Since the
adjustment takes effect in a few milliseconds [23], the runtime
overhead caused by Sturgeon is negligible.

V. ONLINE PERFORMANCE/POWER PREDICTOR

As discussed above, it is non-trivial to identify whether a
resource configuration is “feasible” and which configuration
can yield the maximum throughput. Targeting at this problem,
we build performance and power models of LS services and
BE applications, respectively.

LS BEBE

Perf.

Model

Tail LatencyTail Latency ThroughputThroughputThroughput

LSLS
Power

Model

PowerPower

F1

F2

BE Input

I

LS QPS

Q

C2

BE

F2

L2 I

C2 F2

L2 I

C2 F2

L2 I

C1 F1

L1 Q

C1 F1

L1 Q

C1 F1

L1 Q

C1

CPU

C2C1

CPU

C2 L1

Cache

L2L1

Cache

L2

Freq.

CPU of BECPU of BE

CPU of LSCPU of LS

Freq.

CPU of BE

CPU of LS

Fig. 5. The prediction of a configuration < C1, F1, L1;C2, F2, L2 >.

A. Design of the Predictor

Sturgeon builds a performance model and a power model for
each application. In a dedicated cluster, it is feasible to collect
the training samples of application performance and power
under different resource configurations. We use the 95%-ile
latency for LS services and Instruction Per Clock (IPC) for
BE applications as their performance metrics, which can be
obtained through the application instrumentation in a dedicated
cluster. The power consumption can be obtained through
some power meters [18]. It should be noted that the power
consumption can spike for an elongated duration during the
whole lifetime of some applications, which leads to a potential
risk of the power overload. To resolve this problem, Sturgeon
builds power models for applications based on their peak
powers conservatively. In practice, some telemetry systems
have been deployed in modern datacenters to collect these
metrics periodically [22], [29] and hence these models can be
trained offline with no runtime overhead.

When building the models, four features with high corre-
lations are selected by Lasso regression [28] and treated as
the input of the models: input size, number of cores, core
frequency and LLC ways. For LS services, the query per
second (QPS) is treated as the input size. For BE applications,
PARSEC has defined six-level input sets with different sizes
for each application and they are treated as the input size of
BE applications.

Fig. 5 illustrates the prediction process. For a resource con-
figuration <C1, F1, L1;C2, F2, L2>, the performance model
of the LS service takes the number of cores C1, core frequency
F1, LLC ways L1 and QPS Q as input to predict the tail
latency. The performance model of the BE application takes
C2, F2, L2 and input size I as input to predict the throughput.
Similarly, the power models take these features to predict
the power consumption. By checking whether the tail latency
is within QoS target and overall power consumption within
budget, Sturgeon identifies whether the resource configuration
is “feasible”. Besides, the throughput yielded by this configu-
ration is also exposed.

B. Searching the Configuration with Max. Throughput

Since which resource configuration can yield the maximum
throughput is uncertain, we have to search for it. However, the
exhaustive search is not practical in the real system due to the

large search space. In our current experimental platform with
20 cores, 10-level frequencies and 20 LLC ways, there are 20
× 10 × 20 × 10 = 40000 resource configurations to search.
Our experiment shows that it averagely takes 6.4s to find the
best configuration via exhaustive search, failing to satisfy the
runtime scheduling interval of 1s.

An important insight in reducing search space is that the BE
application gains more resources and hence higher throughput
only when the LS service takes up fewer resources. Hence we
just need to search those configurations with “just-enough”
resources to maintain QoS. Note that the performance of
applications has a positive correlation with the number of
shared resources [9], [23], binary search can be applied to
effectively find such resource configurations. The algorithm
first fixes F1 and L1 at their maximum value and finds the
minimum C1 that ensures QoS (assessed by performance
model) through binary search. After C1,min is determined,
the minimum L1 and F1 can be determined using binary
search similarly. Then C2, L2 can be determined by a simple
subtraction according to the CPU/cache capacity. At this time,
we can not directly set F2 to be its maximum value because
of the power constraint. Hence the algorithm searches the
maximum possible value of F2 using binary search without
power overload (assessed by power model).

So far, we have determined one resource configuration with
“just-enough” cores for the LS service such that BE applica-
tion gains the most cores. However, this resource configuration
is only a candidate; it is not necessarily the one with the
maximum throughput as discussed in Section III. Therefore,
the algorithm then gradually increases C1,min to search more
resource configurations until F2 reaches its maximum value
such that BE application gains the highest core frequency.
During the above search process, all resource configurations
are regarded as candidates, among which Sturgeon selects the
one with maximum throughput to apply.

In summary, the above algorithm based on binary search
reduces the time complexity from O(NC ×NF ×NL ×NF)
= O(N4) to O(NC +(NC +1) · (logNF + logNL + logNF))
= O(NlogN), where NC , NF and NL represent the capacity
of the core, frequency and cache respectively. The algorithm
can be extended to support multiple LS/BE applications by
independently searching the configuration for each application.

C. Selecting Modeling Techniques

Obviously, the efficiency of predictors is critical to the
performance of Sturgeon. Many different modeling tech-
niques with different characteristics are available to build the
models, e.g., Decision Tree (DT) [25], K-Nearest Neighbor
(KNN) [12], Support Vector (SV) [16], Multi-layer Perceptron
Neural Network (MLP) [17], Logistic Regression [13] and
Linear Regression (LR) [26]. Note that the LS service perfor-
mance model only needs to tell whether the QoS is violated
or not and therefore it can be built via classification models.
While, regression models that output a precise value can be
applied to power models of both LS service and BE application
as well as performance model of the BE application.

The results on the accuracy of performance and power mod-
els are reported in Fig. 6 and 7, respectively. The coefficient-

mem xp img bs fs fe rt sp fl
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
2

LS Perf. Model
(Classification)

BE Perf. Model (Regression)

DT KNN SV MLP LR

Fig. 6. The coefficient of determination R2 of performance models, where
LR refers to logistic regression and linear regression for classification model
and regression model respectively.

mem xp img bs fs fe rt sp fl
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
2

LS Power Model
(Regression) BE Power Model (Regression)

DT KNN SV MLP LR

Fig. 7. The coefficient of determination R2 of power models.

of-determination R2 is used to evaluate the accuracy, where
the value of R2 closer to 1.0 represents higher accuracy.

From the consideration of accuracy, we notice that DT
Classification is the most suitable for the performance model
of LS services; KNN and MLP Regression are suitable for the
performance model of BE applications; KNN Regression is the
most suitable for the power model of both LS/BE applications.
In fact, all offline-trained models are stored on the server and
the most suitable one can be deployed according to the specific
application running on the server. Besides, our experiment
shows that all models make a prediction within 0.04ms.

VI. PREFERENCE-AWARE RESOURCE BALANCER

Running with the resource configuration generated by the
predictor, the LS service may still suffer from QoS violation
due to the contention on unmanaged resources or the uncon-
trollable system interference. In order to mitigate such problem
to eliminate the potential QoS violation, we also design a
preference-aware resource balancer in Sturgeon.

After applying a resource configuration, the balancer is in-
voked to monitor the tail latency of the LS service periodically.
If the slack of tail latency is rather small (or even negative),
the resource balancer will harvest some resources from BE
application and assign them to the LS service. Each time the
resource balancer tries to harvest just enough resources from
the BE application so as to guarantee the QoS of LS service
while minimizing the loss of throughput of the BE application.

Algorithm 2 describes how the resource balancer works.
We adopt “binary-harvest” concept and set the harvesting
granularity to the half of the resource quantity that the BE
application owns, for each type of resources (line 2). Since
there are multiple types of resources, the resource balancer
will identify which type of resources to harvest can lead to

Algorithm 2: Resource Balance Algorithm
1 // initialize the granularity to harvest G;
2 G ← 0.5 × Resource that BE application owns now;
3 while slack < α or slack > β do
4 // Determine the target to harvest;
5 for each type of resources Ri do
6 // Use the performance/power predictors;
7 Predict the throughput if harvest it by G;
8 Predict if it leads to the power overload;

9 harvest Ri with minimum throughput loss by G;
10 monitor tail latency in the next interval;
11 if excessively harvest then
12 revert 0.5 × G Ri to BE application;
13 Predict if it leads to the power overload;

14 G ← 0.5 × G;

ThroughputThroughputTail Lat.Tail Lat.

CPUCPU CacheCache

!

Freq.

LS BELS BE

CPU of BECPU of BE

CPU of LSCPU of LS

Monitor Latency

Fine-tune Config.

Monitor Latency

Fine-tune Config.

 QoS

Violation

PowerPowerPower

Config. 1：Harvest Cores

Predict

CPUCPU CacheCacheCache Freq.

CPU of BECPU of BE

CPU of LSCPU of LS

Freq.

CPU of BE

CPU of LS

Pow.Pow.Pow. Tht.Tht.Tht.

Config. 1：Harvest Cores

Predict

CPU Cache Freq.

CPU of BE

CPU of LS

Pow. Tht.

Config. 2：Harvest Cache Space

Predict

CPUCPUCPU CacheCacheCache Freq.

CPU of BECPU of BE

CPU of LSCPU of LS

Freq.

CPU of BE

CPU of LS

Pow.Pow.Pow. Tht.Tht.Tht.

Config. 2：Harvest Cache Space

Predict

CPU Cache Freq.

CPU of BE

CPU of LS

Pow. Tht.

Config. 3：Harvest Power (Decrease Freq.)

Predict

CPUCPUCPU CacheCacheCache Freq.

CPU of BECPU of BE

CPU of LSCPU of LS

Freq.

CPU of BE

CPU of LS

Pow.Pow.Pow. Tht.Tht.Tht.

Config. 3：Harvest Power (Decrease Freq.)

Predict

CPU Cache Freq.

CPU of BE

CPU of LS

Pow. Tht.

Config. 1：Harvest Cores

Predict

CPU Cache Freq.

CPU of BE

CPU of LS

Pow. Tht.

Config. 2：Harvest Cache Space

Predict

CPU Cache Freq.

CPU of BE

CPU of LS

Pow. Tht.

Config. 3：Harvest Power (Decrease Freq.)

Predict

CPU Cache Freq.

CPU of BE

CPU of LS

Pow. Tht.

Fig. 8. When harvesting resources from the BE application, there will be there
different targets to harvest: cores, cache space and power (through decreasing
the frequencies of BE cores). Harvesting different type of resources leads to
different throughput loss.

the minimum throughput loss (line 5-8). As shown in Fig. 8,
there are three choices: 1) Harvesting cores. 2) Harvesting
cache space. 3) Harvesting power, namely, decreasing the
core frequency of the BE application and increasing the core
frequency of the LS service. The resource balancer uses the
predictors as in Section V to estimate the consequent power
consumption and throughput of the three choices. Then, the
one with the minimum throughput loss while meeting the
power budget will be applied. Note that harvesting resources
may also result in power overload. After resource reconfigu-
ration, the resource balancer takes the tail latency in the next
interval as feedback. If the latency suddenly becomes very
low, it means that harvesting such an amount of resource is
excessive, and the resource balancer reverts half of it back
to the BE application (line 11-13); otherwise, the resource
balancer keeps reducing the granularity by half until the tail
latency goes into a suitable range.

VII. EVALUATION

In this section, we first evaluate the performance of Sturgeon
in improving the throughput at co-location while ensuring the
QoS of LS services on power-constrained environment. Then,

 bs fa fe rt sp fd bs fa fe rt sp fd bs fa fe rt sp fd
0.7

0.8

0.9

1.0

1.1
Q

oS
 G

ua
ra

nt
ee

 R
at

e

memcached xapian img-dnn A
vg

.

0.95

Sturgeon-NoB Sturgeon PARTIES

Fig. 9. The QoS guarantee rate of 18 co-location pairs, which means the
number of queries completed within the QoS target in the evaluation.

we show the effectiveness of the resource balancer in Sturgeon
followed by the discussion on the overhead of Sturgeon.

A. Experimental Setup

Since Sturgeon is a server-level resource management sys-
tem, we evaluate it on a node of the datacenter. The specifi-
cation of our experimental platform, selected LS services and
BE applications can be found in Section III. In our experiment,
we enable Hyper-Threading so that there are 20 logical cores
on the socket and each LS service or BE application will start
with 20 threads.

In previous work, PARTIES [11] and Heracles [23] are most
relevant to Sturgeon. They have been proved to work well
in improving resource utilization while guaranteeing the QoS
of LS services. Although PARTIES is designed to support
co-locating multiple LS services, it still works well in co-
locating 2 applications and outperforms Heracles. Besides, it
proactively adjusts the core frequencies of both co-located
applications in its controller. We thus choose PARTIES as the
comparison. In the original implementation, PARTIES adjusts
one type of resources and monitors the following latency as
feedback. PARTIES allocates more resources to the LS service
with small slack. If the latency does not become shorter,
PARTIES will choose another type of resources to allocate.
It harvests resources from the LS service with large slack. If
the consequent slack of this LS service becomes quite small,
PARTIES will revert the resource back. Because there is no
consideration of power budget in the original implementation,
we enhance PARTIES: if allocating one type of resources
leads to the power overload problem, PARTIES will revert it
back and try another. Our experiment shows that the original
implementation of PARTIES results in the power overload
problem as we explained in Section III.

Because co-locating LS services with BE applications is
motivated by the fluctuating load, we evaluate Sturgeon and
PARTIES in a fluctuating input. The load of an LS service
first increases from 20% to 80% and then decrease to 20% of
its peak load. In our experimental platform, 60K, 3500, 3000
QPS are the peak load of memcached, xapian and img-dnn.

B. QoS, Throughput and Power

Fig. 9 shows the QoS guarantee rate of the LS services for
all co-location pairs with Sturgeon and PARTIES. QoS guar-
antee rate shows the number of queries completed within the

 bs fa fe rt sp fd bs fa fe rt sp fd bs fa fe rt sp fd
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

memcached xapian img-dnn A
vg

.

Sturgeon-NoB Sturgeon PARTIES

Fig. 10. The normalized throughput of BE applications of 18 co-locations.

QoS target in the evaluation. For example, the QoS guarantee
rate of co-locating bs with memcached under the management
of Sturgeon is 99.33%, which means the latencies of 99.33%
queries are within QoS target, namely, the 99%-ile latency of
memcached in this co-location pair can be guaranteed within
the QoS target. Observed from the figure, the 95%-ile latency
of all co-location pairs can be guaranteed within the QoS target
with Sturgeon and the enhanced PARTIES.

Fig. 10 shows the normalized throughput of BE applications
at co-location with Sturgeon and PARTIES. The throughput
of a BE application at co-location is normalized to its solo-
run performance on the same hardware. Observed from the
figure, Sturgeon outperforms PARTIES in all co-location pairs.
On average, with Sturgeon, BE applications achieves 24.96%
higher throughput than with PARTIES. Generally, PARTIES
results in the low throughput of BE applications at co-location
because it does not consider the resource preference of the
co-located applications. The selected resource configuration
is not optimal. The detailed reason will be analyzed in Sec-
tion VII-D.

As mentioned in Section V, Sturgeon conservatively uses
the peak power of an application to train the power model
in order to eliminate the potential power overload problem.
In the experiment, Sturgeon limits the power consumption
within the budget for all 18 co-location pairs. Meanwhile, even
if we enhance PARTIES, 7 out of the 18 co-locations still
suffer from power overload. This is because the feedback-
based controller in PARTIES still requires several iterations
to converge when a power overload is detected. The power
overload happens before the search converges.

In summary, Sturgeon is able to effectively improve the
throughput of BE applications while ensuring the QoS of LS
services in the power constrained environment.

C. Effectiveness of the Resource Balancer

To evaluate the effectiveness of the preference-aware re-
source balancer in eliminating QoS violation due to the
contention on unmanaged resources or uncontrollable sys-
tem interference, we implement a variation of Sturgeon that
disables the resource balancer (denoted as “Sturgeon-NoB”).
Fig. 9 and Fig. 10 also shows the performance of Sturgeon-
NoB in guaranteeing the QoS of LS services and improving
the throughput of BE applications at co-location.

Observed from Fig. 9 and Fig. 10, LS services in 12 out of
the 18 co-locations suffer from QoS violation with Sturgeon-

0 100 200 300 400 500
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

. T
hr

ou
gh

pu
t

0 100 200 300 400 500
Time(s)

0

5

10

15

20

#C
or

es
 fo

r L
S

0 100 200 300 400 500
Time(s)

1.0

1.5

2.0

2.5

Fr
eq

. o
f L

S
Co

re
s

PARTIES
Sturgeon

Fig. 11. The normalized throughput and resource allocations of a co-location pair (memcached and raytrace) with Sturgeon and PARTIES. The load of
memcached increases from 20% to 50% of its peak load.

NoB, while BE applications achieve higher throughput in most
co-locations compared to Sturgeon. This is because when the
resource balancer is enabled, it may harvest some shared
resources from the BE application and allocate them to the
LS service, in order to indirectly adjust the allocation of un-
managed resources (e.g., harvesting cache space to indirectly
regulate memory bandwidth because memory traffic is closely
related to the cache hit rate.) or improve the performance of
the LS service for handling the sudden interference. Harvesting
resources from the BE application will lead to throughput loss
but it is still necessary.

By enabling the preference-aware resource balancer in Stur-
geon, the QoS of LS services can be guaranteed with the
cost of only minor throughput degradation of BE applications
(4.38% on average) at co-location.

The preference-aware resource balancer can eliminate the
potential QoS violation due to the contention on unmanaged
resources or uncontrollable system interference effectively.

D. Fluctuating Load Example

To further investigate the difference in resource allocation
strategy between Sturgeon and PARTIES, we choose a pair
(memcached and raytrace) to co-locate under the management
of Sturgeon and PARTIES with the load increasing from 20%
to 50% of the peak load. We report the throughput of the BE
application, allocation of cores and the frequency settings as
in Fig. 11. Other co-location pairs show similar results.

In order to guarantee the QoS, the LS service memcached
gets all the resources in the beginning. This is an over-
provisioning at 20% load and the resource management system
starts to free the resources allocated to memcached. PARTIES
continues harvesting cores as well as LLC ways from mem-
cached and decreasing the frequencies and the configuration
of memcached finally stabilizes at <8C, 1.2F, 10L> (the BE
application raytrace is allocated 12 cores operating at 2.2GHz
and 10 LLC ways at this time). Instead, Sturgeon decides to
allocate 4 cores operating at 1.6GHz and 6 LLC ways to the
memcached based on the online performance/power predictors,
while raytrace is allocated 16 cores operating at 1.8GHz and
14 LLC ways at this time. Note that, Sturgeon tries to allocates
“just-enough” LLC ways to the LS service as in Section V-B.
As shown in Fig. 11, the resource allocation generated by
Sturgeon leads to higher throughput of raytrace compared with
the one generated by PARTIES.

When the load of memcached increases, it needs more
resources to ensure the QoS. At about 100s, PARTIES harvests
a core from the raytrace (<9C, 1.2F, 10L> for memcached
at this time). However, as shown in Section III, at around
20% of the peak load, raytrace achieves higher throughput
when it is allocated more cores. Sturgeon identifies this
preference and decides to increase to frequencies of the cores
allocated to memcached to maintain the QoS (from 1.6GHz to
1.8GHz and then to 2.0GHz), and the frequencies of the cores
allocated to raytrace will therefore decrease. As we can see,
the configuration generated by Sturgeon outperforms.

At around 300s, PARTIES continues harvesting core from
raytrace. The number of cores allocated to memcached in-
creases from 9 to 13, while there is some interference that
causes PARTIES to increase the number of cores and fre-
quencies in turn. Instead of increasing the core frequency,
Sturgeon decides to allocate more cores to memcached while
decreasing their frequencies (from <8C, 1.4F, 8L> to <12C,
1.3F, 12L>). At around 35% of the peak load, raytrace
achieves higher throughput when the frequency of its cores
is higher. Both Sturgeon and PARTIES adopt the strategy that
allocating more cores to the LS service (the BE application
hence gains fewer cores but higher core frequency) at this
time, so the throughput is close.

From 300s to the end, PARTIES still harvests core from ray-
trace because it indeed reduces the tail latency of memcached,
while Sturgeon prefers to increase the frequencies of the cores
allocated to memcached and leaves more cores to raytrace.
The configuration generated by Sturgeon outperforms because
raytrace prefers more cores at this load.

To conclude, Sturgeon is able to fast converge to a fairly
good resource configuration by considering the system load,
resource preferences of both co-runners and the given power
budget comprehensively.

E. Overhead and Discussion
The overhead of Sturgeon exists in the predictor that

searches through a large number of configurations for the
most suitable one, and the balancer that fine-tunes resource
allocation for ensuring the QoS.

For the predictor, when Sturgeon needs to adjust the re-
source configuration, there are 40000 configurations to search.
The exhaustive search takes 40000 × 4 × 0.04ms = 6.4s (each
time 4 models will be used and predicting with each model
takes 0.04ms according to our real system measurement).

While the sampling and resource adjustment interval is 1s,
such a long search time is unacceptable.

Adopting the algorithm in Section V-B, Sturgeon needs
log2(20) + log2(10) + log2(20) + log2(10) = 16 times to find
the configuration with minimum number of cores (C1,min)
allocated to the LS service. Based on the above configuration,
Sturgeon increases C1,min gradually to find more candidates
until the frequencies of cores allocated to the BE application
reach the maximum in a configuration. Since there are at most
19 candidates and it takes log2(10) + log2(20) + log2(10) =
11 times to search the specific allocation in each candidate,
Sturgeon takes at most (16 + 11 × 19) × 4 × 0.04ms =
36ms to find the feasible configuration with the maximum
throughput of BE applications.

According to our real-system measurement, Sturgeon uses
at most 120ms to find the best configuration, including the
overhead of model computation and other inherent cost (main-
taining data structures and so on). While the search runs in
background and the resource adjustment interval is 1s, the best
configuration can be returned in time. If longer adjustment
interval is adopted (e.g., 15s in Heracles [23]), the overhead
of search can be ignored. Moreover, the search can also be
further accelerated using multithreading.

For the resource balancer, since it only needs to estimate the
performance and power consumption of three configurations
(as in Fig. 8) when it is invoked, the overhead of the resource
balancer is 3 × 4 × 0.04 = 0.48ms. It is negligible compared
with the 1s adjustment interval.

VIII. CONCLUSIONS

This paper presents Sturgeon, a runtime system that man-
ages resources between co-located applications in a power
constrained environment, to ensure the QoS of LS services
while maximizing the resource utilization. With the accurate
online performance/power predictor, Sturgeon effectively finds
a feasible resource configuration with the maximum through-
put of BE applications. With the preference-aware resource
balancer, Sturgeon eliminates the potential QoS violation. The
experimental results show that Sturgeon improves the through-
put of BE applications at co-location by 24.96% compared
to the state-of-the-art technique, while guaranteeing 95%-ile
latency within the QoS target.

ACKNOWLEDGMENT

This work is partially sponsored by the National R&D Pro-
gram of China (No. 2018YFB1004800), the National Natural
Science Foundation of China (NSFC) (61632017, 61772480,
61872240, 61832006, 61702328).

REFERENCES

[1] A deep network handwriting classifier. 2019. https://github.com/xingdi-
ericyuan/multi-layer-convnet.

[2] Apache Solr. 2019. http://lucene.apache.org/solr.
[3] Memcached. 2019. http://memcached.org.
[4] Xapian project. 2019. https://xapian.org.
[5] L. A. Barroso and U. Holzle. The case for energy-proportional

computing. Computer, 40(12):33–37, 2007.
[6] L. A. Barroso and U. Hölzle. The datacenter as a computer: An

introduction to the design of warehouse-scale machines. Synthesis
lectures on computer architecture, 4(1):1–108, 2009.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark
suite: Characterization and architectural implications. In PACT, pages
72–81. ACM, 2008.

[8] H. P. Capping. Hp dynamic power capping for proliant servers.
Technology Brief,, 2011.

[9] Q. Chen, Z. Wang, J. Leng, C. Li, W. Zheng, and M. Guo. Avalon:
towards qos awareness and improved utilization through multi-resource
management in datacenters. In ICS, pages 272–283. ACM, 2019.

[10] Q. Chen, L. Zheng, M. Guo, and Z. Huang. Eewa: Energy-efficient
workload-aware task scheduling in multi-core architectures. In IPDPSW,
pages 642–651. IEEE, 2014.

[11] S. Chen, C. Delimitrou, and J. F. Martı́nez. Parties: Qos-aware resource
partitioning for multiple interactive services. In ASPLOS, pages 107–
120. ACM, 2019.

[12] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27, 1953.

[13] B. Efron. Logistic regression, survival analysis, and the kaplan-
meier curve. Publications of the American Statistical Association,
83(402):414–425, 1988.

[14] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the
clouds: a study of emerging scale-out workloads on modern hardware.
In ASPLOS, pages 37–48. ACM, 2012.

[15] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Bal-
dini. Statistical profiling-based techniques for effective power provision-
ing in data centers. In Eurosys, pages 317–330. ACM, 2009.

[16] S. R. Gunn et al. Support vector machines for classification and
regression. ISIS technical report, 14(1):5–16, 1998.

[17] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[18] Intel. Intel R© 64 and ia-32 architectures software developer’s manual.
2016.

[19] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox, and
S. Rixner. Predictive parallelization: Taming tail latencies in web search.
In SIGIR, pages 253–262. ACM, 2014.

[20] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez. Rubik: Fast
analytical power management for latency-critical systems. In Micro,
pages 598–610. IEEE, 2015.

[21] H. Kasture and D. Sanchez. Tailbench: a benchmark suite and evaluation
methodology for latency-critical applications. In IISWC, pages 1–10.
IEEE, 2016.

[22] J. Lee, C. Kim, K. Lin, L. Cheng, R. Govindaraju, and J. Kim. Ws-
meter: A performance evaluation methodology for google’s production
warehouse-scale computers. In ASPLOS, pages 549–563. ACM, 2018.

[23] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis.
Heracles: Improving resource efficiency at scale. In ISCA, volume 43,
pages 450–462. ACM, 2015.

[24] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations. In Micro, pages 248–259. ACM, 2011.

[25] J. R. Quinlan. Induction on decision tree. Machine Learning, 1(1):81–
106, 1986.

[26] G. A. Seber and A. J. Lee. Linear regression analysis, volume 329.
John Wiley & Sons, 2012.

[27] A. Sriraman, A. Dhanotia, and T. F. Wenisch. Softsku: optimizing server
architectures for microservice diversity@ scale. In ISCA, pages 513–
526. ACM, 2019.

[28] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), 58(1):267–
288, 1996.

[29] J. L. Vincent and J. Kuzma. Using platform level telemetry to reduce
power consumption in a datacenter. In Thermal Measurement, Modeling
& Management Symposium, 2015.

[30] D. Wang, C. Ren, and A. Sivasubramaniam. Virtualizing power
distribution in datacenters. In ISCA, pages 595–606. ACM, 2013.

[31] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers.
ISCA, 41(3):607–618, 2013.

[32] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars. Powerchief:
Intelligent power allocation for multi-stage applications to improve
responsiveness on power constrained cmp. In ISCA, pages 133–146.
ACM, 2017.

[33] H. Zhu and M. Erez. Dirigent: Enforcing qos for latency-critical tasks
on shared multicore systems. In ASPLOS, pages 33–47. ACM, 2016.

